Introduccion a la teoria del arbitraje

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introduccion a la teoria del arbitraje"

Transcripción

1 Introduccion a la teoria del arbitraje Manuel Morales Departmento de Matematicas y Estadistica Universidad de Montreal Febrero 2007

2 i) Problema y Motivación. ii) Introduccion y Definiciones. iii) Ejemplo Simplificado iv) Teoremas Fundamentales: Arbitraje y Completitud 1

3 Definicion: Un producto derivado es un instrumento financiero cuyo valor depende del precio de algun otro activo. Ejemplos: Derivados sobre acciones y indices accionarios Derivados sobre productos agricolas Derivados sobre energeticos Derivados sobre clima 2

4 Porque queremos estudiar estos conceptos en un seminario como este? Porque estos productos juegan un papel importante en el manejo de riesgos financieros. En 1973: Se establece la primera bolsa de derivados: El Chicago Board Options Exchange (CBOE) Se publica el articulo de Fisher Black y Myron Scholes: [Black, Fischer; Myron Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81 (3): ] 3

5 Un par de estadisticas: 1996: El volumen de transacciones en el mercado de derivados alcanza los $ 35,000 millones de dolares. 2001: El volumen de transacciones solamente en el mercado de derivados de divisas alcanza los $ 83,000 millones de dolares 4

6 Ejemplo: Problema: Necesitamos 1000 acciones de IBM (barriles de petroleo, algodon, etc) dentro de un año. Soluciones: 1. Comprarlos hoy mismo. 2. Buscar a alguien que acepte venderlos dentro de un año a un precio fijo ($ K). 3. Buscar a alguien que acepte venderlos dentro de un año a un precio fijo ($K) solamente si es ventajoso para nosotros. 5

7 Ejemplos de productos derivados: Forward Futuros Opciones 6

8 Definicion: Una opcion es un contrato que da el derecho de comprar (vender) un suyacente a un precio predeterminado. Tipos de opciones: Opciones call y opciones put Opciones europeas y opciones americanas Opciones exóticas 7

9 Problema: Cuanto pagar por este tipo de contrato? Los modelos que permiten la evaluacion requieren de tecnicas y conceptos matematicos avanzados.. Objetivos: Estudiar los aspectos matematicos que permiten la evaluacion de este tipo de productos y tratar de ilustrar con simples ejemplos los conceptos clave de la teoria. La intuicion detras estos conceptos se pierde bajo la teoria. En esta presentacion no hablaremos de los tipos de opciones ni de las estrategias de inversion particulares a estos productos. 8

10 Pregunta: Como podemos encontrar el precio justo de una opcion? Posibles respuestas: No se puede encontrar un precio justo. Podemos tratar de calcularlo como una esperanza descontada. 9

11 Etapas para evaluar: 1. Necesitamos un modelo para describir el precio del suyacente: S t, t 0. Esto implica una medida de probabilidad P. 2. Identificar la función de pay-off. Por ejemplo para un call europeo: f(s T ) = (S T K) + = max(s T K, 0). 10

12 Donde T : Es el tiempo de ejercicio. K: Precio de ejercicio. S T : Precio del suyacente al tiempo T. 11

13 1. Calcular el precio como una esperanza: C = e rt E P [(S T K) + ] (1) Vamos a ver que si se puede calcular un precio justo y que este precio toma la forma de una esperanza descontada. Sorprendentemente, esta solucion no es de la forma intuitiva (1). 12

14 Para obtener el; precio justo solo se necesitan unas cuantas hipotesis razonables: 1. El precio de la opcion es una funcion del precio del suyacente. 2. Los agentes del mercado son racionales y buscan obtener beneficios: mientras mas mejor. Esta ultima hipotesis se traduce en el concepto de arbitraje. 13

15 Definicion: Un arbitraje en el mercado es una oportunidad de ganar dinero sin invertir nada, i.e. free lunch. Si los agentes son racionales y tienen igual acceso a la informacion, supondremos que tomarian ventaja de cualquier posibilidad de arbitraje. Esto tendria una tendencia a anular cualquier arbitraje en el mercado. Entonces supondremos que no existen oportunidades de arbitraje en el mercado. Esta sola hipotesis nos permitira de construir toda una teoria para evaluar un producto derivado en el mercado. 14

16 Ejemplo Simplificado: Solo dos activos y dos tiempos de transaccion en el mercado : Activo sin riesgo: B 0 = 1, B 1 = 1 + R, Activo riesgoso: S 0 = s, S 1 = u s con p u d s con p d donde u 1, 1 d > 0 pero u > d. Ademas p u + p d = 1. 15

17 Matematicamente el modelo para el activo es S 1 = s Z donde Z es una variable aleatoria Z = u con p u d con p d Definicion: Un portafolio es un vector h = (x, y) en R 2. 16

18 Interpretacion: R 2 = (B, S) x es el numero de titulos en nuestro portafolio del activo B durante el periodo. y es el numero de titulos en nuestro portafolio del activo S durante el periodo. 17

19 Interpretacion 2: x > 0: Inversion en el activo B (posicion larga). x < 0: Prestamo sobre el activo B (posicion corta). y > 0: Inversion en el activo S (posicion larga). y < 0: Prestamo sobre el activo S (posicion corta). 18

20 Hipotesis suplemetarias: No hay precios a la compra y precios a la venta. Hay solo un mismo precio. No hay costos de transaccion. El mercado es liquido. Se puede comprar y vender en todo momento cualquier cantidad de titulos. 19

21 Definicion: El proceso de valor asociado al portafolio h es Es decir: V h t = xb t + ys t = (x, y) (B t, S t ), t = 0, 1. V h 0 = xb 0 + ys 0 = x + y s, V h 1 = xb 1 + ys 1 = x(1 + R) + y s Z 20

22 Definicion: Una oportunidad de arbitraje es un portafolio h tal que V h 0 = 0, V h 1 > 0 con probabilidad uno. 21

23 Como identificar una oportunidad de arbitraje en nuestro modelo simplificado? Proposicion: Este mercado no admite una oportunidad de arbitraje (el mercado es viable) si y solamente si u > (1 + R) > d. Si no fuera asi, por ejemplo si (1 + R) > u > d. Eso implica que s(1 + R) > u s > d s y tenemos el siguiente arbitraje: h = (s, 1). 22

24 Podemos ver facilmente que para este portafolio V h 0 = s + ( 1)s = 0, V h 1 = s(1+r)+( 1)s Z = s(1 + R) + ( 1) s u con p u s(1 + R) + ( 1) s d con p d i.e. V h 1 > 0 con probabilidad uno. Si u > d > (1 + R). Eso implica que u s > d s > s(1 + R) y tenemos el siguiente arbitraje: h = ( 1, s). 23

25 Como evaluar una opcion en este mercado simplificado? Para que sea mas claro trabajaremos en este ejemplo particular: Activo sin riesgo (cero interes, i.e. R=0): B 0 = B 1 = 1, Activo riesgoso: S 0 = 1, S 1 = 2 con p u = con p d = 0.5 Implicitamente tenemos dos estados alza y baja con la medida de probabilidad P(alza) = P(baja) =

26 Ahora, si quisieramos evaluar un call europeo con precio de ejercicio K = 1, i.e. con funcion de pay-off (S 1 1)+, esta claro que el precio de esta opcion al final del periodo es C 1 = 1 con p u = con p d = 0.5 Nosotros buscamos el precio C 0. Nuestra primera intuicion seria: C 0 = R EP [C 1 ] = 1 [1(0.5) + 0(0.5)] =

27 Este precio podria satisfacernos en un principio. Sin embargo, en ausencia de oportunidades de arbitraje, este precio no es correcto. PORQUE??? Consideremos el portafolio siguiente: h = ( 1/3, 2/3). Es decir, obtenemos un prestamo de $1/3 sobre el activo B y hacemos una inversion de $2/3 sobre el activo S. El valor de este portafolio es: V h 1 = xb 1 + ys 1 = 1/3 + (2/3)2 = 1 con p u 1/3 + (2/3)(1/2) = 0 con p d Claramente V h 1 = C 1 con probabilidad uno. 26

28 El valor del portafolio h al tiempo cero es: V h 0 = xb 0 + ys 0 = ( 1/3)(1) + (2/3)(1) = 1/3. Bajo la hipotesis de ausencia de arbitraje, deben de tener el mismo valor a t = 0, i.e. V h 0 = C 0 = 1/3. Si no, tendria dos activos que valdran lo mismo a t = 1, pero unos es mas caro que el otro hoy. Por ejemplo si C 0 = 1/2, puedo hacer una ganancia de $1/6: Vendo C a $1/2 Compro h a $1/3 27

29 Conclusion: Bajo la hipotesis de ausencia de arbitraje existe un precio justo y es $1/3 y no 1/2 como pudimos haber creido en un principio. Como obtener este precio justo?? Vamos a ver que este precio esta estrechamente ligado a otra medida de probabilidadn diferente de la original. Hemo visto que este mercado no acepta arbitrajes ssi u > (1 + R) > d. Esto implica que existe una combinacion convexa donde q u + q d = 1 y q u, q d > 0. (1 + R) = q u u + q d d, 28

30 Los coeficientes de esta combinacion pueden ser facilmente calculados a partir de (1 + R) = q u u + q d d, q u + q d = 1. La solucion es q u = (1 + R) d u d, q d = u (1 + R) u d 29

31 De manera equivalente s(1 + R) = q u s u + q d s d = E Q [S 1 ]. La ausencia de arbitraje implica la existencia de una medida de probabilidad Q tal que S 0 (1 + R) = E Q [S 1 ]. Esta medida es conocida como medida equivalente de riesgoneutro. Teorema Fundamental de la Evaluacion de Derivados: Un mercado es libre de arbitrajes si y solamente si existe una medida equivalente de riesgo-neutro. Como se relaciona con el precio correcto de un derivado? 30

32 En general queremos evaluar un derivado cuyo valor al tiempo t = 1 es una funcion de Z,i.e. Π 1 = f(z). Etapas: Encontrar un portafolio tal que V1 h uno. = Π 1 con probabilidad Bajo la ausencia de arbitraje estos dos activos tienen el mismo precio en t = 0 El precio correcto es V h 0. Definicion: Un producto derivado Π es replicable si existe un portafolio h tal que V1 h = Π 1 con probabilidad uno. 31

33 Para encontrar este portafolio necesitamos resolver la ecuacion siguiente: xb 1 + ys 1 = Π 1. Como S 1 y Π 1 son variables aleatorios, tenemos de hecho dos ecuaciones x(1 + R) + y s u = f(u), x(1 + R) + y s d = f(d). La solucion es x = 1 u f(d) d f(u) 1 + R u d, y = 1 f(u) f(d). s u d Este es el portafolio que replica. Existe porque u > d. 32

34 Calculemos ahora V h 0 : Π 0 = V h 0 = x B 0 + y S 0 = x + y s. Si sustituimos los valores de x y y podemos encontrar Π 0 = V0 h = 1 [ (1 + R) d u (1 + R) f(u) + f(d) 1 + R u d u d que puede ser escrita Π 0 = V h 0 = R [q u f(u) + q d f(d)] = R EQ [f(z)]. ], 33

35 Teorema de evaluacion:en un mercado viable el precio correcto de un producto derivado Π es de la forma Π 0 = R EQ [Π], donde Q es una medida equivalente de riesgo-neutro. El siguiente problema es ver si el precio es unico. Esto tiene que ver con la completitud del mercado. Definicion: Un mercado es completo si todo producto derivado es replicable. 34

36 Nuestro mercado simplificado es claramente completo. ver las ecuaciones: Basta x(1 + R) + y s u = f(u), x(1 + R) + y s d = f(d). Como u > d, tenemos que para cualquier valor de f(u) y f(d) (i.e. para cualquier producto derivado) estas ecuaciones representan dos lineas no paralelas en R 2. Consecuentemente, se cruzan y existen soluciones unicas x y y lo que implica que f(z) es replicable. 35

37 Observacion: Si tuvieramos mas de dos activos las ecuaciones podrian tener mas de una solucion (Dos ecuaciones y tres variables) Si tuvieramos mas de dos posibilidades las ecuaciones podrian no tener solucion (Tres ecuaciones y dos variables) El concepto de completitud esta ligado al concepto de medida equivalente. Segundo Teorema Fundamental de la Evaluacion de Derivados: Un mercado viable es completo si y solamente si la medida equivalente de riesgo-neutro es unica. 36

38 Conclusiones: Las probabilidades verdaderas solo determinan los eventos posibles. No entran en la evaluacion. Los precios bajo la hipotesis de ausencia de arbitraje es equivalente a evaluar en un mundo sin riesgo. 37

39 La realidad es mas complicada que este ejemplo. Modelo Black-Scholes: B t = e rt, S t = S 0 e W t P, donde Wt P es un movimiento browniano de media µ σ 2 /2 y varianza σ 2. La formula es para un call europeo bajo este modelo es C = e rt E Q [(S T K)+], donde Q es una nueva medida tal que S t = e W Q t. Aqui Wt Q movimiento browniano de media r σ 2 /2 y varianza σ 2. es un 38

40 Time Brownian Motion Brownian Motion. 39

41 Esta expresion lleva a la celebre formula de Black-Scholes (1973): C(t, S) = SΦ(d 1 ) e r(t t) KΦ(d 1 σ (T t)), donde d 1 = 1 σ (T t) [ ( ) S ln K ] + (r + 1/2σ 2 )(T t). El modelo Black-Scholes es completo porque podemos mostrar que existe una solo medida Q tal que E Q [S T ] = S 0 e rt 40

42 El modelo Black-Scholes tiene ciertos defectos: 1. Trayectorias continuas. 2. Volatilidad constante 3. Observaciones empiricas de mercado no corresponden a la normalidad del modelo (Log-rendimientos) 41

43 Histogram of daily IBM returns and best fitting densities. From Bibby and Sørensen (2001). 42

44 Log-Histogram of daily IBM returns and best fitting log-densities. From Bibby and Sørensen (2001). 43

45 Modelo Lévy: B t = e rt, S t = S 0 e ZP t, donde W P t es un proceso de Lévy. La formula es para un call europeo bajo este modelo es C = e rt E Q [(S T K)+], donde Q es una nueva medida tal que S t = e ZQ t. Aqui Zt Q proceso de Lévy. es otro 44

46 NIG Lévy Process Business Time NIG Process

47 Este modelo no es completo porque podemos mostrar que existe un numero infinito de medidas Q tales que E Q [S T ] = S 0 e rt Sin embargo, hay clases de medidas dentro de las cuales tenemos unicidad. Estas expresiones llevan a formulas similares a la de Black-Scholes (1973): C(t, S) = SΦ L (d 1 ) e r(t t) KΦ L (d 2 ), donde d 1 y d 2 pueden ser calculados. 46

48 Conclusiones: El concepto de ausencia de arbitraje es crucial en la teoria. Es la hipotesis que permite evaluar un producto derivado El concepto de completitud es una propiedad de un modelo. Un modelo completo es simple por la unicidad del precio. Un modelo incompleto no es problematico. 47

49 GRACIAS POR SU ATENCION 48

EN FINANZAS. Ernesto Mordecki. Primer Encuentro Regional de. Probabilidad y Estadística Matemática

EN FINANZAS. Ernesto Mordecki. Primer Encuentro Regional de. Probabilidad y Estadística Matemática MODELOS ESTOCÁSTICOS EN FINANZAS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Primer Encuentro Regional de Probabilidad y Estadística

Más detalles

Opciones reales. Dr. Guillermo López Dumrauf. Buenos Aires, 4 de septiembre de 2003. dumrauf@fibertel.com.ar

Opciones reales. Dr. Guillermo López Dumrauf. Buenos Aires, 4 de septiembre de 2003. dumrauf@fibertel.com.ar Opciones reales Buenos Aires, 4 de septiembre de 2003 Dr. Guillermo López Dumrauf dumrauf@fibertel.com.ar (*) La compañía X está estudiando la compra de un ferryboat de alta velocidad para proveer un servicio

Más detalles

Introducción a los mercados de futuros y opciones.

Introducción a los mercados de futuros y opciones. Introducción a los mercados de futuros y opciones. OBJETIVO DE LA SESIÓN Conocer y comprender: I. Las diferencias entre el mercado de físicos y el mercado de futuros. II. Los orígenes y evolución de los

Más detalles

Investigación Opciones para ciertos riesgos

Investigación Opciones para ciertos riesgos Investigación Opciones para ciertos riesgos Eric J. Avila Vales Universidad Autónoma de Yucatán Agosto de 1998 1. Introducción Para proteger a nuestra familia compramos un seguro de vida y/o un seguro

Más detalles

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE 1. Fórmulas utilizadas en la simulación de la evolución del precio de una acción

Más detalles

Simulación en seguros y finanzas Mtro. Víctor Hugo Ibarra Mercado

Simulación en seguros y finanzas Mtro. Víctor Hugo Ibarra Mercado Simulación en seguros y finanzas Mtro. Víctor Hugo Ibarra Mercado La anterior, recuerdas? La normal y el movimiento browniano AHORA! EL MOVIMIENTO BROWNIANO y LAS OPCIONES Si recuerdas la dinámica, denominada

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

Evaluación de Opciones: Teoría

Evaluación de Opciones: Teoría Evaluación de Opciones: Teoría Evaluación de Opciones:Teoría Transparencia 1 de 49 Esquema Remuneraciones de opciones Influencias en el valor de opciones Valor y volatilidad de título; tiempo disponible

Más detalles

Tema 5: Sistemas Monetarios Internacionales

Tema 5: Sistemas Monetarios Internacionales Introducción: Tema 5: Sistemas Monetarios Internacionales Analizaremos economías que están formadas por varios países y monedas. Se estudiarán los determinantes de los tipos de cambio entre monedas. Determinaremos

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

TEMA 6: La valoración de opciones y futuros

TEMA 6: La valoración de opciones y futuros TEMA 6: La valoración de opciones y futuros Índice 1. Introducción 2. Definición de futuros y opciones 2.1. Elementos en un contrato de opciones 2.2. Tipos de opciones 3. Funcionamiento de las opciones

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Marialejandra Castillo Torres Carlos Enrique Vecino Arenas, Ph. D

Marialejandra Castillo Torres Carlos Enrique Vecino Arenas, Ph. D Marialejandra Castillo orres Carlos Enrique Vecino Arenas, Ph. D Las opciones son transadas en los mercados financieros. Una opción call le da a su propietario el derecho más no la obligación de comprar

Más detalles

Opciones: introducción y elementos básicos

Opciones: introducción y elementos básicos Opciones: introducción y elementos básicos Dr. Guillermo López Dumrauf Para una lectura detallada ver: López Dumrauf, Guillermo: Cálculo Financiero Aplicado, 2da edición (La Ley, 2006) La presentación

Más detalles

Black-Scholes. 1 Introducción y objetivos

Black-Scholes. 1 Introducción y objetivos Matemáticas en Wall Street: la fórmula de Black-Scholes Miguel Ángel Mirás Calvo Me di cuenta definitivamente de la importancia de la fórmula de Black-Scholes al escuchar a esos negociadores de opciones

Más detalles

DESCUBRA LOS SECRETOS DEL ORO. Todo lo que necesita saber para tener éxito operando con oro en los mercados financieros

DESCUBRA LOS SECRETOS DEL ORO. Todo lo que necesita saber para tener éxito operando con oro en los mercados financieros DESCUBRA LOS SECRETOS DEL ORO Todo lo que necesita saber para tener éxito operando con oro en los mercados financieros DECLARACIÓN SOBRE INVERSIONES DE ALTO RIESGO Las operaciones con divisas (Forex) y

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Registro contable de Supuesto 10 Determinación del derivados OTC valor de una prima de opción (2)

Registro contable de Supuesto 10 Determinación del derivados OTC valor de una prima de opción (2) Ejercicio 10 10 DETERMINACIÓN DE UNA PRIMA EN UNA OPCION (MODELO DE BLACK SCHOLES) Instrucciones Vamos a calcular cual es el importe al que asciende una prima en una opción aplicando el modelo más extendido

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Valoración de Opciones Financieras. Begoña Vitoriano Villanueva bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid

Valoración de Opciones Financieras. Begoña Vitoriano Villanueva bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid Begoña Vitoriano Villanueva bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid Valoración de Opciones Financieras Nociones básicas sobre derivados financieros Derivado

Más detalles

ÍNDICE Capítulo 14: Mercados De Opciones 3 Acerca De Las Opciones 3 Especulación Con Opciones De Acciones 5

ÍNDICE Capítulo 14: Mercados De Opciones 3 Acerca De Las Opciones 3 Especulación Con Opciones De Acciones 5 ÍNDICE Capítulo 14: Mercados De Opciones 3 Acerca De Las Opciones 3 Mercados Utilizados Para Negociar Opciones 4 El Papel De La Corporación De Compensación De Opciones (Occ) 4 Normas Para La Negociación

Más detalles

Instituto Tecnológico Autónomo de México Matematicas Aplicadas a la Teoria de Finanzas I Prof. Gabriel Gomez 2001-2002

Instituto Tecnológico Autónomo de México Matematicas Aplicadas a la Teoria de Finanzas I Prof. Gabriel Gomez 2001-2002 Instituto Tecnológico Autónomo de México Matematicas Aplicadas a la Teoria de Finanzas I Prof. Gabriel Gomez 2001-2002 Este curso es una introducción a los métodos matemáticos que con mayor frecuencia

Más detalles

FUTUROS IBEX 35 ÍNDICE. 1. Conceptos Básicos Pág. 2 INTRODUCCIÓN. 2. Invertir en Renta Variable. 3. Operativa con Futuros: 4. Resumen Pág.

FUTUROS IBEX 35 ÍNDICE. 1. Conceptos Básicos Pág. 2 INTRODUCCIÓN. 2. Invertir en Renta Variable. 3. Operativa con Futuros: 4. Resumen Pág. FUTUROS IBEX 35 ÍNDICE 1. Conceptos Básicos Pág. 2 INTRODUCCIÓN Han transcurrido trece años desde el lanzamiento de los contratos de Futuros del IBEX en enero de 1992. En este periodo de tiempo, el IBEX

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Suponga que, conversando con su cuate, surge la idea de hacer una apuesta simple. Cada uno escoge decir cara ó sello. Se lanza una moneda al aire, y si sale cara, quien dijo sello le paga a quien dijo

Más detalles

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases

Más detalles

ADMINISTRACION FINANCIERA. Parte VIII Capítulos 1 y 2. Finanzas internacionales.-

ADMINISTRACION FINANCIERA. Parte VIII Capítulos 1 y 2. Finanzas internacionales.- ADMINISTRACION FINANCIERA Parte VIII Capítulos 1 y 2. Finanzas internacionales.- CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 jpjorge@speedy.com.ar 1 Sumario 1. Finanzas internacionales.

Más detalles

Introducción a los Modelos de valuación de futuros

Introducción a los Modelos de valuación de futuros Introducción a los Modelos de valuación de futuros Estrella Perotti Investigador Senior Bolsa de Comercio de Rosario eperotti@bcr.com.ar Existen dos modelos de valuación de futuros. El primero de estos

Más detalles

Determinación de precios a plazo y de los futuros. Capítulo 4

Determinación de precios a plazo y de los futuros. Capítulo 4 Determinación de precios a plazo y de los futuros Capítulo 4 Activos para el consumo frente a activos de inversión Los activos de inversión son activos que un número significativo de inversores mantienen

Más detalles

Opciones. Marcelo A. Delfino

Opciones. Marcelo A. Delfino Opciones Concepto de opción! El comprador de una opcion tiene el derecho, no la obligacion, de comprar (call) o vender (put) un contrato a termino a un precio predeterminado (precio de ejercicio)! El derecho

Más detalles

CAPÍTULO 1: INTRODUCCIÓN. Todas las personas sabemos que la gran mayoría de las actividades humanas conllevan lo

CAPÍTULO 1: INTRODUCCIÓN. Todas las personas sabemos que la gran mayoría de las actividades humanas conllevan lo CAPÍTULO 1: INTRODUCCIÓN 1.1. Planteamiento del problema Todas las personas sabemos que la gran mayoría de las actividades humanas conllevan lo que conocemos como riesgo, pero qué es en realidad el riesgo?,

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

TESIS QUE PARA OBTENER EL TÍTULO DE PRESENTA DIRECTOR DE TESIS DR. GUILLERMO ARTURO LANCHO ROMERO

TESIS QUE PARA OBTENER EL TÍTULO DE PRESENTA DIRECTOR DE TESIS DR. GUILLERMO ARTURO LANCHO ROMERO UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA EL MODELO BINOMIAL DE VALUACIÓN DE OPCIONES TESIS QUE PARA OBTENER EL TÍTULO DE LICENCIADO EN MATEMÁTICAS APLICADAS PRESENTA JOSÉ JAIME SAN JUAN CASTELLANOS DIRECTOR

Más detalles

EL MERCADO DE DIVISAS

EL MERCADO DE DIVISAS EL MERCADO DE DIVISAS FINANCIACIÓN INTERNACIONAL 1 CIA 1 DIVISAS: Concepto y Clases La divisa se puede definir como toda unidad de cuenta legalmente vigente en otro país. El tipo de cambio es el precio

Más detalles

Estrategias de negociación con opciones sobre acciones. Operativa en el mercado MEFF

Estrategias de negociación con opciones sobre acciones. Operativa en el mercado MEFF Estrategias de negociación con opciones sobre acciones. Operativa en el mercado MEFF Rosa M. Lorenzo Alegría Profesora Titular de Fundamentos del Análisis Económico Departamento de Análisis Económico,

Más detalles

FINANZAS INTERNACIONALES

FINANZAS INTERNACIONALES FINANZAS INTERNACIONALES Unidad 5: Manejo del Riesgo Cambiario 16. COBERTURA DEL RIESGO CAMBIARIO: OPCIONES SOBRE DIVISAS En este capítulo se revisa la estrategia de cobertura del riesgo cambiario mediante

Más detalles

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión?

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? 1 RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? La respuesta es sencilla. El rendimiento requerido siempre depende del riesgo

Más detalles

Instrumentos financieros emitidos por un intermediario como una alternativa de inversión donde se puede llegar a obtener rendimientos superiores a

Instrumentos financieros emitidos por un intermediario como una alternativa de inversión donde se puede llegar a obtener rendimientos superiores a Instrumentos financieros emitidos por un intermediario como una alternativa de inversión donde se puede llegar a obtener rendimientos superiores a los del mercado de renta fija. Una opción, al igual que

Más detalles

Tema 7: Dinero, Inflación y Tipos de Interés

Tema 7: Dinero, Inflación y Tipos de Interés Tema 7: Dinero, Inflación y Tipos de Interés Macroeconíomica III Universidad Autónoma de Madrid Febrero 2010 Macroeconíomica III (UAM) Tema 7: Dinero, Inflación y Tipos de Interés Febrero 2010 1 / 1 Sumario

Más detalles

Teoría de las Finanzas Opciones Europeas. Qué son las opciones? Definición de opción. Opciones call y opciones put

Teoría de las Finanzas Opciones Europeas. Qué son las opciones? Definición de opción. Opciones call y opciones put Teoría de las Finanzas Opciones Europeas Qué son las opciones? Alejandro Mosiño Universidad de Guanajuato v.2014 Definición de opción Opciones call y opciones put Una opción es un instrumento financiero

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

IESE Universidad de Navarra Barcelona-Madrid

IESE Universidad de Navarra Barcelona-Madrid Barcelona-Madrid 2- APLICACIONES DE LOS DERIVADOS PARA CUBRIR LA GESTION DE CARTERAS Y PARA CUBRIR RIESGOS (*) En esta nota se presentan algunas de las aplicaciones más frecuentes de los derivados para

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

CAPÍTULO 2 OPCIONES FINANCIERAS

CAPÍTULO 2 OPCIONES FINANCIERAS CAPÍTULO 2 OPCIONES FINANCIERAS En las últimas décadas se ha buscado desarrollar herramientas financieras que brinden mayor seguridad a los inversionistas, una de estas herramientas son las opciones. Las

Más detalles

Productos de Divisa Tipos de Cambio Exportador

Productos de Divisa Tipos de Cambio Exportador Productos de Divisa Tipos de Cambio Derivados de Divisa Versión 3.1 Comunicación publicitaria Página 1 Una presencia global: un banco global en los mercados de alto potencial BBVA y Corporate and Investment

Más detalles

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total.

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. III. Elección en condiciones de incertidumbre Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. Es decir, cuando

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

CAPÍTULO 14. Profesor: Carlos R. Pitta. Economía Internacional. Tipos de Cambio y el Mercado de Divisas: Un Enfoque de Activos

CAPÍTULO 14. Profesor: Carlos R. Pitta. Economía Internacional. Tipos de Cambio y el Mercado de Divisas: Un Enfoque de Activos Universidad Austral de Chile Escuela de Ingeniería Comercial Economía Internacional CAPÍTULO 14 Tipos de Cambio y el Mercado de Divisas: Un Enfoque de Activos Profesor: Carlos R. Pitta Economía Internacional,

Más detalles

Opciones parisinas. Definición y valoración

Opciones parisinas. Definición y valoración Opciones parisinas. Definición y valoración John Freddy Moreno Trujillo * jhon.moreno@uexternado.edu.co * Docente investigador. Facultad de Finanzas, Goierno y Relaciones Internacionales. Universidad Externado

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Valoración de opciones sobre acciones: el modelo Black-Scholes. Capítulo 10

Valoración de opciones sobre acciones: el modelo Black-Scholes. Capítulo 10 Valoración de opciones sobre acciones: el modelo Black-Scholes Capítulo 0 Modelo de valuación de Black-Sholes El supuesto subyacente al modelo BS es que el precio de las acciones sigue un recorrido aleatorio

Más detalles

Cálculo Estocástico y Finanzas de Mercado.

Cálculo Estocástico y Finanzas de Mercado. Cálculo Estocástico y Finanzas de Mercado. CEPEDA Eduardo 30 de marzo del 2007 1 Matemática nanciera : precio de opciones. Tomando un ejemplo de las nanzas, veremos como la matemática y la economía continuan

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

VALORACIÓN DE MERCANCÍAS ALMACENABLES. vs. MERCANCÍAS NO ALMACENABLES

VALORACIÓN DE MERCANCÍAS ALMACENABLES. vs. MERCANCÍAS NO ALMACENABLES VALORACIÓN DE MERCANCÍAS ALMACENABLES vs. MERCANCÍAS NO ALMACENABLES MERCANCÍAS Y RENDIMIENTO DE CONVENIENCIA El concepto de rendimiento de conveniencia fue analizado por primera vez por Kaldor y Working

Más detalles

Nuevos resultados en la Teoría de Mercados de Bienes Derivados. Nikolay Sukhomlin Escuela de Física UASD

Nuevos resultados en la Teoría de Mercados de Bienes Derivados. Nikolay Sukhomlin Escuela de Física UASD Nuevos resultados en la Teoría de Mercados de Bienes Derivados. Nikolay Sukhomlin Escuela de Física UASD Crisis Financieros I Octubre 28, 1929 (se conoce como gran depresión, pero fue un crisis local:

Más detalles

Parte III. TEORÍA DE LOS MERCADOS DE CAPITALES Y VALORACIÓN DE ACTIVOS

Parte III. TEORÍA DE LOS MERCADOS DE CAPITALES Y VALORACIÓN DE ACTIVOS INTRODUCCIÓN A LA ECONOMÍA FINANCIERA Parte I. INTRODUCCIÓN Tema 1. Fundamentos de Economía Financiera Parte II. TEORÍA DE LA ELECCIÓN INDIVIDUAL Tema 2. Consumo, inversión y mercados de capitales Tema

Más detalles

Estimación de la densidad

Estimación de la densidad 23 de marzo de 2009 : histograma Si suponemos que F tiene función de densidad f puede ser útil estimarla. Un estimador muy utilizado es el histograma. Dado un origen x 0 y un ancho h > 0 el histograma

Más detalles

0.01 0.4 4. Operando sobre esta relación, se obtiene

0.01 0.4 4. Operando sobre esta relación, se obtiene ORGANIZACIÓN INDUSTRIAL (16691-ECO) TEMA 1: LA COMPETENCIA PERFECTA EN UN MARCO DE EQUILIBRIO PARCIAL 1.1 ANÁLISIS DE LA ESTÁTICA COMPARATIVA DE UN MERCADO COMPETITIVO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

OPCIONES. OPCIONES por Manuel Blanca

OPCIONES. OPCIONES por Manuel Blanca OPCIONES por Manuel Blanca OPCIONES Definición: Contrato por el cual se tiene el derecho a comprar o vender un activo a un precio determinado en una fecha previamente establecida Clases de opciones:call

Más detalles

Gustavo D Agostino Ezequiel Di Nardo Florencia Enrique Sebastián Marques Federico Reif Javier García Fronti

Gustavo D Agostino Ezequiel Di Nardo Florencia Enrique Sebastián Marques Federico Reif Javier García Fronti VOLATILIDAD IMPLÍCITA EN OPCIONES. EL ROL DE LA FÓRMULA DE BLACK AND SCHOLES Y LA POSIBILIDAD DE CÁLCULO SIN ASUMIR UN MODELO DETERMINADO INTRODUCCIÓN Gustavo D Agostino Ezequiel Di Nardo Florencia Enrique

Más detalles

INDICE. V Prologo. VII Introducción. XI Parte I. Introducción a los futuros y opciones 1. Futuros: descripción y funcionamiento

INDICE. V Prologo. VII Introducción. XI Parte I. Introducción a los futuros y opciones 1. Futuros: descripción y funcionamiento INDICE Agradecimientos V Prologo VII Introducción XI Parte I. Introducción a los futuros y opciones 1. Futuros: descripción y funcionamiento 1 1. El contrato de futuros 1.1. Descripción y uso de los futuros

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

En un primer momento puede parecer que las opciones son un producto de innovación financiera, pero en realidad tienen una larga tradición.

En un primer momento puede parecer que las opciones son un producto de innovación financiera, pero en realidad tienen una larga tradición. Este manual ha sido elaborado por La Caixa como ayuda y soporte a la necesaria formación que se requiere para la inversión en WARRANTS, La Caixa no asume responsabilidad alguna por la exactitud o falta

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

CLASE10. Opciones Americanas Valuacion de Opciones Americanas.

CLASE10. Opciones Americanas Valuacion de Opciones Americanas. CLASE. Opciones Americanas Valuacion de Opciones Americanas. Porque es atractiva una opcion americana? Cualquier producto derivado puede diseñarse como un producto de tipo americano simplemente añadiendo

Más detalles

Teoría de las Finanzas La tasa de interés. Diagramas de Flujo. Qué es un diagrama de flujo? (1/3) Qué es un diagrama de flujo?

Teoría de las Finanzas La tasa de interés. Diagramas de Flujo. Qué es un diagrama de flujo? (1/3) Qué es un diagrama de flujo? Teoría de las inanzas La tasa de interés Diagramas de lujo Alejandro Mosiño Universidad de Guanajuato v.2014 Qué es un diagrama de flujo? (1/3) Qué es un diagrama de flujo? (2/3) Deseamos visualizar de

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Curso Fundamentos del Trading Qué son los CFD s? Cómo especulamos en ambas direcciones? CFD Contrato por Diferencias.

Curso Fundamentos del Trading Qué son los CFD s? Cómo especulamos en ambas direcciones? CFD Contrato por Diferencias. 1 Curso Fundamentos del Trading Qué son los CFD s? CFD Contrato por Diferencias. Los CFD s (Contratos por Diferencias) son instrumentos financieros derivados, negociados fuera de los mercados regulados

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DE LAS OPERACIONES FINANCIERAS PRIMERA PREGUNTA 1.1 Qué es mejor invertir a 3 años al 4% e interés compuesto o al 3,90% de interés continuo? Cuantificar la diferencia para una inversión de 100.000. Puesto

Más detalles

Consideraciones sobre el valor razonable

Consideraciones sobre el valor razonable Consideraciones sobre el valor razonable Angel Vilariño Lima, mayo 2007 Angel Vilariño 1 Valor razonable Valor razonable (en una fecha determinada) es el precio por la que puede ser intercambiado un activo

Más detalles

Esquema. Las instituciones financieras en las economías modernas. I. El sistema financiero. Las instituciones financieras en las economías modernas

Esquema. Las instituciones financieras en las economías modernas. I. El sistema financiero. Las instituciones financieras en las economías modernas Esquema 6 Oferta y Demanda agregadas: a) El ahorro, la inversión y el sistema financiero El sistema financiero Identidades fundamentales sobre el ahorro y la inversión El mercado de fondos prestables (determina

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

Tema 2: Fracciones y proporciones

Tema 2: Fracciones y proporciones Tema 2: Fracciones y proporciones Fracciones Números racionales Números decimales Razones y proporciones Porcentajes 1 2 Las fracciones: un objeto, varias interpretaciones (1) Parte de un todo (2) Un reparto

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

9. Límites que involucran funciones exponenciales y logarítmicas

9. Límites que involucran funciones exponenciales y logarítmicas Métodos para evaluación de ites Yoel Monsalve 77 9 Límites que involucran funciones eponenciales y logarítmicas 9 El número e como un ite El ite: + n) n 9) se conoce como el número e Su valor aproimado,

Más detalles

1. Lección 5 - Comparación y Sustitución de capitales

1. Lección 5 - Comparación y Sustitución de capitales Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha

Más detalles

Por qué es importante la planificación?

Por qué es importante la planificación? Por qué es importante la planificación? La planificación ayuda a los empresarios a mejorar las probabilidades de que la empresa logre sus objetivos. Así como también a identificar problemas claves, oportunidades

Más detalles

COLECCIÓ N DE EXÁMENES ECONOMÍA FINANCIERA. Unión de Estudiantes de Ciencias Económicas AECUC3M

COLECCIÓ N DE EXÁMENES ECONOMÍA FINANCIERA. Unión de Estudiantes de Ciencias Económicas AECUC3M COLECCIÓ N DE EXÁMENES ECONOMÍA FINANCIERA Unión de Estudiantes de Ciencias Económicas AECUC3M PRUEBA PARCIAL DE ECONOMÍA FINANCIERA Nov 2010 EXAMEN TIPO A DATOS DEL ALUMNO: NOMBRE Y APELLIDOS.. GRUPO..

Más detalles

Interés Simple y Compuesto

Interés Simple y Compuesto Interés Simple y Compuesto Las finanzas matemáticas son la rama de la matemática que se aplica al análisis financiero. El tema tiene una relación cercana con la disciplina de la economía financiera, que

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Año 205 Deducción de algunos esfuerzos para una Distribución pseudo-aleatoria de datos Introducción Vamos a desarrollar algunos de los esfuerzos para estructuras que utilizan

Más detalles

MERCADOS FINANCIEROS ESTRATEGIAS DE INVERSIÓN Y FINANCIAMIENTO (INTRODUCCIÓN) Dr. Clemente Landa Domínguez

MERCADOS FINANCIEROS ESTRATEGIAS DE INVERSIÓN Y FINANCIAMIENTO (INTRODUCCIÓN) Dr. Clemente Landa Domínguez MERCADOS FINANCIEROS ESTRATEGIAS DE INVERSIÓN Y FINANCIAMIENTO (INTRODUCCIÓN) Dr. Clemente Landa Domínguez TEORÍA DE PORTAFOLIO (CARTERA) Harry M. Markowitz: Considerado el padre de la Teoría. Estudia

Más detalles

OPCIONES, FUTUROS E INSTRUMENTOS DERIVADOS

OPCIONES, FUTUROS E INSTRUMENTOS DERIVADOS Pablo Fernández Introducción Agradecimientos 1ª PARTE. DESCRIPCIÓN DE LAS OPCIONES, LOS FORWARDS, LOS FUTUROS Y SUS MERCADOS 1. Conceptos básicos sobre opciones, forwards y futuros 1.1. Opción de compra

Más detalles

Derivados financieros

Derivados financieros Derivados financieros Patricia Kisbye Profesorado en Matemática Facultad de Matemática, Astronomía y Física 2010 Patricia Kisbye (FaMAF) 2010 1 / 47 MERCADOS, PRODUCTOS Y DERIVADOS Grupos de activos básicos

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

Porcentaje. Problemas sobre porcentaje. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Porcentaje. Problemas sobre porcentaje. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Porcentaje Problemas sobre porcentaje www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2011 Contenido 1. Porcentajes 2 2. Porcentajes simplificado 4 3. Porcentajes especiales 5

Más detalles

Mercados Financieros. SESIÓN #8 Mercados de derivados.

Mercados Financieros. SESIÓN #8 Mercados de derivados. Mercados Financieros SESIÓN #8 Mercados de derivados. Contextualización Qué es el mercado de derivados? Dentro del mercado financiero existe el de derivados, el cual tiene como función principal cubrir

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones. Banco Central de Reserva del Perú

Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones. Banco Central de Reserva del Perú Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones Banco Central de Reserva del Perú - Gonzalo Chávez - Paul Zanabria 1 Introducción La proyección

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles