TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol colu, ejeplo: Se ll Mtriz Cudrd l que tiee igul úero de fils que de colus. Dos trices se dice Equidiesioles, si tiee l is diesió, es decir igul úero de fils e igul úero de colus. y So Equidiesioles Dos trices so igules cudo tiee l is diesió y los eleetos que ocup e iso lugr e bs so igules. Se ll triz trspuest de u triz, l triz que se obtiee prtir de cbido fils por colus: ' Se ll triz siétric u triz cudrd que coicide co su trspuest Ls trices cudrds que tiee todo uos e l digol pricipl y cero e el resto se deoi trices uidd y se desig por I I I Digol secudri Digol pricipl
SUM Y REST DE MTRICES: Pr sur o restr trices, ésts debe teer l is diesió, y se reliz sudo o restdo los eleetos que ocup l is posició. L triz resultdo tiee l is diesió. y El eleeto eutro pr l su y l rest es l triz ul ford por fils y colus de ceros El eleeto opuesto es ( ) ij L su de trices cuple l propiedd socitiv y couttiv. MULTIPLICCIÓN DE UN NÚMERO POR UN MTRIZ. K ij k ij MULTIPLICCIÓN DE MTRICES: Dos trices y se dice que so ultiplicbles, si el úero de colus de coicide co el úero de fils de. C Es decir ij y b jk p de diesió p, e el que cd eleeto por l colu j de l triz. Se y el resultdo es u triz p y ( ) ( ) ij Dd u triz c ik, se obtiee ultiplicdo l fil i de l triz, Etoces: ( ) ( ) ( ) ( ) ( ), el eleeto eutro es l triz uidd de diesió. No tod triz tiee ivers pr l ultiplicció, sólo lgus trices cudrds. Si u triz cudrd tiee ivers se deot por Dos trices de orde so iverss si su producto es l triz uidd de orde U triz cudrd que posee ivers se dice que es u triz iversible o regulr, e cso cotrrio se dice que es u triz sigulr. c ik
Ejercicios:. Dd l triz. Idicr cul es el eleeto eutro pr l ultiplicció y coprobrlo. b. Clculr I. Resolver l ecució: y y. Coprobr que l ivers de l triz es. Dds ls trices ; ; C Clcul:. ( + C) b. C c. + d. e. f. + C. Dds ls trices ; Clcul:. U triz C tl que + C =, cóo se ll es triz? b. c.. U cotrtist quiere dquirir ls ctiddes requerids de der, ldrillo, hierro, vidrio y pitur de tres proveedores. Los precios de cd proveedor pr los teriles viee ddos por l siguiete triz: dode cd fil se refiere u proveedor y l colu los teriles, e el orde ddo teriorete. El cotrtist quiere dquirir todos los teriles del iso proveedor. L obr I requiere uiddes de der, de ldrillos, de hierro, de vidrio y de pitur; l obr II ecesit,,, y y l obr III ecesit,,, y uiddes respectivete. Resuir est iforció e u triz y forr l triz de precios e cd obr segú el proveedor y decir que proveedor debe bstecer cd obr.
. U epres coerciliz tres producto deddos por tres clietes. Los dtos referidos ls deds de cd cliete está e l siguiete tbl: Cliete Cliete Cliete Producto Producto Producto L teció los clietes se puede efectur por dos ruts coerciles distits e ls que los costes de los productos vrí de l for siguiete: Rut Rut Precio producto Precio producto Precio producto Pr iizr los beeficios, qué rut iteres ás l epres? PU (Septiebre ). Resolver l ecució tricil X + = C siedo C CÁLCULO DE L MTRIZ INVERS:. prtir de l defiició: y Se, debeos ecotrr u triz z t y z y t y z t z y t tl que: Y resolviedo esos dos sistes obteeos Ejercicio: Hll, si es posible, l ivers de ls siguietes trices:. b.. Medite el étodo de Guss: Dd l triz prtios de y edite ls siguietes trsforcioes: - Multiplicr por u úero distito de cero - Sur o restr u fil otr ultiplicd por u úero b b b b Pr llegr dode b b b b Si e el proceso prece e el lugr de l triz lgu fil ul, l triz o tiee ivers Filete coprobos que relete es l triz ivers
Ejercicio: Hll, por este étodo, l triz ivers de l trices del ejercicio terior. Ejercicio: Hll l triz ivers de Solució: Ejercicio: Clcul l triz ivers de Ejercicio: (PU Juio ) Dds ls trices, y C b. Clcul, triz ivers de b. Deteri los vlores que debe tor y b pr que se verefique: t I C C. Por djutos: Se ecesit coocer el cálculo de deterites. RNGO DE UN MTRIZ: - Dos fils (o colus) so lielete depedietes si so proporcioles - U fil F, depede lielete de otrs fils F, F,, F si eiste uos úeros reles,,, o todos ulos, tl que: F F F F - Por el cotrrio so lielete idepedietes si o so proporcioles y por tto o hy igu relció de l for F F F F etre ells. El Rgo o Crcterístic de u triz es el úero de fils, o colus, lielete idepedietes. CÁLCULO DEL RNGO DE UN MTRIZ: E el cálculo del rgo de u triz, evideteete éste o vrí si: - Se suprie ls fils o colus uls - Se suprie ls fils o colus proporcioles - Se suprie ls fils o colus depedietes de otrs El Rgo de u triz tpoco vrí si: - Multiplicos u fil o colu por u úero distito de cero - Suos o restos u fil o colu otr plicdo ests propieddes u triz podeos llegr trsforrl e u triz esclod que os idicrá el úero de fils o colus idepedietes.
Se ) ( Rgo F F que podeos precir E cso de o ver clr l depedeci etre ls dos fils, podríos poder cotiudo co el escloieto de l triz: ) ( Rgo Ejercicio: Clcul el rgo de ls siguietes trices: i. ii. iii. C
DETERMINNTES: Sólo se puede clculr deterites de trices cudrds. Deterite de segudo orde: Dd l triz cudrd de segudo orde se ll deterite de l úero rel det( ) Deterite de tercer orde: Dd l triz cudrd de tercer orde de l úero rel det( ) se ll deterite Ejercicio: Clculr los siguietes deterites: = Propiedd: U triz cudrd tiee triz ivers y por tto es u triz regulr si su deterite es distito de cero. Si su deterite es cero etoces l triz o tiee triz ivers y por tto es u triz sigulr. Ejercicio: Idic si ls siguietes trices tiee ivers y clcúll: y Ejercicio: Clcul el vlor de pr que l triz se sigulr.