PREGUNTAS A) $ B) $ C) $ D) $
|
|
|
- María Dolores Macías Venegas
- hace 7 años
- Vistas:
Transcripción
1 PREGUNTAS 1 1) Por un televisor he pagado $ 81 con un IVA del 1%, entonces el valor que mejor aproxima el precio sin IVA es: $ $ C) $ $ ) Sabiendo que la masa de una molécula de oxígeno es de. 10 gramos y que un litro de oxígeno contiene moléculas, entonces la masa de un litro de oxígeno es de: gr gr C) gr gr ) Al operar se obtiene: 16 C) 1 4) Se tiene un cuadrado cuya superficie es igual a la de un triángulo de 60 m de base y 0 m de altura. El lado de dicho cuadrado mide: 0 0 m 40 m C) m m ) En un país, el presidente dura 4 años en su cargo, los senadores 6 años y los diputados años. Si en 1999 hubo elecciones para los tres cargos, el año en que esto volverá a suceder será: C) ) Al ordenar los números ; ; ; ; en forma creciente se obtiene: ; ; C) ; ; ; ;
2 7) Todos los puntos x del intervalo representado en el gráfico verifican la desigualdad: 7 1 < x C) x < x < < x 4x x 8) Al resolver la ecuación + = 4 se obtiene: C) 1 9) Para que el polinomio P ( x) = 4x + 16x + b independiente b debe ser: sea un cuadrado perfecto, el término 4 64 C) ) Sea el polinomio P ( x) = x x. La afirmación FALSA es: Como P ( ) = 0, P (x) es divisible por x +. Como P ( 1) = 6, el resto de la división de P (x) por x 1 es igual a 6. C) Como P ( ) = 0, es raíz de P (x). Como P ( ) = 44, (x) x +. P no es divisible por ( ) 11) Al factorizar el polinomio ( ) 7 x 81x se obtiene: x x 9 x ( x )( x + )( x + 9) x x 9 x + 9 x + 9 x ( x ) 4 C) ( )( )( ) 1) Al multiplicar el polinomio ( x +1) por x se obtiene: C) x + x 4 4 x + x + x 6 + x + x x + x 1
3 1) Al simplificar y operar x 7x + 10 x x 4x + 4 x 4 se obtiene: x 7 x + 4 C) 1 4 x por ( + ) 14) Al dividir el polinomio + x 4x + x + 6 Ninguna de las respuestas dadas en las otras alternativas. cociente: x + 9x + x + 74 ; resto: 8. C) cociente: x x 1x + 44 ; resto: 6. cociente: x x + x 10; resto: 6. x se obtiene: 1) Si elevamos al cuadrado la edad que actualmente tiene Juan, obtenemos veces la edad que tendrá en 10 años. La ecuación que resuelve este problema es: x x + 0 = 0 x x 10 = 0 C) x x + 10 = 0 x x 0 = 0 16) Para que la ecuación ( x 1) + 4x + n = 0 tenga raíces reales iguales, el valor de n debe ser: C) 0 17) Jorge compró por $00 un equipo de música y un televisor. Después de un tiempo decide venderlos a $17, perdiendo en esta venta un 10% del valor original del equipo de música y un 1% del valor original del televisor. Si representamos con x el precio original del equipo de música y con y el precio original del televisor, entonces un sistema que permite calcular los valores de x e y es: + y = x y = 17 + y = x y = 17 C) + y = x y = 00 + y = x y = 00 18) En una fracción, si le sumamos al numerador y 4 al denominador obtenemos 1. En cambio, si sumamos al numerador y restamos al denominador obtenemos 8. La expresión decimal de dicha fracción es: ) C) )
4 4 19) La figura siguiente está dividida en el cuadrado ABCD de cm de perímetro y en el triángulo BCT de 4 cm de área. Entonces la altura h del triángulo es: 6 cm cm C) 8 cm 1 cm 0) De acuerdo a la figura, en donde a b y c d, la medida del ángulo α es: C) ) Teniendo en cuenta que las rectas r, s y t son paralelas, x e y valen: x = 1. ; y =. x = 4. ; y =. C) x = 6. ; y =. x = 4. ; y = 1. ) Una persona de 1.80 m de altura se encuentra a 48 m del pie de una chimenea. Si se sabe que la visual dirigida al punto más alto de la chimenea forma un ángulo de 6 40'1' ' con la horizontal, entonces el valor que mejor aproxima la altura de la chimenea es: 7.4 m.74 m C).94 m 8.67 m ) Estando situado a 87 m de un olmo, veo su copa bajo un ángulo de. Mi amigo, que tiene igual estatura que yo, ve el mismo olmo bajo un ángulo de. Entonces, el valor que mejor aproxima la distancia de mi amigo al olmo es: m C) 77.1 m 7.8 m 4) Una antena de radio tiene una altura de 0 m. Debemos sujetarla desde la punta con varios cables iguales a bases de hormigón que se encuentran a 1 m de la base. Cada cable deberá tener una longitud de: m 6 m C) 0 m m
