Investigación de Operaciones Método Simplex

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Investigación de Operaciones Método Simplex"

Transcripción

1 FACULTA DE INGENIERIA DE SISTEMAS E INFORMATICA Investigación de Operaciones Método Simplex Integrantes Mayta Chiclote, Ricardo Toledo Fabian, Jimmy Yarleque Esqueche, Jimmy Daniel Método Simplex Página 1

2 Índice de Contenidos Índice de Contenidos Resumen Introducción.4 2.1) La Programación Lineal.4 2.2) Historia de la Programación Lineal ) Los Fundadores de la Técnica son Descripción General Soluciones Basales y No Basales Solución Factibles.5 4. Pasos Generales del Método Simplex.6 5. Procedimiento del Método Simplex Conversión a Forma Estándar Verificación del Optimo Proceso Determinación de la Variable Entrante 9 9. Calculo de la Fila Pivote Conclusiones Bibliografía..13 Método Simplex Página 2

3 1. Resumen En este trabajo se exponen los resultados alcanzados mediante el desarrollo de una herramienta de software orientada a facilitar a los usuarios el proceso de modelización, resolución y utilización de la información producida por un sistema, en el marco teórico de la programación lineal. Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal es un vértice cualquiera, hasta que va mejorando, comparándolo con el vértice anterior, en los pasos de la ecuación. Dicha herramienta consta de tres componentes fundamentales: a) Una interface para la carga de datos utilizando el programa en JAVA. b) Un programa para la exposición de los resultados en pantalla, comprensibles para no matemáticos, con la posibilidad de ser usados en lenguaje JAVA o también Pagina Web. c) La utilización de sistema para mejorar la organización de los recursos de entre Cliente y Servidor Método Simplex Página 3

4 2. Introducción 2.1) La Programación Lineal: Es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de un sistema de inecuaciones lineales, optimizando la función objetivo o también lineal. Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales. 2.2) Historia de la Programación Lineal: El problema de la resolución de un sistema lineal de inecuaciones se remonta, al menos, a Joseph Fourier, después de quien nace el método de eliminación de Fourier-Motzkin. La programación lineal se plantea como un modelo matemático desarrollado durante la Segunda Guerra Mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta En la posguerra, muchas industrias lo usaron en su planificación diaria. 2.3) Los Fundadores de la Técnica son: George Dantzig, quien publicó el algoritmo simplex, en 1947, John von Neumann, que desarrolló la teoría de la dualidad en el mismo año, y Leonid Kantoróvich, un matemático de origen ruso, que utiliza técnicas similares en la economía antes de Dantzig y ganó el premio Nobel en economía en En 1979, otro matemático ruso, Leonid Khachiyan, diseñó el llamado Algoritmo del elipsoide, a través del cual demostró que el problema de la programación lineal es resoluble de manera eficiente, es decir, en tiempo polinomial. Más tarde, en 1984, Narendra Karmarkar introduce un nuevo método del punto interior para resolver problemas de programación lineal, lo que constituiría un enorme avance en los principios teóricos y prácticos en el área. Método Simplex Página 4

5 3. Descripción General En esta imagen podemos notar como se construye las funciones para la utilización del Método Simplex. Supongamos que se ha convertido un LP con m restricciones a su forma estándar. Asumiendo que cada restricción contiene n variables compuestas (x1, x2,. xn) se tiene: {3.1} Luego se puede definir de la siguiente manera Por lo tanto, las restricciones del problema (2.1) pueden ser escritas como un sistema lineal: [A]f(x) g = f (b) g 3.1) Soluciones Basales y No Basales {3.2} Consideremos que el sistema (2.3) posee m ecuaciones lineales y n variables (sea n m). Definición 1 Se puede obtener una solución basal de (3.2) haciendo n & m variables iguales a cero y resolviendo para encontrar los valores de las restantes m variables. Se asume que hacer n & m variables igual a cero conduce a un único conjunto de valores para las restantes m variables o en forma equivalente, se asume que las columnas de restantes m variables son linealmente independientes. En consecuencia, para resolver el sistema (3.2) asignaremos 0 a n & m variables (variables no basales o NBV) y resolveremos el sistema restante de n (n m) = m variables (variables basales o BV). Evidentemente, una selección distinta de variables no basales conducirá a valores distintos para las variables basales, además pueden existir conjuntos de m variables que no son capaces de constituir variables basales pues conducen a un sistema sin solución. 3.2) Soluciones Factibles Un subconjunto de las soluciones basales de (3.2) es muy importante para la teoría de la Programación Lineal: Definición 2 Una solución basal de (3.2) en el cual todas las variables son no negativas es una Solución basal factible o bfs. Los siguientes dos teoremas explican la importancia de concepto de solución basal factible en LP. Teorema 1 La región factible para cualquier problema de programación lineal es un conjunto convexo. Además, si un LP tiene solución óptima, el óptimo debe ser un punto extremo de la región factible. Método Simplex Página 5

6 Teorema 2 Para cualquier LP, existe un único punto extremo de la región factible correspondiente a cada solución basal factible. Además, existe a los menos una bfs correspondiente a cada punto extremo de la región factible. Consideremos el LP del Ejemplo 1: 2.4 La región factible asociada al problema se ilustra en la Figura 2.1. R Figura 2.1: Región Factible - Ejemplo 1 En este caso la región factible corresponde al polígono ABCD. Los puntos extremos son: A = (30; 0), B = (20; 20), C = (0; 40) y D = (0; 0). El Cuadro 2.1 muestra la correspondencia entre las soluciones Básicas factibles del problema (2.4) y los puntos extremos de la región factible. Este ejemplo pone de manifiesto que las soluciones básicas factibles de la forma estándar de un LP corresponden en forma natural a los puntos extremos del LP. 4. Pasos Generales del Algoritmo Simplex Paso 1 Convertir el LP a suma forma estándar. Paso 2 Encontrar una solución básica factible. Si todas las restricciones son de tipo =<se pueden usar las variables de holgura si para cada fila i. Paso 3 Si todas las variables no básicas tienen un coeficiente no negativo en 0, la bfs actuales óptima. Si hay variables en 0 con coeficientes negativos, se debe escoger la que acompañe al coeficiente más negativo en 0 para entrar a la base. Esta variable se denomina la variable entrante. Método Simplex Página 6

7 Paso 4 Emplear el pivoteo para hacer que la variable entrante ingrese a la base en la que restringido su valor. Una vez obtenida la base, volver al paso 3, empleando la forma canoníca actual. Para aplicar el algoritmo Simplex, la función objetivo 4.1 Debe ser escrita como: Procedimiento del Método Simplex Un problema de programación lineal, básicamente, se resuelve obteniendo los valores de una serie de variables que componen una función, de manera que a través de esos valores resulte el máximo o el mínimo [según el caso] de esa función, y cuando dichas variables se encuentran sujetas a distintas restricciones, las cuales se expresan mediante inecuaciones lineales. Ejemplo 1 Una mueblería fabrica escritorios, mesas y sillas. La fabricación requiere de materia prima y de mano de obra. La mano de obra se clasifica en dos tipos: carpintería y terminaciones. La cantidad de recurso requerido para cada tipo de producto se muestra en el Cuadro 3.1. Actualmente se dispone de 48 pulgadas madereras, 20 horas para terminaciones y 8 horas para carpintería. Cada escritorio se vende a US$ 60, cada mesa a US$ 30 y cada silla a US$ 20. La empresa piensa que la demanda por escritorios y sillas es ilimitada, pero cree que se venderán a lo más 5 mesas. Debido a que los recursos ya han sido adquiridos, la empresa desea maximizar su beneficio. RECURSOS ESCRITORIO MESAS SILLAS Materiales(Pulgadas) Terminaciones(Horas) Carpintería(Horas) Cuadro 3.1: Requerimientos por tipo de producto. Considerando las siguientes variables: x1: Número de escritorios producidos x2: Número de mesas producidos x3: Número de sillas producidos 5.2 Método Simplex Página 7

8 Se puede construir el siguiente modelo: Conversión a Forma Estándar: 6.1) Comenzamos el método Simplex transformando las restricciones a su forma estándar. Para ello en cada restricción de tipo incorporamos variables de holgura s1, s2, s3 y s4. Escribiremos la función objetivo en la forma la 0 previamente expuesta. Numeraremos las restricciones como fila 1, fila 2, fila 3 y fila ) El problema anterior puede ser escrito de la forma indicada en el Cuadro 3.2. Esta forma se denomina canónica y se caracteriza porque existe una variable con coeficiente igual a 1 en cada restricción y esa misma variable aparece en las restantes restricciones con coeficiente 0. Si el lado derecho de las restricciones es positivo, se puede obtener una solución basal factible por inspección. En el ejemplo. 6.2 Cuadro 6.1: Forma Canónica (Primera Iteración) Una solución básica factible que puede ser obtenida por simple inspección es x1 = x2 = x3 = 0 y si igual al coeficiente del lado derecho y z = 0, luego. 6.3 Los valores de cada variable se indican en el Cuadro 4.2. Esta solución corresponderá a la base inicial para aplicar el método Simplex. Como se observa en este ejemplo, las variables de holgura son empleadas como parte de la solución basal factible inicial. Método Simplex Página 8

9 7. Verificación del Optimo 7.1) Una vez determinada una bfs inicial, es preciso establecer si corresponde a una solución óptima. En este caso debemos verificar si existe una forma de mejorar el valor de la función objetivo. Si la bfs no es óptima se debe buscar una bfs adyacente que tenga un mejor valor de función objetivo. Para ello, debemos identificar la variable no basal que incrementa más la función objetivo manteniendo el resto de las variables no básicas en valor 0. Reescribiendo la función objetivo: 7.1 A partir de (5.7) podemos determinar la variable no básica más conveniente. Por ejemplo por cada unidad de aumento de x1 la función objetivo crece en 60 (manteniendo x2 y x3 igual a cero). De acuerdo a esta lógica, conviene buscar la bfs adyacente que contenga a x1, en este caso se dice que x1 se vuelve una variable básica o bien es la variable entrante a la base. Nótese que x1 es la variable con el coeficiente negativas de la fila Determinación del Valor de la Variable Entrante Una vez escogida la variable entrante como la de coeficiente más negativo en la fila 0, necesitamos determinar cuál es el valor máximo que puede tomar esta variable. En el ejemplo si x1 adquiere un valor positivo, los valores de las otras variables basales deben cambiar. Por lo tanto, podría ocurrir que alguna de las variables basales tomara un valor negativo. Teniendo en cuenta ello, podemos calcular cómo cambia el valor de las variables basales en función de valor que tome x1 fácilmente gracias a que x2 = x3 = 0. Por ejemplo en la fila 1 podemos escribir: 8.1 Luego, como se debe satisfacer la restricción de signo de s1, se debe modificar x1 de forma de mantener s1 0, así: 8.2 Repitiendo la misma lógica en todas las restricciones: 8.3 Por lo tanto, para mantener las variables basales no negativas, el máximo valor que puede tomar x1 corresponde a min { 48, 20, 8 } = 4 por lo tanto si se escoge x1 4, s3 se vuelve negativa y la solución basal deja de ser factible. Cada restricción en la cual el coeficiente de la variable entrante es positivo representa una restricción para el valor máximo que pueda tomar dicha variable. Luego, en términos generales, para cada restricción en la que la variable entrante tiene un coeficiente positivo se debe verificar que: Método Simplex Página 9

10 8.4 Si una variable tiene un coeficiente no positivo en una fila (por ejemplo x1 en la fila 4), la variable básica de la fila sigue siendo positiva para cualquier valor de la variable entrante. En suma, para determinar el valor máximo de una variable entrante basta con aplicar (8.4) en todas las filas con coeficiente de la variable entrante positivo y escoger el mínimo. El valor menor corresponderá a la fila más restrictiva y por lo tanto la que controla el valor entrante. 9. Calculo de la Nueva Solución Básica Factible Pivote Siempre se debe incorporar una variable entrante en la fila que controló su valor máximo. En el ejemplo, para hacer que x1 sea la variable basal en la fila 3 se debe emplear operaciones fila elemental para conseguir que x1 tenga coeficiente 1 en dicha fila y 0 en las otras filas. El procedimiento se denomina pivoteo en la fila 3. El resultado final es que x1 reemplace a s3 como variable básica de la fila 3. Los pasos a seguir son los siguientes: Pasó 1 Se crea un coeficiente 1 para x1 en la fila 3 multiplicando la fila completa por 1. La fila resultante de las 2 operaciones: 9.1 Pasó 2 Se crea un coeficiente 0 para la variables x1 en la fila 0. Para ello basta multiplicar por 60 (9.1) y restarle a la fila 0 actual: 9.2 Pasó 3 Para fabricar un coeficiente 0 para la variables x1 en la fila 1 se multiplica por - 8 (9.1) y se restarle a la fila 1 actual: 9.3 Pasó 4 Creamos un coeficiente 0 para la variables x1 en la fila 2 multiplicando por - 4 (9.1) y sumándosela a la fila 2 actual: 9.4 Debido a que en la fila 4 no aparece la variable x1, no es necesario aplicar operaciones filas para eliminar x1 de la fila. Luego, la fila 4 queda igual que antes: 9.5 Efectuando todas las modificaciones descritas se completa el Cuadro 3.3. Las variables basales y no basales en este caso definen los siguientes conjuntos: 9.6 Método Simplex Página 10

11 Cuadro 9.2: Forma Canónica (Primera Iteración) La forma canónica actual está asociada a la solución factible z = 240, s1 = 16, s2 = 4, x1 = 4, s4 = 5 y x2 = x3 = s3 = 0. Se podría haber predicho el valor de z considerando que cada unidad de x1 incrementa el valor de z en 60 y que se determinó que x1 entraría a la base con valor 4. Luego En el paso de la forma canónica inicial a una mejorada (mayor valor de z posible) se cambió de una bfs a una bfs adyacente, pues sólo cambió una variable básica. Este procedimiento de cambiar de una bfs a la bfs adyacente con mayor valor de la función objetivo se denomina iteración del método Simplex. A continuación, repetiremos el procedimiento a partir de la forma canónica del Cuadro 9.2. Para ello examinamos la la 0 del Cuadro 9.2 y buscamos la variable que más hace crecer la función objetivo unitariamente (manteniendo las otras variables no basales en cero): 9.8 De la expresión (3.19), un cambio unitario de la variable x3 aumenta la función objetivo en 5. Luego, se selecciona la variable x3 (las otras tienen coeficiente negativo). A continuación debemos determinar el valor máximo que puede tomar x3 de modo de no violar alguna restricción. De acuerdo al procedimiento previamente descrito se tiene (recordando que x2 = s3 = 0): 9.9 De las expresiones anteriores se concluye que sin importar el valor que tome x3, se tiene: s1 0 y s4 0. Luego, imponiendo la condición que s2 y x1 sean no negativas: 9.10 Método Simplex Página 11

12 Por lo tanto, para mantener las variables basales no negativas, el máximo valor que puede tomar x3 corresponde a mín. ( 4 ) = 8 luego x3 = 8. En este caso, la fila que controló el valor de máximo de x fue la fila 2, por lo tanto se debe emplear el pivoteo para conseguir una forma canónica en la que x3 sea la variable básica de la fila 2. Esto se consigue siguiendo los siguientes pasos: Paso 1 Se crea un coeficiente 1 para la variable x3 en la fila 2 de la forma canónica del Cuadro 9.2 multiplicando la fila completa por 2: 9.10 Pasó 2 Construimos un coeficiente 0 para la variable x3 en la fila 0 sumándole 5 veces (3.22) a la fila 0 actual: 9.11 Pasó 3 Para generar un coeficiente 0 para la variable x3 en la fila 1 se le suma (3.22) a la fila 1 actual: 9.12 Pasó 4 Creamos un coeficiente 0 para la variable x3 en la la 3 multiplicando por ( 1 4 ) a (3.22) y sumándosela a la fila 3 actual: 9.13 Debido a que la variable x3 no aparece en la fila 4, la fila queda igual: 9.14 Haciendo todas las modificaciones expuestas, la forma canónica resultante se muestra en el Cuadro 3.4. Determinando la variable básica en cada fila se obtiene: La forma canónica actual está asociada a la solución factible z = 280, s1 = 24, x3 = 8, x1 = 2, Cuadro 9.3: Forma Canónica del Problema (Segunda Iteración) s4 = 5 y s2 = s3 = x3 = 0. Se podría haber predicho el valor de z considerando que cada unidad de x3 incrementa el valor de z en 5 y que se determinó que x3 entraría a la base con valor 8. Luego: 9.15 Debido a que las bfs previa y actual tienen 4-1 = 3 variables en común (s1; s4 y x1), corresponden a soluciones basales factibles adyacentes. Volviendo a escribir la fila 0 de la última base y despejando z se tiene: Método Simplex Página 12

13 9.16 En la expresión anterior se observa que el incremento a un valor distinto de cero de cualquier variable no básica provocaría una reducción de la función objetivo. Por lo tanto, se puede concluir que la solución básica factible mostrada en el Cuadro 3.4 corresponde a una solución óptima. El criterio empleado para determinar que se ha alcanzado se puede generalizar: una forma canónica es óptima (para un problema de maximización) si cada variable no básica posee un coeficiente no negativo en la fila 0 de la forma canónica. 10. Conclusiones. El método simplex permite localizar de manera eficiente la óptima solución entre los puntos extremos de un problema de programación lineal. La gran virtud del método simplex es su sencillez, método muy práctico, ya que solo trabaja con los coeficientes de la función objetivo y de las restricciones. Es muy importante en el área empresarial ya que lo utilizan para obtener solución a los problemas de las empresas en cuanto a inventario, ganancias y pérdidas. 11. Bibliografía. Sitios de Internet: 1. Apuntes/simplex. 2. investigaciones. Método Simplex Página 13

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

CUESTIONARIO IO GRUPO: 204

CUESTIONARIO IO GRUPO: 204 CUESTIONARIO IO GRUPO: 204 1. Qué es la investigación de Operaciones? La Investigación de operaciones es un conjunto de técnicas matemáticas especialmente estructuradas para la torna de decisiones; en

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

RESOLUCIÓN INTERACTIVA DEL SIMPLEX

RESOLUCIÓN INTERACTIVA DEL SIMPLEX RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive

Más detalles

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Titulo: SISTEMAS DE INECUACIONES (INECUACIONES SIMULTANEAS) Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Sistemas de ecuaciones.

Sistemas de ecuaciones. 1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS INTRODUCCIÓN En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Sistemas de ecuaciones.

Sistemas de ecuaciones. 1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO.

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO. 1 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación parece,

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4 REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

Departamento de Matemáticas IES Giner de los Ríos

Departamento de Matemáticas IES Giner de los Ríos Departamento de Matemáticas IES Giner de los Ríos La programación lineal hace historia: El puente aéreo de Berlín En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS)

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN 10: MODELO INSUMO PRODUCTO. Introducción

ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN 10: MODELO INSUMO PRODUCTO. Introducción ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN 10: MODELO INSUMO PRODUCTO Introducción Fue introducido por primera vez a finales de los años treinta por Wassily Leontief, ganador del Premio Nóbel 1973,

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

3- Sistemas de Ecuaciones Lineales

3- Sistemas de Ecuaciones Lineales Nivelación de Matemática MTHA UNLP 1 3- Sistemas de Ecuaciones Lineales 1. Introducción Consideremos el siguiente sistema, en él tenemos k ecuaciones y n incógnitas. Los coeficientes a ij son números reales

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles