Tema 4. Trigonometría. Números complejos

Documentos relacionados
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

3.1 Ejercicios Trigonometría 4.1

2. El conjunto de los números complejos

Unidad 3: Razones trigonométricas.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

Números Complejos Matemáticas Básicas 2004

Trigonometría. 1. Ángulos:

1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados

Razones trigonométricas.

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

José Antonio Jiménez Nieto

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA

Seno (matemáticas) Coseno Tangente

NÚMEROS COMPLEJOS: C

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Los números complejos

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

Funciones reales. Números complejos

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UNIDAD IV TRIGONOMETRÍA

Tema 6: Trigonometría.

TEMA 8. GEOMETRÍA ANALÍTICA.

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

Ejercicios de recopilación de complejos

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

El cuerpo de los números complejos

4.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º)

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

TEMA 0: REPASO DE FUNCIONES

Si se pueden obtener las imágenes de x por simple sustitución.

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

CÁLCULO I ANEXO: FUNCIONES TRIGONOMÉTRICAS

TRIGONOMETRIA. π radianes <> 180º

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

Fecha: 29/10/2013 MATEMÁTICAS

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

Nociones elementales de trigonometría

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

Familiarizar al alumno con las distintas maneras de expresar números complejos.

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

Los números complejos

RESOLUCIÓN DE TRIÁNGULOS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

NOTACIÓN Y REPRESENTACIÓN

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

MATEMÁTICAS GRADO DÉCIMO

Semana07[1/11] Trigonometría. 15 de abril de Trigonometría

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

Números complejos ( 1)(25) =

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

27/01/2011 TRIGONOMETRÍA Página 1 de 7

Capítulo 8. Trigonometría. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática

UNIDAD 4 TRIGONOMETRÍA

Números complejos ( 1)(25) =

68 EJERCICIOS DE TRIGONOMETRÍA

AYUDAS SOBRE LA LINEA RECTA

TEMAS 4 Y 5 TRIGONOMETRÍA

TRIGONOMETRÍA. 1. Sistemas de medidas angulares

Matemáticas TRABAJO. Funciones Trigonométricas

INTERVALOS Y SEMIRRECTAS.

. De R (Reales) a C (Complejos)

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

EJERCICIOS DE GEOMETRÍA RESUELTOS

Interpretación de la infor- en los avances científicos y tecnológicos. acerca de la utilización de. la trigonometría en el desa-

Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos.

DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

APELLIDOS Y NOMBRE:...

TEMAS 4 Y 5 TRIGONOMETRÍA

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

1 - Ecuaciones. Sistemas de Ecuaciones Mixtos

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Trigonometría. Prof. Ana Rivas 69

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

TRIGONOMETRIA. π radianes <> 180º

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

Trigonometría. Guía de Ejercicios

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.

EJERCICIOS DE GEOMETRÍA

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

Transcripción:

Tema. Trigonometría. Números complejos Pepe y Guillamón October 9, 003

Contents Trigonometría. Números complejos 3.1 Trigonometría... 3.1.1 Trigonometríaplana... 3.1. Relaciónentreestasmedidas... 5.1.3 Anguloscomplementariosysuplementarios... 5. Razonestrigonométricas... 6..1 Proyecciones ortogonales............................... 7.. Ángulogeneralizado... 7..3 Signodelasrazones... 7.. Ángulosnotables... 8..5 Relación entre las razones trigonométricas de ángulos en distintos cuadrantes. 8.3 Relaciones fundamentales en un triángulo......................... 8.3.1 Funcionesrecíprocas... 9.3. Resolucióndetriángulos... 9.3.3 Fórmulastrigonométricas... 10.3. Índicederefracción... 11.3.5 Ejerciciosresueltos... 11.3.6 Ejerciciospropuestos... 1. Elcuerpodelosnúmeroscomplejos... 16..1 Introducción... 16.. Elcuerpodelosnúmeroscomplejos... 17..3 Inmersión de R en C... 17.. Representacióngeométricadelosnúmeroscomplejos... 19..5 Móduloyargumento... 0..6 Raícesdenúmeroscomplejos.....7 Aplicaciónalcálculotrigonométrico... 3..8 Factorizacióndepolinomios... 5..9 Ejercicios... 7

Chapter Trigonometría. Números complejos.1 Trigonometría Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones trigonométricas de ángulos. Las dos ramas fundamentales de la trigonometría son la trigonometría plana, que se ocupa de figuras contenidas en un plano, y la trigonometría esférica, que se ocupa de triángulos que forman parte de la superficie de una esfera. En esta sección nos centraremos en el estudio de los conceptos fundamentales de la trigonometría plana..1.1 Trigonometría plana El concepto de ángulo es fundamental en el estudio de la trigonometría. Así, un ángulo queda determinado por un par de semirrectas con origen en un mismo punto. Las semirrectas se llaman lado inicial y final. Al origen común se le denomina vértice del ángulo. Teniendo en cuenta que las semirrectas son diferentes en cuanto a su identificación (lado inicial y final), se suele identificar ángulos de magnitud positiva si se generan con un radio que gira en el sentido contrario a las agujas del reloj, y negativo si la rotación es en el sentido de las agujas del reloj. 3

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS Por otro lado, existen diversas unidades a la hora de medir ángulos Grado. En trigonometría, un ángulo de amplitud 1 grado se define como aquel cuya amplitud es igual a 1/360 de la circunferencia de un círculo. Las equivalencias son las siguientes: 360 o un giro completo alrededor de una circunferencia 180 o 1/ vuelta alrededor de una circunferencia 90 o 1/ de vuelta 1 o 1/360 de vuelta, etc. En ocasiones se utilizan los conceptos de minutos y segundos asociado como alternativa a la expresión decimal de ángulos. Así un grado se divide en 60 minutos, cada uno de los cuales equivale a 1/1.600 de la circunferencia de un círculo; cada minuto se divide en 60 segundos, cada uno de los cuales equivale a 1/1.96.000. Los grados se indican normalmente con el símbolo, los minutos con y los segundos con, como en 1 18 09, que se lee 1 grados 18 minutos y 9 segundos. Radián. Es la medida usual de ángulos en matemáticas. La medida, en radianes, de un ángulo se expresa como la razón del arco formado por el ángulo, con su vértice en el centro de un círculo, y el radio de dicho círculo. Esta razón es constante para un ángulo fijo para cualquier círculo.

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 5 La magnitud de un ángulo medido en radianes está dada por la longitud del arco de circunferencia, dividido por el valor del radio. El valor de este ángulo es independiente del valor del radio; por ejemplo, al dividir una pizza en 10 partes iguales, el ángulo de cada pedazo permanece igual, independiente si la pizza es pequeña o familiar. De esta forma, se puede calcular fácilmente la longitud de un arco de circunferencia; solo basta multiplicar el radio por el ángulo en radianes. Long. arco de circunferencia [Ángulo en radianes] [Radio de la circunferencia].1. Relación entre estas medidas Teniendo en cuanta las relaciones anteriores se tiene sin dificultad la siguiente relación: π rad 360 grados a partir de la cual se obtiene de manera inmediata la conversión entre ambas unidades de medida..1.3 Angulos complementarios y suplementarios En general dos ángulos se dicen complementarios si verifican que su suma es igual a π/ rad. (90 grados), por otro lado,se dice que dos ángulos son suplementarios si su suma es igual a π radianes (180 grados)

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 6. Razones trigonométricas Dado un ángulo cualesquiera, realizando un giro de manera adecuada podemos llevarlo a un sistema de referencia cartesiana que tiene origen en el punto (0,0), y la semirrectas inicial la haremos coincidir con el eje de abscisas. Apartirdelteorema de Tales que afirma que, Si se cortan varias rectas paralelas por dos rectas transversales, la razón de dos segmentos cualesquiera de una de ellas es igual a la razón de los correspondientes de la otra., obtenemos el siguiente resultado de manera inmediata: Dado un ángulo α si trazamos perpendiculares paralelas a uno de los lados, se determinan sobre éstos segmentos proporcionales. loquesetraduceenquelasiguienterelaciónessiempreconstante: b c b0 c 0 Dicha constante recibe el nombre de coseno del ángulo α (cos α). Utilizando el teorema de Pitágoras se obtienen relaciones análogas que recibe en nombre de seno y tangente asociado al ángulo α. cos(α) b c b c 0 sen(α) a c a0 c 0 tg(α) a b a0 b 0 Obviamente, en función del teorema de Pitágoras, de las expresiones anteriores se obtienen las siguientes identidades: sen (α)+cos (α) 1 tg(α) sen(α) cos(α) A las inversas de las anteriores razones se les llama cosecante, secante y cotangente del ángulo α. co sec(α) 1 sen(α) sec(α) 1 cos(α) cot g(α) 1 tg(α)

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 7..1 Proyecciones ortogonales Una consecuencia obvia de la definición de seno y coseno es que la proyección ortogonal (positiva o negativa) de un segmento orientado sobre otro es igual a la longitud del segmento por el coseno del ángulo que forman ambos segmentos. Así, la proyección ortogonal de un segmento orientado (vector) sobre los semiejes OX y OY de un sistema de referencia cartesiano son:.. Ángulo generalizado Proyección ortogonal sobre OX x AB cos(α) Proyección ortogonal sobre OY y AB sen(α) A partir de la definición dada sobre triángulos rectángulos se generaliza la definición de las distintas razones trigonométricas a cualquier ángulo, trabajando sobre una circunferencia de radio unidad (circunferencia goniométrica)...3 Signo de las razones En cada cuadrante, dependiendo del signo de las abscisas y ordenadas, las razones presentan los siguientes signos:

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 8.. Ángulos notables Resulta conveniente conocer las razones trigonométricas de algunos ángulos notables. Así: grados 0 0 30 0 5 0 60 0 90 0 π π π π Radianes 0 6 3 1 sen 0 1 3 cos 1 3 tan 0 1 3 1 1 1 1 0 3 @..5 Relación entre las razones trigonométricas de ángulos en distintos cuadrantes θ π ± α θ π ± α θ 3π ± α θ π α sen(θ) cos(α) sen(α) cos(α) sen(α) cos(θ) sen(α) -cos(α) ±sen(α) cos(α) tg(θ) cotg(α) ±tg(α) cotg(α) tg(α).3 Relaciones fundamentales en un triángulo Veamos una serie de resultados que serán útiles a la hora de trabajar con triángulos no necesariamente rectángulos. Así, sean A, B y C los ángulos de un triángulo y sean, respectivamente a, b y c sus lados opuestos. Entonces se verifican las siguientes relaciones:

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 9 Relación fundamental entre los ángulos de un triángulo A + B + C π rad Teorema del seno: Teorema del coseno: Teorema de las tangentes: a sen(a) b sen(b) c sen(c) c a + b ab cos(c) a + b tg a b A+B tg A B.3.1 Funciones recíprocas Hasta el momento, dado un ángulo nos proponemos obtener las razones trigonométricas asociadas a dicho ángulo. Podemos plantearnos la pregunta recíproca: Si conocemos el valor de la razón trigonométrica, podemos conocer el ángulo con el que trabajamos?. La respuesta es afirmativa definiendo de manera adecuada el conjunto donde podemos definir de manera recíproca las funciones trigonométricas. Así, se definen las funciones arcoseno(arcsen), arcocoseno (arccos) y arcotangente (arctg) de la siguiente manera: Así, por ejemplo, tenemos: Arcsen : [ 1, 1] [ π/, π/] x ; α sen(α) x Arc cos : [ 1, 1] [0, π] x ; α cos(α) x Arctg : (, ) [ π/, π/] x ; α tg(α) x arcsen( 1 )π/6 arctg(1) π/ arccos(1 )π/3 arcsen( 3 ) π/3 arctg( 1) π/ arccos( 1 ) 3π.3. Resolución de triángulos Resolver un triángulo es hallar todos los elementos de este, es decir, sus tres lado y sus tres ángulos. A partir de los resultados vistos anteriormente, es posible encontrar todos los elementos de un triángulo cualesquiera conociendo tres de sus elementos, siendo alguno de los datos conocidos la longitud de uno de sus lados.

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 10 La siguiente tabla recoge los casos más comunes: Datos a, A, B C π A B b a sen(b) sen(a) c a sen(c) sen(a) a, b, A c a + b ab cos(c) B arcsen b a sen(a) C π A B a, b, c A arccos ³ b +c a.3.3 Fórmulas trigonométricas Fórmulas de los ángulos suma y diferencia: bc B arccos ³ c +a b ac C arccos ³ a +b c ab sen(α ± β) sen(α) cos(β) ± cos(α) sen(β) tg(α ± β) tg(α) ± tg(β) 1 tg(α)tg(β) cos(α ± β) cos(α) cos(β) sen(α) sen(β) Fórmulas del ángulo doble y mitad: sen(α) sen(α) cos(α) cos(α) cos (α) sen (α) q q sen( α )± 1 cos(α) cos( α )) ± 1+cos(α) tg(α) Fórmulas de adición: tg(α) 1 tg (α) sen(α) ± sen(β) sen( α±β α β ) cos( cos(α)+cos(β) cos( α+β cos(α) cos(β) sen( α+β ) cos( α β ) ) sen( α β ) ) tg(α) ± tg(β) sen(α±β) cos(α) cos(β)

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 11.3. Índice de refracción Cuando un rayo de luz choca contra la superficie de una superficie plana de cristal, generalmente se desvía formando un ángulo. Al dibujar una línea perpendicular al punto de la superficie donde incide elrayo. Sielrayoalcanzalasuperficie con una trayectoria que forma un ángulo A con la superficie, continúa dentro del cristal formando un ángulo B, con: sen(b) sen(a) n donde el número n ( índice de refracción ) es una propiedad del cristal y es mayor que 1..3.5 Ejercicios resueltos 1. Comprobar la siguiente identidad trigonométrica curiosa: tg (α) sen (α) tg (α) sen (α) Solución: En primer lugar desarrollaremos el primer término de la igualdad. Así: tg (α) sen (α) sen cos (α) sen (α) sen (α) sen (α)cos (α) cos (α) sen (α)(1 cos (α)) cos (α) 1 z } { sen (α) ( sen (α)+cos (α) cos (α)) cos (α) sen (α) sen (α) cos (α) tg (α) sen (α). Sabiendo que tg( x ) 1 Solución: calcular sen(x).

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 1 Como vimos, utilizando la expresión de la tangente del ángulo doble tenemos:: tg(x) tg( x ) tg( x ) 1 tg ( x ) 1 1 ( 1 ) 3 Ahora bien, conocemos tg(x) pero nos piden sen(x). Este caso es típico, para ello partiremos de la relación fundamental: sen (α)+cos (α) 1 sen (x) sen (x) + cos (x) sen (x) 1 sen (x) 1+ 1 tg (x) 1 sen (x) 1+ 1 (/3) 1 sen (x) sen (x) 16 5 sen(x) ± 5 Notar que tenemos dos valores (uno positivo y otro negativo) ya que la tangente es positiva en el primer y tercer cuadrante, pero no así en seno. 3. Conocidos los tres ángulos de un triángulo es posible resolver el triángulo? Solución: La respuesta a esta cuestión es negativa, ya que existen infinitos triángulos semejantes a uno dado con idénticos ángulos. Lo que si sabremos es que los lados de todos ellos serán proporcionales.. Los lados de un triángulo miden respectivamente 13, 1 y 15 cm. Hallar sus ángulos así como es área del triángulo. Solución: A partir de los datos del problema debemos encontrar los valores de los ángulos.

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 13 Como nos dan sus tres lados podemos aplicar el teorema del coseno, de donde: c a + b ab cos(c) 15 13 +1 13 1 cos(c) cos(c) 13 +1 15 C arccos(0.386) 1.176 rad. 13 1 Análogamente: a b + c bc cos(a) cos(a) 15 +13 1 A arccos(0.508) 1.038 rad Utilizando que la suma de los ángulos ha de ser π rad, tenemos: B π 1.038 1.176 0.97 Por otro lado para calcular el área debemos notar que, por ejemplo: 13 15 sen(a) h 13 h 13 sin(1.038) 11.198 de donde: area base altura 15 11.198 83.985 cm 5. Encontrar el valor de x y h a partir de los datos que se nos indican en el siguiente dibujo, sabiendo que A π/6 y B π/3. Solución: A partir de las tangentes de los ángulos A y B obtenemos: ½ tg(a) h 10+x tg(b) h tg(π/6) 1 ½ 3 3 1 x tg(π/3) 3 3 h 3 3 h 10+x h 5 3 unidades x 5unidades 6. Un aeroplano vuela a 170 km/s hacia el nordeste, en una dirección que forma un ángulo de 5 con la dirección este. El viento está soplando a 30 km/h en la dirección noroeste, formando un ángulo de 0 o con la dirección norte. Cuál es la velocidad con respecto a tierra real del aeroplano y cuál es el ángulo A entre la ruta real del aeroplano y la dirección este? x

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 1 Solución: Indiquemos la velocidad del aeroplano relativa al aire como V, la velocidad del viento relativa a tierra como W, y la velocidad del aeroplano relativa a tierra UV+W. Para ejecutar la suma real cada vector debe descomponerse en sus componentes. Por tanto obtenemos: Vx170cos(5 ) 10.6 Vy 170sen(5 ) 133.96 Wx 30sen(0 ) 10.6 Wy 30cos(0 )8.19 de donde: Ux 9. Uy 16.15 Entonces, por el teorema de Pitágoras, dado que Por otro lado U Ux + Uy U 187.63km/h cos(a) U x U 0.50315 A arccos(0.50315) 1.036 rad 59.80.3.6 Ejercicios propuestos 1. Calcular todos los ángulos α [0, π] tales que cos(α) 3 tg(α) (sol: α π/6, α 5π/6). Si α y β son ángulos comprendidos entre 0 y π radianes. Qué relación hay entre ellos si se verifica que sen(α) sen(β) y cos(α) cos(β)? (sol: β α). 3. Que relación existe entre las razones trigonométricas de (π/ α) y(π/ + α)? (sol: Al ser complementarios sen(π/ α) cos(π/+α) y viceversa).. Sabiendo que cos(α) 1/3 yqueα [0, π/] determinar cos(π/ α), sen(3π/+α) y tg(π α) (sol: cos(π/ α) 3 ; sen(3π/+α) 1/3 ; tg(π α) ). 5. Sabiendo que cos(α) 3/5 yqueα [3π/, π] determinar sen(α), tg(α) y cos(α/) (sol: sen(α) /5 ; tg(α) /3 ; cos(α) / 5). 6. Comprobar que las siguientes expresiones no dependen del valor de α y determinar su valor: sen(α)cos(π/ α) cos(α)cos(π/+α) (sol: ) cos(α)cos(π/6 + α)+ sen(α)cos(π/3 α) (sol: 3 )

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 15 7. Demostrar las identidades: a) cos(α) sen (α + π/) b) 1+cotg (α) cosec (α) c) sec (α) 1+tg (α) d) tg(α)+cotg(α) sec(α) cos ec(α) 8. Sabiendo que tg(α) yque sen(α)cos(β) cos(α β) hallar tg(β) (sol: tg(β) 7/). 9. Resolver la siguiente ecuación trigonométrica: cos(x) 3 tg(x) (sol: x π/6+kπ ; x 5π/6+kπ (k Z) 10. Resolver la siguiente ecuación trigonométrica sabiendo que x [0, π] : 3sen(x) cos(x) sen 3 (x) (sol: x 0, π, π/6 ó 7π/6 rad) 11. Resolver el siguiente sistema de ecuaciones sabiendo que x e y [0, π]: ½ sin(x)+cos(y) x + y π/ (sol: xyπ/ ;x3π/ y-π/) 1. Resolver, si es posible, los siguientes triángulos: a) a 100cm, B 7 0,C 63 0 (sol :b 77.8cm, c 9.81cm, A 70 0 ) b) A π/3,b π/,c π/6 (sol: Infinitos triángulos) c) a 5 cm, b 30cm, c 0cm (sol: A 0.67rad, B 0.85rad, C 1.6rad) d) b 6cm, c 8cm,C 57 0 (sol :a 9.8cm, A 8.03 0,B 38.97 0 ) donde: 13. Sean A y B los ángulos no rectos de un triángulo rectángulo. Probar que: (a) sen (A)+sen (B) 1 (b) tg(a) tg(b) 1 1. Sean A, B y C los ángulos de un triángulo cualesquiera. Probar que (a) sen(a) sen(b + C) (b) cos(a)+cos(b + C) 0 15. Los lados de un paralelogramo miden 6 y 8 cm respectivamente y forman un ángulo de 0.5 rad. Calcular la medida de sus diagonales (sol: 13.6 cm y.31 cm).

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 16 16. Se desea calcular la distancia entre dos puntos A y B de un terreno llano que no son accesibles. Para ello, se toman dos puntos accesibles del terreno C y D y se determinar las distancias y ángulos siguientes: CD 300m α ACD 85 0 β BDC 75 0 α 0 BCD 0 β 0 ADC 35 0 Calcular la distancia de A a B (sol:7.7 m). El cuerpo de los números complejos..1 Introducción Aunque parezca que los complejos se introducen a partir de la resolución de la ecuación x +10, nada más lejos de la realidad, esta era rechazada así como log x 1, o sin x, eran irresolubles. Los complejos hacen su aparición a raiz de la ecuación cúbica. Supongamos que queremos resolver la ecuación x 3 6x, la forma de proceder fue similar a la de la ecuación de segundo grado, es decir, una solución por radicales, obtenida por del Ferro en 1515. Teorema.1 Una solución de la ecuación cúbica reducida del tipo x 3 mx + n vine dada por s r s r 3 n n + m3 7 + 3 n n m3 7 Proof. Sea x 3 p + 3 q, elevando al cubo ambos miembros, obtenemos: igualando, se tiene: x 3 p +3 3p p 3 q +3 3 p 3p q + q p + q +3 3 pq ( 3 p + 3 q) p + q +3x 3 pq mx + n ½ p + q n ³ m 3 ³ m 3 3 3 pq m pq ;pq 3 3 n (p + q) p + q +pq ³ m n 3 p + q +pq pq (p q) 3 y sumando y restando, las ecuaciones: ( se tiene: de donde, la solución es: p + q q n p q n m 3 3 p n qn + m 3 q 3 q n n m 3 3 s r s r 3 n n + m3 7 + 3 n n m3 7

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 17 Ejemplo.1 Resolver x 3 6x +9. s x 3 9 + Ejemplo. Resolver x 3 6x + s x 3 + r s 9 63 7 + 3 r s 63 7 + 3 9 r 9 63 7 3 8+13 r 63 7 q 3 + q 8+ 3 q 8 3 + + q 3 q 3 + 1+ q 3 1 1+ 1 + 1 1 Solución que causo gran estupor en el siglo XVI, hasta que Argand y Gauss no dan una interpretación de los números complejos, se les calificaba como anfibios entre el ser y no ser. La solución de la ecuación cúbica completa x 3 + ax + bx + c, se obtiene mediante el cambio de variable x 1 3 (z a),y reduciendola a la anterior... El cuerpo de los números complejos Llamamos número complejo, a un elemento z (x, y) R C, diremos que dos números complejos (x, y) y (x 0,y 0 ) son iguales, cuando x x 0 e y y 0, a x se le denomina parte real y a y parte imaginaria, escribiremos x Re(z) e y Im(z). Definimos la suma z+z 0 (x, y)+(x 0,y 0 )(x + x 0,y+ y 0 ) y el producto z z 0 (xx 0 yy 0,xy 0 + yx 0 ) con estas operaciones C tiene estructura de cuerpo...3 Inmersión de R en C Consideramos el conjunto de puntos de la forma (x, 0) R {0} y la aplicación: p : R R {0} C definida por p (x) (x, 0). Esta aplicación es un isomorfismo, es decir, es biyectiva y x + y 7 p (x + y) p (x)+p(y) x y 7 p (x y) p (x) p (y) y podemos identificar (x, 0) con x. Además (x, y) (x, 0) + (0,y)(x, 0) + (y, 0) (0, 1) x + yi, definiendo (0, 1) i. Observemos que i (0, 1) (0, 1) ( 1, 0) 1, es decir, i es solución de la ecuación x +10. A z x + yi se le llama forma binómica. Si Re (z) 0a z se le denomina imaginario puro y si Im (z) 0a z se le llama real. Ejemplo.3 Efectúa i 3+i, 1+i7 1 i y 1+3i i( i) 1+3i

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 18 i 3+i i 3+i 3 i 3 i 3i i 3i ( 1) 3i +1 3 i 9 ( 1) 9+1 1 10 + 3 10 i Observemos que: i 0 1,i i, i 1,i 3 i, i 1,i 5 i, i 6 1,i 7 i,... 1+i 7 1 i 1 i 1 i 1 1+3i i ( i) 1+3i 1+3i i + i 1+i 1 i 1+3i 1+3i 1+3i i 1 3i 1+3i1 3i i 3i 1 3 i i +3 1+9 3 10 + i 1 10 Ejemplo. Resuelve la ecuación x x +0 x ± 1 1 1 ± 1 ± 8 ± ± 1 1± 11± i Definición.1 Se denomina conjugado de un número complejo z a + bi a z a bi. Evidentemente Re (z) z + z e Im (z) z z. i Propiedades Si z y z 0 son dos números complejos cualesquiera. z z z R z z z es imaginario puro z z z + z 0 z + z 0 z z 0 z z 0 Observemos que z z a + b R + z 1 µ z a a + b a + b, b a + b Ejercicio.1 Comprueba que la suma z + 1 z lo sea. nunca puede ser imaginario puro, salvo que z también

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 19 Sea z x + iy 1 z z + 1 z x + iy + x x + y y x + y i x x + y para que sea imaginario puro, tiene que ser: x + x x + y 0x y x + y i x + µ 1+ µ x x + y + i y 1 x + y x 0 y x + y Ejercicio. Qué condiciones tiene que cumplir z para que z + 1 z sea real? z + 1 z x + iy + x x + y para que sea un número real, tiene que verificar: y µ y x + y 0y 1 y x + y i x + 1 x + y µ x x + y + i y y x + y y 0 1 1 x + y 0 1x + y o z es un número real o bien su afijo se encuentra sobre la circunferencia unidad de centro (0, 0). Ejercicio.3 Dado el polinomio x +3x+1 p(x), demuestra que p(z) p(z) cualesquiera que sean los z para los que p(z) R Sea z a + bi, por las propiedades de la conjugación, sabemos que p(z) p(z) p (z) p (z) R, luego, (a + bi) +3(a + bi)+1 R a b +abi +3a +3bi +1 R ab +3b 0 Ejercicio. Calcula el producto i i i 3 i 100 ylasumai + i + i 3 + + i 100. i i i 3 i 100 i 1++ +100 i 5050 i + 16 i i 16 i 1 i + i + i 3 + + i 100 i i100 i i 1 i i i 1 0.. Representación geométrica de los números complejos Supongamos que en R tenemos un sistema de referencia. Consideramos la aplicación de C en el plano R, que asocia a cada número complejo z a + bi el punto de coordenadas (a, b), a dicho punto se le denomina afijo del punto z. Ejercicio.5 Representa en el plano complejo los números que verifican: 1. z + z 1. z z 1 i 1. z + z 1 x + iy + x iy x 1 x 1. z z 1 i x + iy (x iy) yi 1 i y 1

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 0 ρ P(a,b) θ Figure.1:..5 Módulo y argumento Definición. Sellamamódulodeunnúmerocomplejoz x + yi al número real positivo z a + b De la definición se sigue que: 1. z z z z. Re (z) z 3. Im (z) z Propiedades Sean z y z 0 números complejos, se verifica: P1 z 0 y z 0 z 0 P z z 0 z z 0 P3 z + z 0 z + z 0 Definición.3 Utilizando coordenadas polares, tenemos que: a ρ cos θ b ρ sin θ a + bi ρ cos θ + ρi sin θ ρ (cos θ + i sin θ) arctan y x si x 6 0 π donde ρ z. Se define arg (z) θ +kπ, es decir, θ si x 0e y>0 si x 0e y<0 La expresión z ρ (cos θ + i sin θ) se denomina forma trigonométrica, y a ρ θ se le llama forma módulo-argumental. 3π

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 1 Teorema. Fórmula de Euler.- Para todo número real x,se verifica: e x cosx + i sin x Proof. Tomamos y sinx arcsin y x, de donde: Z ½ dy arcsin y p 1 y deshaciendo el cambio, se tiene: x ar sin y i log Z i µ y i + q y iz dy idz ¾ Z dz ³ i log z + p 1+z 1+z idz 1 i z 1+(iy) ix i log ³ iy + p 1 y µ 1 log ( i sin x +cosx) log log cos x i sin x µ cos x + i sin x log cos x +sin log (cos x + i sin x) e ix cosx + i sin x x Así, podemos escribir: e z e a+bi e a e ib e a (cos b + i sin b) µ cos x + i sin x cos x i sin x donde, e a es el módulo y b es el argumento del número complejo e z. Observación: e iπ cosπ + i sin π 1, e iπ es solución de la ecuación e x 1 Corolario.3 Proof. (cos θ + i sin θ) n (cos nθ +sinnθ) ³e iθ n e inθ (cos θ + i sin θ) n cos(nθ)+i sin (nθ) Corolario. La función e ix es periódica de periodo πi. Observemos: ½ 1. ρ θ σ ϕ. ρ θ σ ϕ ρ σ θ+ϕ ρ ³ 3. θ ρ σ ϕ σ θ ϕ e ix+iπ e i(x+π) cos(x +π)+i sin (x +π) cosx + i sin x ρ σ θ ϕ kπ

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS. Fórmula de Moivre (1 θ ) n (1 n ) nθ 1 nθ, es decir: [1 (cos θ + i sin θ)] n 1 n (cos nθ +sinnθ) Ejercicio.6 Describe el conjunto de puntos z tal que: 1. Re (z) 0;Re(z) > 0; z 1; z > 1; Im (z) 1;Im(z) < 1; 1 < z <.. z 1 ; z 1 < ; z 1 z +1 3. Re (z) + Im (z) 1; z Re(z)+; z 5 z +5 6; z 3 + z +3 8 1. Si z x + iy Re (z) x 0que representa una recta, el eje de ordenadas; Re(z) x>0 es un semiplano. z p x + y 1 x + y 1circunferencia de centro (0, 0) yradio 1.1 < z < es una corona circular de radios 1 y respectivamente.. z 1 es la circunferencia de centro (1, 0) y radio. z 1 < el circulo de centro (1, 0) y radio. z 1 z +1 es el lugar geométrico de puntos del plano que equidistan de los puntos (1, 0) y ( 1, 0), es decir, la mediatriz de ese segmento. 3. Re (z) + Im (z) 1 x + y es un cuadrilátero de vértices (1, 0), (0, 1), ( 1, 0) y (0, 1). z 5 z +5 6lugar geométrico de puntos del plano cuya diferencia de distancias a dos puntos fijos (llamados focos (5, 0) y ( 5, 0)) es constante, es decir, una hipérbola. z 3 + z +3 8 es el lugar geométrico de puntos del plano cuya suma de distancias a dos puntos fijos (llamados focos) (3, 0) y ( 3, 0) es constante, es decir, una elipse. z Re(z)+ lugar geométrico de puntos del plano equidistantes de un punto fijo y una recta, es decir, una parábola...6 Raíces de números complejos Nos proponemos resolver la ecuación z n z 0 0, es decir, hallar la raíz n-ésima de un número complejo; el problema tiene fácil solución en forma módulo-argumental. Sea z 0 r ϕ, entonces, z x φ es solución, si verifica: pero (x φ ) n r ϕ ½ (x φ ) n x n nφ r ϕ x n r nφ ϕ +kπ al ser x y r números reales positivos, siempre existe x n r; y φ ϕ n + kπ n sólo son distintos aquellos que se obtiene para k 0, 1,...,n 1. Ejemplo.5 Resolver la ecuación z 3 1. con k Z, de los cuales las soluciones son: ½ 11 0 (x φ ) 3 x 3 3φ 1 0 x 3 1 3φ 0+kπ 1 0, 1 π, 1 π 3 3 ½ x 1 φ kπ 3 ; k 0, 1,

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 3 observemos que 1 0 1, 1 π 3 1e π 3 i e π 3 i w, 1 π 3 1e π 3 i e π 3 i verificándose que 1+w + w 0yquew 3 1 w 1 w w ww w. Veamos un ejemplo donde se hace uso de estas propiedades. ³ e π 3 i w Ejemplo.6 Demostrar que para cualquier número natural n el polinomio (x +1) 6n+1 x 6n+1 1 es divisible por x + x +1. Vamosademostrarquelasraícesde x + x +1 dividen a (x +1) 6n+1 x 6n+1 1 con lo que estará probado. (x 1) x + x +1 x 3 1 luego las raíces de x + x +1 son las raíces complejas de z 3 1, es decir, w y w w w 1, y las raíces de x + x +1 son w y w w 3 w w. yalser de donde (w +1) 6n+1 w 6n+1 1 w +1 w ª w 6n+1 w 6n+1 1 w 6n+1 w 1n+ w 1n w w 3 n w w w 6n+1 w 3 n w w Análogamente procedemos con la otra raíz, w. (w +1) 6n+1 w 6n+1 1 w w 10..7 Aplicación al cálculo trigonométrico La fórmula de Moivre nos sirve para realizar cálculos trigonométricos, por ejemplo, expresar sin a, cos 3a, cos a,..., cos a, cos 3 a,... En efecto, aplicando la citada fórmula, podemos escribir: (cos a + i sin a) n cosna + i sin na y sólo tenemos que desarrollar por la fórmula del binomio el primer término. Así tendremos, por ejemplo, para n (cos a + i sin a) cosa + i sin a cos a +icos a sin a + i sin a cosa + i sin a ½ cos a sin cos a +icos a sin a cosa + i sin a a sin ¾ a cosa cosasin a sina cos a 1 cos a cosa cos a 1+cosa y sin 1 cos a a

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS También podemos obtener el seno de una suma o diferencia a partir de la fórmula de Euler: e ix cosx + i sin x pero, por otra parte: e ia e ib e i(a+b) cos(a + b)+i sin (a + b) (cos a + i sin a) (cos b + i sin b) cosa cos b sin a sin b + i (cos a sin b +sinacob) igualando las partes reales e imaginarias obtenemos: cos (a + b) cosa cos b sin a sin b sin (a + b) cosa sin b +sinacos b Las transformaciones de productos de senos y/o cosenos, son muy utililes en el cálculo de primitivas, veamos un procedimiento sencillo basado en la fórmula de Euler. Ejemplo.7 Transformar sin x sin x en sumas de senos y/o cosenos. Sea e ix cosx + i sin x, y e ix e i( x) cos( x)+i sin ( x) cosx i sin x. Sumando y restando, obtenemos: de donde, y multiplicando cos x eix + e ix sin x eix e ix i sin x eix e ix i sin x eix e ix i sin x sin x eix e ix e ix e ix 1 e 3ix e ix e ix + e 3ix i i 1 e 3ix + e 3ix " e ix + e ix 1 e 3ix + e 3ix e ix + e ix # 1 [cos 3x cos x]

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 5..8 Factorización de polinomios. La importacia de los números complejos radica en que es un cuerpo cerrado, es decir, toda ecuación algebraica de coeficientes complejos, tiene por lo menos una raíz. A este resultado se le conoce como teorema fundamantal del Álgebra. Una ecuación F (x) 0donde F es una función polinómica, la llamaremos una ecuación algebraica. Si F (x) 0contiene al menos una función trascendente e x, log x, cos x,etc. diremos que F (x) 0 es trascendente. Diremos que α es una raíz o cero de F (x) 0si F (α) 0. Si α es raíz de F (x) 0, entonces x α divide a F (x), esdecir,f (x) (x α) Q (x). Si (x α) r divide a F (x) 0y (x α) r+1 no divide a F (x), diremos que α es una raíz de F (x) 0con multiplicidad r, o bien,que α es una raíz múltiple de orden r. Proposición.5 Si F (x) 0es una ecuación algebraica con coeficientes reales y tiene una raíz compleja z, entonces su conjugado z es también raíz de la ecuación.. Consecuencias: Si F (x) 0es una ecuación algebraica de grado impar con coeficientes reales, tiene al menos una raíz real. Todo polinomio con coeficientes reales, se descompone en factores lineales y/o cuadráticos, los factores lineales corresponden a raices reales y los cuadráticos a los pares de raices complejas conjugadas. Si F (x) a n x n + + a 0 con a i C, entonces F (x) a n (x α 1 ) (x α n ) a a n se le denomina coeficiente principal de F (x). En la expresión anterior, pueden aparecer raices múltiples, en dicho caso la expresión sería de la forma: F (x) a n (x α 1 ) r1 (x α m ) r m con r 1 + + r m n. Ejemplo.8 Descomponer x +1 en R yenc. Conunpocodesuerte,podemosexpresar x +1x +x +1 x x +1 x y lo tendríamos descompuesto en R. x +10 x 1 n 1 π, 1 3π ³ x +1+ ³ x x +1 x, 1 5π, 1 7π o x +1 ³ ³ x cos π + i sin π µ µ x cos 3π + i sin 3π µ µ x cos 5π + i sin 5π µ µ x cos 7π + i sin 7π

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 6 à Ã!! à Ã!! x + i x + i à Ã!! à Ã!! x i x i Ã! à x + 1! x + + 1 ³ x ³ x +1 x + x +1 Proposición.6 Sea F (x) un polinomio con coeficientes enteros, entonces si α Z es una raíz, se verifica: α a 0 (α 1) F (1) α 6 1 (α +1) F ( 1) α 6 1 Ejemplo.9 Calcular las raices de P (x) x 5 3x +6x 3x +8 p (1) 9 p ( 1) 13 D (8) {±1, ±, ±, ±8} Si a es una posible raíz, es decir, un divisor de 8, tiene que ser a+1 divisor de 13, y la unica posibilidad es que a +1 sea ±1, la unica posibilidad es a, como P () 6 0, elpolinomionotieneraices enteras. Proposición.7 Los polinomios mónicos (el coeficiente principal es 1) con coeficientes enteros si tienen soluciones racionales, estas son enteras. Ejemplo.10 El polinomio P (x) x 3 +x x +1 no tiene raices racionales pues P (1) 3 y P ( 1) 3, al ser de grado impar, podemos asegurar que tiene una raíz real y esta es irracional. Ejemplo.11 Hallar las raices racionales de x 3x 3 +x 0 Sólo tiene raices enteras pues a 1, y los posibles valores son D () {±1, ±}, además P (1) y P ( 1) 0 1 es raíz, comprobamos que es simple. x 3x 3 +x (x +1) x 3 x +x (x +1)Q (x) Q (1) 1, Q( 1) 11, que es primo, luego la unica raíz racional es 1. Proposición.8 Si querermos obtener las raices racionales de polinomios P (x) a n x n + + a 0, con coeficientes enteros, hacemos el cambio x z a n.

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 7 Ejemplo.1 Hallar las raices racionales de P (x) x 3 +8x + x 30. x z z 3 +8z +z 8 0 y este polinomio sólo tiene raices racionales enteras. Q (1) 35 Q ( 1) 5 D (8) ±{1,,, 8, 16, 3, 6, 1,, 8} sabiendo que una raíz a ha de ser divisor de 8 y que debe cumplir: (a 1) 35 (a +1) 5 entonces a {,,, 6}, lasraicesson{,, 6} las raices de P son,, 6...9 Ejercicios Ejercicio.7 Hallar z (1+i)100 ( 1 i) 50 z (1 + i)100 (1 + i)100 50 z 1 i (1 i) 5 Pasamos los número complejos a su forma polar ½ arg (z0 ) arctan 1 z 0 1+i 1 π ¾ z 0 1 +1 ( arg (z0 ) arctan 1 1 z 1 1 i q 1 π z 1 1 +( 1) z 50 5π 5 5 π Ejercicio.8 Calcular f (n) (n >0 entero) 75 75 π 75 3π 37 z 0 π z100 0 100 100 π 50 5π ) z 1 π z100 0 5 5 π µ cos 3π + i sin 3π 37 ( 1+i) ³ 1+i n + ³ 1 i n para n 1,, 3, yprobarquef (n +) f (n) µ 1+i n µ 1 i n f (n) + ³ nπ ³ nπ ³ cos + i sin +cos nπ ³ nπ ³ nπ ³ nπ cos + i sin +cos ³e π i n + ³e π i n nπ e i + e nπ i ³ + i sin ³ nπ i sin nπ ³ nπ cos

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 8 de donde ³ π f (1) cos µ π f () cos µ 3π f (3) cos µ π f () cos 0 f (n +) µ (n +)π cos ³ nπ π cos + cos nπ f (n) Ejercicio.9 Girar 5 o el vector z 3+i y extenderlo el doble. Girar una figura o un vector 5 o, equivale a multiplicarlo por el número complejo z 1 5 o 1π cos π + i sin π 1 + 1 i y para extenderlo el doble basta con multiplicar por. µ 1 1 (3 + i) + i +7i Ejercicio.10 Calcular la suma cos a +cosa +cos3a + +cosna Consideramos z cosa +cosa +cos3a + +cosna + i (sin a +sina + +sinna) cosa + i sin a +cosa + i sin a + +cosna + i sin na ½ ¾ e ia + e ia + + e ina suma de n términos de eina e ia e ia una progresión geométrica e ia 1 e ia eina 1 e ia 1 cos na + i sin na 1 eia cos a + i sin a 1 na na + isin cos sin a + isin a cos a na ia sin e na ia sin e sin a na i sin + i cos na i sin a + i cos a na ia sin na e sin a e i( a ) sin na sin a 1+cosna + i sin na eia 1+cosa + i sin a na ia sin e sin a na na sin + icos sin a + icos a na na sin cos sin a cos a na ia sin e sin a na e i( + a ) sin na sin a na µ sin sin a cos n +1 e i (n+1)a a + i sin n +1 a de donde, igualando la parte real y la imaginaria, tendremos: cos a +cosa +cos3a + +cosna sin na sin a cos n +1 a sin a +sina +sin3a + +sinna sin na sin a sin n +1 a

CHAPTER. TRIGONOMETRÍA. NÚMEROS COMPLEJOS 9 Ejercicio.11 Demostrar las fórmulas de Moivre: 1+cos π n +cosπ n sin π n +sinπ n 1) π + +cos(n n 1) π + +sin(n n 0 0 Ejercicio.1 Hallar las raices de la ecuación (1 + i) z 3 i 0 Ejercicio.13 Escribir en forma binómica e i. Ejercicio.1 Resolver la ecuación z 16 0. Ejercicio.15 Resolver la ecuación z +160. Ejercicio.16 Resolver la ecución (z +1) 3 + i (z 1) 3 0. Ejercicio.17 Calcular las raices racionales de las ecuaciones: x +x 3 + x 1x 1 0 6x 3 5x +3x +0 x 3 x x 30 Ejercicio.18 Calcular las raices racionales de las ecuaciones: x 3 + 3 x 1 x 3 8 x 3 x3 +3x 9 0 0