5 ) En una ciudad, una inmobiliaria vende terrenos rectangulares. Se sabe que el metro cuadrado de terreno es más barato mientras más lejos está el terreno del centro de la ciudad. Entonces, entre los siguientes, el terreno más alejado del centro es: Terreno de 10 m x 0 m a $1000. Terreno de 10 m x 0 m a $000. C) Terreno de 1 m x m a $ Terreno de 10 m x m a $ ) Determine qué función NO podría representarse mediante una gráfica de este tipo: El valor de una llamada telefónica en función de su duración. El valor de un viaje en taxi en función de la distancia recorrida. C) La altura de un niño en función del tiempo, durante su primer año de vida. La suma total invertida en el alquiler de una casa, durante los primeros meses, en función del tiempo. 7) Si r es la recta de ecuación x y + = 0, determine cuál de las siguientes 4 afirmaciones sobre r es FALSA: Si desde un punto de r nos trasladamos dos unidades hacia la derecha y siete hacia abajo, llegamos a otro punto de r. 7 r es paralela a la recta y = x 7 1 C) r pasa por el punto de coordenadas ( 8,4). r corta al eje x en x = 6. 8) La gráfica que corresponde a la función f ( x) = ( x + ) 1, es: C)
6 6 9) Si la función f está definida por la ecuación f ( x) = x 4x + 7. Cuál de las siguientes afirmaciones es VERDADERA? La gráfica de f es simétrica con respecto a la recta x =. f (x) es siempre mayor que. C) f ( x) = 7 sólo para x = 0. Todo tramo de la gráfica de f es creciente. 0) Un bioquímico pone a calentar en un mechero dos compuestos A y B durante 1 segundos. El gráfico representa la temperatura de ambos compuestos hasta los treinta segundos después de haber iniciado la experiencia. Determine cuál de las siguientes afirmaciones es VERDADERA: La temperatura de B es más variable que la de A. El compuesto B nunca se encuentra a C. C) La diferencia final entre las temperaturas de ambos compuestos es mayor que la diferencia inicial. En los últimos segundos sobre el mechero, la temperatura de A aumenta el doble que la B.
7 7 PROBLEMA Complete las casillas vacías de la pirámide con números (no necesariamente enteros), de modo tal que siempre se verifique que: el número ubicado en una casilla sea igual a la suma de los dos números escritos en las dos casillas en las que está apoyada Escriba detalladamente todos los razonamientos que realice para resolver el problema.
PREGUNTAS A) 120 B) 105 C) 24 D) 72. es: D) 12
PREGUNTAS 1) En el Comedor Universitario sirven empanadas cada ocho días, asado cada doce días y flan cada quince. Si quiero comer un menú con estos tres platos, cada cuántos días debo ir? A) 10 B) 105
TEMA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS Y NATURALES 1 PREGUNTAS Evaluación Diagnóstica de Matemática del 2 de Marzo de 2009
TEMA -0-009 FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS Y NATURALES PREGUNTAS Evaluación Diagnóstica de Matemática del de Marzo de 009 a ) Sean a, b 0. Si el cociente es negativo, entonces cuál de las siguientes
GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2
GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (
IES ATENEA. GLOBAL/RECUPERACIÓN. MATEMÁTICAS B. 4º ESO. Nombre: , simplificando el resultado. Q(x) = 2x 3x 9x + 10.
IES ATENEA GLOBAL/RECUPERACIÓN MATEMÁTICAS B 4º ESO Nombre: Evaluación: Primera Fecha: 4 de enero de 011 NOTA Ejercicio nº 1- a) Epresar como un solo radical 4 0 b) Racionaliza la epresión 6, simplificando
MATEMÁTICAS B 4º ESO
MATEMÁTICAS B 4º ESO Las unidades trabajadas durante el curso han sido: UNIDAD 1: NÚMEROS REALES UNIDAD : POTENCIAS Y RADICALES UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS UNIDAD 4: ECUACIONES E INECUACIONES
Ejercicios de números reales
Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 4 7 Ejercicio nº.- Considera los siguientes números: 9,000000..., 8,... Clasifícalos
MATEMÁTICAS 2º E.S.O.
MATEMÁTICAS 2º E.S.O. UNIDAD 1. Números enteros Reconocer la presencia de los números enteros en distintos contextos. Calcular el valor absoluto de un número entero. Ordenar un conjunto de números enteros.
19 f) = (Sol: x = -3 )
EJERCICIOS REPASO ÁLGEBRA con soluciones 1.- Resuelve las siguientes ecuaciones: x + a = 1 (Sol: x = 1 5x + 1 x + 5 x b = (Sol: x = 5 14 5 x x + 1 x + c + = (Sol: x = 0 6 x x + 1 x d = (Sol: x = -1 4 6
1 Descomponer en factores
Divisibilidad (T 1 ) SOLUCIONES 1 Descomponer en factores 1 216 216 = 2 3 3 3 2 360 360 = 2 3 3 2 5 3 432 432 = 2 4 3 3 2 Descomponer en factores 12250 2250 = 2 3 2 5 3 23500 3500 = 2 2 5 3 7 32520 2 520
Ecuaciones e inecuaciones
Ecuaciones e inecuaciones EJERCICIOS 00 Indica los elementos de estas ecuaciones. a) ( + ) ( 5) + 7 b) + ( ) 9 + a) Incógnita: Miembros: ( + ) ( 5) + ; 7 Grado: b) Incógnita: Miembros: + ( ) 9; + Grado:
EJERCICIOS DE CÁLCULO 10 - MATEMÁTICA I
UNIVERSIDAD DE LOS ANDES NÚCLEO UNIVERSITARIO RAFAEL RANGEL DEPARTAMENTO DE FÍSICA Y MATEMÁTICA VENEZUELA EJERCICIOS DE CÁLCULO 0 - MATEMÁTICA I PROF LUIS BERBESÍ PROBLEMAS Y EJERCICIOS DE CÁLCULO 0 -
VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D)
1.- La gráfica de la ecuación MATEMÁTICAS V B) 1y 4 0 es:.- El dominio de la función f 1, B), 1 4 es: 1 1, 1 VERSIÓN 1 C), 1 1, C) 4.- Determina el rango de la función y. y B) y C) 1 y y y 0, 0.- Para
2015 -I. preguntas y respuestas. Matemática. Pregunta N. o 1. Pregunta N. o 4. Pregunta N. o 2. Pregunta N. o 5. Pregunta N. o 3. Examen de admisión
05 -I Examen de admisión preguntas y respuestas Matemática Pregunta N. o Sea el número E= 00 + 00. alcule el residuo de dividir E entre 7. 0 Pregunta N. o uántos números de la forma (a )(b)(a ) son primos?
4. Halla el menor conjunto numérico al que pertenecen los siguientes números: ,
Actividades de recuperación de la 1ª EVALUACIÓN Unidad 1: Números reales 1. Efectúa, paso a paso las siguientes operaciones combinadas: a) 1 101 9 4 b) 1 4 1 8 114 4 4 1 : : 4 7 d) 1 1 1 1 1 4. Efectúa
Prueba Específica de Matemática
Universidad de San arlos de Guatemala Escuela de iencias Físicas y Matemáticas ódigo de examen: PEM-EFM-2018-01-100 NOV: X X X X X X X X X X X Nota: XXX Nombres: Apellidos: Solo marque una opción: Hombre
Resolver problemas que para su solución requieran ecuaciones Determinar la ecuación de una recta ubicada en el plano cartesiano.
PROYECTO MATEM CURSO PRECÁLCULO-UNDÉCIMO AÑO 16 Guía para el I parcial - sábado 16 de abril, 8: a.m. 1 Resolver ecuaciones cuadráticas. Objetivos Selección Complete Desarrollo Total 1 Resolver ecuaciones
TRABAJO PRÁCTICO Nº 2
TRABAJO PRÁCTICO Nº EXPRESIONES ALGEBRAICAS. ECUACIONES. Objetivos: Identificar epresiones algebraicas de las no algebraicas. Reconocer los diferentes tipos de epresiones algebraicas. Establecer qué tipo
Matemáticas. Tercero ESO. Curso Exámenes
Matemáticas. Tercero ESO. Curso 2014-2015. Exámenes 140930 nombre: 1. Calcular: (a) 1 + 1 + 2 3 3 2 (b) 3 5 + 3 1 4 2 3 2. Calcular: (a) 2 4 + 2 8 3 + 1 2 3 5 (b) 1 3 + 2 9 1 5 8 5 3. Calcular: (a) 8
Matemáticas, opción B EDUCACIÓN SECUNDARIA 4
Evaluación: EXAMEN DE LA UNIDAD 1 Fecha: Ejercicio nº 1.- a) Escribe en forma de intervalo, en forma de desigualdad y clasifícalo en cada caso: - 3 5 b) Escribe en forma de desigualdad, clasifícalo y representa:
Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.
Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
LAS FRACCIONES Y LA RECTA NUMÉRICA
LS FRCCIONES Y L RECT NUMÉRIC La tía de Marina va a regalarle una cartuchera para guardar sus lápices de colores que tiene 32 cm de largo y 10 cm de ancho. Ella siente curiosidad de si la cartuchera será
MATEMÁTICAS 4º E.S.O. (opción B) SEPTIEMBRE 2015
MATEMÁTICAS 4º E.S.O. (opción B) SEPTIEMBRE 2015 Radicales 1º) Ordena de menor a mayor los siguientes radicales: { } 2º) Simplifica: b) = 3º) Efectúa las siguientes operaciones: b) 4º) Racionaliza: Semejanza
RN.4 CALCULO Y RAZONAMIENTO NUMÉRICO Tiempo: 20 minutos
RN.4 CALCULO Y RAZONAMIENTO NUMÉRICO Tiempo: 20 minutos Esta prueba se compone de 50 ejercicios de calculo y razonamiento numérico; Cada ejercicio tiene 5 alternativas o posibles soluciones, pero solo
= =. Cuál es el valor de (b a)?
TERCERA RONDA - REGIONAL - 6 DE SETIEMBRE DE 2003 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a problemas
EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH
Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:
SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES
DPTO DE MATEMÁTICAS T: ALGEBRA - 1 SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES 1. Los lados de un rectángulo se diferencian en m. Si aumentáramos m cada lado, el área se incrementaría en 40 m.
TRABAJO DE MATEMÁTICAS B
TRABAJO DE MATEMÁTICAS B º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE Y. RECUERDA QUE TAMBIÉN
1 a) Aplica a la figura una traslación de vector ( 7, -3). Halla la figura homóloga con respecto a una simetría axial de eje OX
MATEMÁTICAS º.E.S.O Ejercicios de repaso Movimientos en el plano. Geometría a Aplica a la figura una traslación de vector 7, -. Halla la figura homóloga con respecto a una simetría aial de eje OX b Aplica
Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes
Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]
( ) ( ) ( )( ) b) Multiplicamos ambos miembros por : Resuelve las ecuaciones: + = + + = + = x 2x + = Solución:
Resuelve las ecuaciones: a) + 6 + 1 b) 15 + + 1 1 a) 6 + 1 Elevamos ambos miembros al cuadrado: 6 1 9 1 18 8 0 9 0 + + + + 9 ± 81 9 ± 9 9 ± 7 1 16 Comprobamos las posibles soluciones sobre la ecuación:
PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 12 y la suma de sus cuadrados es 170.
Problemas algebraicos 1 PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 1 y la suma de sus cuadrados es 170..- Hallar dos números naturales
DEPARTAMENTO DE MATEMÁTICAS CURSO
DEPARTAMENTO DE MATEMÁTICAS CURSO 0677.- a) Sobre una buena clasificación de los conjuntos numéricos, determina a qué clase pertenecen los siguientes números (justifica las respuestas simplificando):,,7,0,,,,
Ensayo nº El resultado de es igual a: a) +2 b) +4 c) -4 d) -2
Ensayo nº 3 1- El resultado de +12 - -3 + -7+ -4 es igual a: a) +2 b) +4 c) -4 d) -2 2- El valor correcto para X si -2 x =7 3 + -1 es: a) 7 b) 5 c) -5 d) ninguno de los anteriores 3- Al calcular [-14+2-6]
EJERCICIOS DE RECUPERACIÓN MATEMÁTICAS 3º ESO (PARTE 2)
EJERCICIOS DE RECUPERACIÓN MATEMÁTICAS 3º ESO (PARTE 2) 9 2 = 81 99 2 = 9801 999 2 = 998001 9999 2 = 99980001 99999 2 = 9999800001 999999 2 = 999998000001 9999999 2 = 99999980000001 99999999 2 = 9999999800000001
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina de 7.- Efectúa las siguientes operaciones con cantidades epresadas en notación científica. Epresa el resultado también en notación científica: a) (9. 0 )(5. 0 ) (,5. 0 ) b) (,6. 0 )(5. 0 ) (4. 0
40 h) 27 g) 7 g) h) 3
Hoja 1. Números reales. 4º ESO-Opción B. 1. Halla la fracción generatriz: 0, ; 5,5 ; 95,7 ; 8,000 ; 0,01 ; 7,875 ; 4,1 ; 0,000000. Calcula la fracción generatriz de los siguientes números decimales periódicos:
El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?
TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se
RESPUESTAS. Examen UNI 2015 I. Matemática
RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5
Colegio Diocesano Sagrado Corazón de Jesús - HUELVA
Colegio Diocesano Sagrado Corazón de Jesús - HUELVA Actividades de recuperación Matemáticas. º ESO B Curso 0/06 El alumno deberá entregar obligatoriamente estas actividades día del examen de septiembre
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante
IES Concha Méndez Cuesta. Matemáticas 3º ESO. Nombre:
Tema 1 1. Calcula las siguientes operaciones con enteros: 5 4 8: 7 3 10 6 6 54 7 3. Calcula las siguientes operaciones con fracciones: 4 1 3 1 1 : 3 4 3 3 5 5 1 1 5 : 1 6 3 4 3 3. Los 5 1 de las entradas
Módulo de Revisión para la Evaluación de Febrero
Módulo de Revisión para la Evaluación de Febrero Matemática to año B Profesora Fátima R. Urquieta Año 07: Nombre del Alumno: CONTENIDOS: Geometría y Álgebra Semejanza de figuras planas. Teorema de Thales.
1. He escrito el No he escrito el He escrito el No he escrito el 4.
º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible:
4ºESO 1. Efectúa las siguientes operaciones, simplificando el resultado lo máimo posible: a. 18 50 8 b. 7 3 180 c. 4 3 64 d. e. 3 3 3 5 88 : 1 3 4 7 5. Racionaliza las siguientes epresiones, simplificando
Unidad 6: Funciones reales de variable real.
Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
MATEMÁTICAS. , el valor de las variables es: 5. Al resolver el sistema. A) x = 2; y = 3 B) x = 4; y = 3 C) x = 4; y = 3. 1 ; y = 2.
MATEMÁTICAS. Un Jugador de beisbol conectó 0 hits en la última temporada, pero también cometió strikes, cuál es la razón del número de hits respecto al número de strikes? A).5 B).7.9.. Si el área de un
Distrito escolar de Carson City: Vocabulario matemático CCSS fundamental
Vocabulario matemático fundamental del primer trimestre conmutativa a + b = b + a a x b = b x a En la suma y la multiplicación cambiar el orden no altera la respuesta.( La suma y la resta no son conmutativa)
CURSO º ESO
Plan de recuperación de Matemáticas IES SANTIAGO SANTANA DÍAZ 1º ESO Preparación de la prueba de recuperación CURSO 2017-2018 1º ESO Esta guía pretende ser orientativa para la preparación del examen de
III.3.3 TRABAJO PRÁCTICO: ECUACIONES DE PRIMER GRADO. 1. Hallar el valor de la variable que satisface las siguientes ecuaciones :
III.3.3 TRABAJO PRÁCTICO: ECUACIONES DE PRIMER GRADO 1. Hallar el valor de la variable que satisface las siguientes ecuaciones : 1 1 a. 9x+9+=15 j. (4x + 6) = (15x + 0) 5 b.,5x+0,5x=1,5x+1,5 4x 6 8 x 9
OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo.
EXAMEN: TEMAS 1 y BCT 1º 30/11/010 OPCIÓN A 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que x 1 3 1 y determínala mediante un intervalo. En primer lugar, desarrollamos
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.
Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
Ecuaciones, ecuación de la recta y sistemas
Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene
IES Los Cardones Curso PLAN DE REPASO SEPTIEMBRE 2017 CONTENIDOS:
IES Los Cardones Curso 016-017 º ESO Matemáticas Académicas SAA MATEMÁTICAS ACADÉMICAS º ESO IES LOS CARDONES 016-017 PLAN DE REPASO SEPTIEMBRE 017 CONTENIDOS: - VECTORES Y RECTAS. - SEMEJANZA. - TRIGONOMETRÍA.
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 14 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA. Temario para preparación de examen de admisión Área de matemáticas
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA IngenieríasUP Temario para preparación de examen de admisión Área de matemáticas Conjuntos de números y operaciones básicas. 1. Números naturales. Sistema decimal,
Mó duló 06: Á lgebra Elemental II
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita
Criterios de evaluación. Tema 1. Matemáticas. 6º Primaria
Criterios de evaluación. Tema 1. Matemáticas. 6º Primaria Leer, escribir y descomponer números de hasta nueve cifras Aproximar números naturales a distintos órdenes. Comparar y ordenar números de hasta
TREBALL D ESTIU MATEMATIQUES 4t ESO
Pàgina 1 de 7 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
ECUACIONES PLANTEO DE ECUACIONES. 1. La suma de tres números, representados por x, 3x, 3-2x es uno. Hallar los números.
ECUACIONES PLANTEO DE ECUACIONES. La suma de tres números, representados por,, - es uno. Hallar los números. a), ; 8 b), 5 ; 7 c) 0, ; d) -, 9 ; e) -, - ; 5. Calcular el número que aumentando en sus tres
Ejercicio nº 5.- a) Opera y simplifica: b) Halla el cociente y el resto de esta división: Ejercicio nº 6.- x 4 + 2x 3-9x 2-18x. Ejercicio nº 7.
EJERCICIOS BLOQUE I Ejercicio nº.- a) Expresa en notación científica las siguientes cantidades: A = 870 000 000 B = 0,000000745 C = 0,0034 0-8 Ejercicio nº.- Sitúa cada número en su lugar correspondiente
Ejercicios de números reales
Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 7 Ejercicio nº.- Considera los siguientes números: 9,000000...,5,... Clasifícalos
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
Página 3. Página 4. Página 5
Soluciones de las actividades Página 3. El menor de los conjuntos al que pertenecen estos números son: a) Entero b) Entero c) Racional d) Natural e) Racional. Cualquier fracción irreducible puede expresarse
Matemáticas. Forma A
Matemáticas Forma A º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Junio 008 INTRODUCCIÓN En las páginas siguientes de este cuadernillo encontrarás una serie de preguntas relacionadas con el área de matemáticas.
INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA
Asignatura: MATEMÁTICAS º ESO INSTITUTO DE EDUCACIÓN SECUNDARIA Trabajo de Verano para entregar en Septiembre ula el M.C.D. y el m.c.m de 40 y 50.. Hallar el valor de las siguientes expresiones: 7 5 +
HABILIDAD MATEMÁTICA
HABILIDAD MATEMÁTICA A continuación se te presentan una serie de ejercicios de varios aspectos que involucran las Habilidades Matemáticas, el resolverlos te ayudará a desarrollar un poco más la Habilidad
TAREA DE VERANO MATEMÁTICAS REFUERZO 3º ESO
TAREA DE VERANO MATEMÁTICAS REFUERZO º ESO Realiza las siguientes operaciones: 7 8 7 0 0 0 8 Calcula el valor de las siguientes epresiones: : Realiza las siguientes operaciones: 7 Un embalse está lleno
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria Leer, escribir, descomponer y comparar números de hasta nueve cifras Aproximar números naturales a distintos órdenes. Utilizar las aproximaciones
EXAMEN DE LA UNIDAD 1: POLINOMIOS Y FRACCIONES ALGEBRAICAS
COLEGIO SAN ALBERTO MAGNO º BACHILLERATO EXAMEN DE LA UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. Factoriza los siguientes polinomios: a) b) 6 + 8. Indica si las siguientes afirmaciones son verdaderas
CUESTIONES MATEMÁTICAS 2º ESO
CUESTIONES MATEMÁTICAS 2º ESO 1. Números enteros 1. Escoge el enunciado correcto: a) Dados dos números enteros cualesquiera, es más grande el que queda representado más a la derecha sobre la recta. b)
CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES
UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos
PENDIENTES DE MATEMÁTICAS DE 2º ESO SEGUNDO PARCIAL
PENDIENTES DE MATEMÁTICAS DE º ESO SEGUNDO PARCIAL ECUACIONES 1.- Resuelve las siguientes ecuaciones de segundo grado: a) x - 9x + 14 = 0 b) x -6x + 8 = 0 c) x + 10x 48 = 0 d) x x = 0 e) x = 5x + 6 f)
Cuaderno de actividades 1º Bachillerato
Cuaderno de Actividades º Operaciones con reales. Calcula : a. Cuaderno de actividades º Bachillerato Solución.. 0 0 0 0 0. 0 9 8 00 0 00 00 b :. c d.calcula pasando a fracción: a 0, 0, 0, b,0, c 0,,.
Prueba Semestral - 2 o Semestre. I o Medio
Guía Repaso Prueba Semestral - 2 o Semestre I o Medio 1. Resuelve las siguientes ecuaciones de primer grado 1) 3x + 2 = 5x + 10 2) x 7 = 10 3) 8 6x = 2 + x 4) x 2 + 19 = 10x 5) x + 5 = x + 3 3 6) 3x 7
1.- Cuántas botellas con una capacidad de ¾ l se pueden llenar con 0,45 dam³ de agua?
EJERCICIO 1 CUERPOS GEOMÉTRICOS 1.- Halla el área total de los siguientes cuerpos: EJERCICIO 1 MEDIAS DE VOLUMEN 1.- Cuántas botellas con una capacidad de ¾ l se pueden llenar con 0,45 dam³ de agua? EJERCICIOS
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
EJERCICIOS DE APOYO. PRIMER TRIMESTRE PARA RECUPERAR º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y
PLAN DE RECUPERACIÓN 4º ESO. MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS.
PLAN DE RECUPERACIÓN 4º ESO. MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS. Ejercicio.-1 Indica todos los conjuntos a los que pertenezcan los siguientes números: Numberos Reales Racionales Enteros
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y
Examen de admisión Respuestas. Nombre: Nombre(s) Fecha de nacimiento: Ciudad y Estado de Procedencia: Teléfono (con LADA) y Correo electrónico:
FAMAT: Facultad de Matemáticas, Universidad de Guanajuato Examen de admisión 00 Nombre: (A. paterno) Nombre(s) Fecha de nacimiento: (A. materno) Ciudad y Estado de Procedencia: Teléfono (con LADA) y Correo
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
ACTIVIDADES DE LOS TEMAS 1, 2, 3, 4, 5, 6, 7 1. Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de:
ACTIVIDADES DE LOS TEMAS,,, 4,,, 7. Calcula la forma fraccionaria o decimal (identificando cada una de sus partes, según corresponda de 8 9,777.. b b4,777... c 0. Clasifica los siguientes números según
La forma de una ecuación de primer grado puede ser de la siguiente:
Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos
VOCABULARIO BÁSICO PARA MATEMÁTICAS
Programa de acogida sociolingüística de alumnado inmigrante Área de Orientación Educativa y NEE - Asturias VOCABULARIO BÁSICO PARA MATEMÁTICAS Alumnado Inmigrante 1 Programa de acogida sociolingüística
Colegio Santa María de Maipú Departamento de Matemática y Física. PREGUNTAS EJE NÚMEROS. 1. Sea a = 5, y b = 3 Cuál es el resultado de 3 a : 3 b?
PREGUNTAS EJE NÚMEROS. Sea a = 5, y b = 3 Cuál es el resultado de 3 a : 3 b? A) B) 3 C) 9 D) 7 E) 8. Para qué valor de a se cumple la igualdad ( )a = A) B) 0 C) D) - E) - 3. Cuál es el resultado de dos
EJERCICIOS RESUELTOS DE MATEMÁTICAS I
EJERCICIOS RESUELTOS DE MATEMÁTICAS I 1. Resuelve el siguiente sistema de ecuaciones mediante el método de Gauss: 2. Resuelve el siguiente sistema de ecuaciones mediante el método de Gauss: No existe solución
SUBPRUEBA DE CONOCIMIENTOS DE MATEMÁTICA
1. Si a, b c son números reales tales que a < b < c < 0, entonces la única proposición verdadera, de las dadas a continuación, es: ab + cb > a ac > bc a + b > 0 a > c b. La única proposición verdadera,
MATEMÁTICA N O 1. Santillana FASCÍCULO PSU N O 1 MATEMÁTICA. Santillana
FASCÍCULO SU N O MATEMÁTICA . or qué número se debe multiplicar el racional -b para que el producto sea? a A) B) C) D) E) b a a b -a b - a - b 2. Si x = 8/24 cuál(es) de la(s) siguiente(s) expresiones
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:
Instituto Superior del Profesorado Dr. Joaquín V. González Profesorado de Informática Ingreso Matemática GUÍA DE ACTIVIDADES
1) Resolver las siguientes ecuaciones: Instituto Superior del Profesorado Dr. Joaquín V. González GUÍA DE ACTIVIDADES d) e) f) g) h) i) j) k) l) ll) m) n) 2) Dadas las siguientes ecuaciones, verificar
TEMA 1: EL NÚMERO REAL
TEMA : EL NÚMERO REAL 4 5 6 7 8 9 de 5 0 4 5 6 7 8 9 0 de 5 TEMA : POLINOMIOS Y FRACCIONES ALGEBRAICAS 4 5 6 7 8 de 5 9 0 4 de 5 TEMA : ECUACIONES, INECUACIONES Y SISTEMAS 4 5 6 7 8 9 0 5 de 5 TEMA 4:
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego
