DIRECCIONES SOBRE UNA SUPERFICIE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIRECCIONES SOBRE UNA SUPERFICIE"

Transcripción

1 SUPERFICIES- Caros S Chinea DIRECCIONES SOBRE UNA SUPERFICIE Líneas de curvatura rincia Direcciones rinciaes Nota: as nociones básicas que se manejan en este artícuo (formas fundamentaes, curvatura norma, teorema de Meusnier) ueden ser consutadas en a rimera arte, Suerficies_, en esta misma web (htt://ersonaesyacom/casanchi/mat/suerficies0htm) Sabemos que as direcciones sobre una suerficie S en un determinado unto P de a misma, resentan distinta curvatura r, y también, or consiuiente, distinta curvatura norma K r n, royección sobre e vector norma N r de vector de curvatura r en dicho unto P E sentido de vector de curvatura norma uede ser e mismo que e sentido de vector norma o bien uede ser de sentido contrario, esto es, uede ser a royección ositiva, neativa o nua, deendiendo de as dos formas fundamentaes, ya que sabemos que es K II n I Como I siemre es ositiva ( I dr dr ds > 0 ) e sino de K n viene determinado or a seunda forma fundamenta II Así, se tienen tres casos osibes: ) II 0 K > 0 E unto P se ama unto eítico > n ) II 0 K 0 E unto P se ama unto arabóico n ) II 0 K < 0 E unto P se ama unto hierbóico < n Para oder determinar de qué forma es e contacto con e ano tanente a a suerficie en e unto P, en cada uno de estos tres casos, debemos estabecer e

2 SUPERFICIES- Caros S Chinea rado de aroimación de a suerficie a ano tanente en cada situación Esto o odemos conseuir con e siuiente teorema Teorema 06: Si es T e ano tanente a a suerficie S en e unto P y es q un unto de S infinitamente róimo a P, entonces a distancia de q a ano tanente es iua a a mitad de II más un infinitésimo de tercer orden: d ( q, T ) II θ Siendo, os vectores de osición de ambos untos y ( ) r 0 q N a ecuación r de ano tanente, es dr d d q, y a distancia de unto q a! ano tanente es r d( q, T ) ( q ) N dr N d N d N! 0 r r r r r ( N N N ) θ II θ r Teorema 07: ) En un unto eítico toda a suerficie S está a un ado de ano tanente en dicho unto ) En un unto arabóico P se cume que a dirección en a que II0 es asintótica y tiene e mayor contacto osibe con e ano tanente ) En un unto hierbóico a suerficie corta a ano tanente

3 SUPERFICIES- Caros S Chinea ) Si es II > 0, a distancia es siemre ositiva: d ( q, T ) II θ > 0, y or consiuiente, os untos de a suerficie S se encuentran a un ado de ano tanente ) Si es II 0, a distancia es un infinitésimo de orden : d ( q, T ) θ 0 y a suerficie S está en a mayooimidad osibe a ano tanente T en a dirección en a que se anua a seunda forma fundamenta (dirección asintótica) ) Si es II < 0, a seunda forma fundamenta es indefinida y a suerficie no está totamente de mismo ado de ano tanente, es decir, o corta E ejemo más cásico de suerficie en a que se distinuen os tres tios de untos es e toro ) Los untos eteriores de a suerficie, enendrados a rotar ABC, son eíticos ) Los untos de as circunferencias que definen tanto e movimiento de unto A como e movimiento de unto C, son arabóicos ) Los untos interiores, enendrados a rotar e arco ADC, son hierbóicos De o anterior inferimos que en cada unto P de a suerficie ueden haber direcciones en donde se anua a curvatura norma (direcciones asintóticas de untos arabóicos), direcciones en donde a curvatura norma es ositiva (untos eíticos) y direcciones en donde a curvatura norma es neativa (untos hierbóicos) Podemos también tratar de encontrar aqueas direcciones en as que a curvatura norma resenta vaor máimo o vaor mínimo (resenta un etremo) Taes

4 SUPERFICIES- Caros S Chinea direcciones se aman rinciaes y as corresondientes curvaturas se denominan curvaturas rinciaes Para encontrar e vaor máimo o mínimo de a curvatura norma emearemos e cácuo diferencia, derivando e iuaando a cero a curvatura norma con resecto a a variabe dirección Si hacemos en II K n : I ( ) K n dk ( ) Bastará obtener os vaores de ara os cuaes n 0 d dk n ( ) ( )( ) ( )( ) d ( ) ( )( ) ( )( ) 0 [] de o cua: 0 ( ) ( ) [] ordenando [] con resecto a as otencias de : y os vaores de ( ) ( ) ( ) 0 de dicha ecuación de º rado: que hacen etrema a curvatura norma son as souciones ( ) 4( )( ) ( ) ( ) 4( )( ) ( ) que, or o demás, cumen que: [] 4

5 SUPERFICIES- Caros S Chinea Veamos como obtener os vaores máimo y mínimo de a curvatura norma mediante e siuiente teorema Teorema 08: Los vaores de as curvaturas rinciaes son as souciones K de a ecuación de seundo rado 0 De a iuadad [] y teniendo en cuenta a conocida equivaencia de roorciones: A B C D A B A r C B r D ea se tiene: de o cua: ( ) ( ) ( ( ) 0 ) 0 y siendo, odemos escribir de donde, finamente: [4] Asimismo odemos obtener a ecuación de as íneas de curvatura rincia de a suerficie S en un unto P Teorema 09: Las ecuación de as íneas de curvatura rincia viene dada or ( ) ( ) ( ) 0 De []: ( )( ) ( )( ) 0 ( ) ( ) ( ) 0 5

6 SUPERFICIES- Caros S Chinea y sustituyendo : ( ) ( ) ( ) 0 que uede considerarse e desarroo de determinante 0 Teorema 0: Las íneas de curvatura son erendicuares Sean, Las direcciones as determinan os vectores: dr r, dr r r Veamos que su rocto interior es nuo: dr dr ( ( ) ) ( ) Sustituyendo as eresiones []: Resuta: dr dr ) ( ( ) ( ) ( ) 0 y as direcciones rinciaes son, efectivamente, erendicuares 6

7 SUPERFICIES- Caros S Chinea Teorema : Si son roorcionaes os coeficientes de ambas formas fundamentaes, entonces no hay direcciones rinciaes Es decir: ij c ij, i, j, n c Bastará sustituir en [4]: ( c ( c ) ) ( c ( c 0 c c ) 0 ) c c 0 ( c ) 0 ( c ) 0 c ( dobe) (Estos untos se denominan untos umbíicos) Coroario: Si, i, j, 0 ij 0 n trivia (os untos se dicen umbíicos arabóicos Todos os untos de un ano son umbíicos arabóicos) Teorema : La condición necesaria y suficiente ara que as íneas aramétricas, 0 y 0, sean íneas de curvatura es que - Veamos que es condición necesaria: Si as íneas aramétricas, 0 y 0, son íneas de curvatura, esto imica que son erendicuares or e teorema 0, ueo 0 Y de ser Veamos que es condición suficiente: 7

8 SUPERFICIES- Caros S Chinea Sustituyendo en a ecuación de as íneas de curvatura rincia: ( ) ( ) ( ) 0 0 ( ) 0 0 ( ) 0 0 Bibiorafía: ABELLANAS, Pedro, Geometría Básica, Ediciones Romo, Madrid, 969 STRUICK, DJ, Geometría Diferencia cásica, Auiar Ediciones, Madrid, 96 LELONG-FERRAND, Jacqueine, Geometrie Differentiee, Masson and Cie, Paris, 96 CHOQUET-BRUHAT, Yvonne, Geometrie Differentiee et systemes eterieurs, Dunod, París, 968 CARTAN, Eie, La theorie des roues finis et continus et a eometrie differentiee traitées ar e methode reere mobie, Gauthiers-Viars París, 97 Caros S Chinea casanchi@terraes 8

II. HIDROSTÁTICA. Es la parte de la hidráulica que estudia los líquidos en reposo.

II. HIDROSTÁTICA. Es la parte de la hidráulica que estudia los líquidos en reposo. UNIVERIDAD POLITENIA DE ARTAENA EUELA TENIA UPERIOR DE INENIERIA ARONOMIA II. HIDROTÁTIA Es la arte de la hidráulica que estudia los líquidos en reoso. El cálculo de los emujes hidrostáticos ejercidos

Más detalles

3.4.4 Teorema Criterio de la primera derivada para extremos relativos (página 225)

3.4.4 Teorema Criterio de la primera derivada para extremos relativos (página 225) El Cálculo. Louis Leithold. Sétima edición en esañol. ISBN 970-61-182-5 Ejercicios de reaso ara el caítulo. Ejercicio, ágina 290. (a) Determina los etremos relativos de la función f () = ( 4) 2 ( + 2)

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy.

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy. 5 ESTUDIO DEL CILINDRO PARABÓLICO 1 - Estudio de la Simetría a) Simetría resecto a los lanos coordenados Simetría resecto al lano Como la ecuación de la suerficie no contiene a la variable, concluimos

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy Geometría Analítica; C. H. Lehmann. Ejercicio, gruo 8, caítulo II, ágina. Los etremos de la base de un triángulo son los untos A (0; 0) B (; 0). Hallar la ecuación del lugar geométrico del vértice ouesto

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y Tema Funciones eonenciales, loarítmicas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las siuientes unciones :, + EJERCICIO

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte.

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte. E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Setiembre (-9-), rimera arte. PROBLEMA A) [ untos] Dada la función f() e : i) Localice el máimo absoluto de f()

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ).

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ). EDO ara Ingenieros CAPITULO 4 FACTORES ITEGRATES Suongamos que aora que nos dan una ecuación diferencial M (, ) + (, ) d = 0 ( I) Que no es eacta Eiste alguna forma de acerla eacta? Con más recisión, Eistirá

Más detalles

TEMA 1 CONCEPTOS BÁSICOS

TEMA 1 CONCEPTOS BÁSICOS Matemática Financiera Diaositiva 1 TEMA 1 CONCEPTOS BÁSICOS 1. Caital financiero. Fenómeno Financiero 2. Elección financiera. Postulado de royección financiera 3. Conceto de ley y sistema financiero. Proiedades

Más detalles

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica.

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. Matemáticas I. Escuela Politécnica Suerior de Sevilla, curso - Grados en Ingeniería Eléctrica, Electrónica Industrial Mecánica. Boletín n o. Curvas en forma cartesiana.. Determinar la derivada de las siguiente

Más detalles

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez Estática tica comarativa: asectos formales icroeconomía Douglas Ramírez aimización de la tilidad Por simlicidad la elección es entre dos bienes (, ), las utilidades marginales son ositivas. Los recios

Más detalles

Dinámica de Fluidos. 4.1 Dinámica elemental

Dinámica de Fluidos. 4.1 Dinámica elemental 43 Caítulo 4 Dinámica de Fluidos 41 Dinámica elemental Se analizará en ésta sección la ecuación de cantidad de movimiento lineal ara una artícula fluida que se deslaza sobre una línea de corriente Suondremos

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA Prof. Juan Gutiérrez Césedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se enera or la rotación de un rayo desde una osición inicial hasta otra osición final, siemre alrededor de un unto

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

ESPEJOS ESFÉRICOS. f 2

ESPEJOS ESFÉRICOS. f 2 ESPEJS ESÉRS Suericie ulida Suericie ulida luz r luz r Eje ótico Esejo cóncavo ig. 1 Esejo convexo r + en un esejo cóncavo - en un esejo convexo Para esejos eséricos, siendo r 2 resulta: + esejo cóncavo

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS Tema Funciones eonenciales, loarítmicas trionométricas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las

Más detalles

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009 Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 9. a) Prueba, usando el teorema de Bolzano, que la función f.x/ D e x Cx x se anula en al menos tres untos del intervalo

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

GEOMETRIA DEL ESPACIO

GEOMETRIA DEL ESPACIO GEOMETRI DEL ESCIO RELIMINRES: Los conceptos de espacio y de superficie son conceptos primitivos, es decir, no se definen pero podemos dar ideas para comprenderos. or ejempo, e espacio es e ugar donde

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CC. SOCIALES

MATERIA: MATEMÁTICAS APLICADAS A LAS CC. SOCIALES UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) 00 008 (Setiembre) MTERI: MTEMÁTICS PLICDS LS CC. SOCILES INSTRUCCIONES GENERLES Y VLORCIÓN INSTRUCCIONES: El alumno

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales. Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N.

Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N. Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N. Objetivos a cubrir Teorema de monotonía. De nición de máimos mínimos locales globales. Concavidad untos de in eión. Grá ca de

Más detalles

Curvas. 1 Representación analítica de curvas Cambio admisible de parámetro... 7

Curvas. 1 Representación analítica de curvas Cambio admisible de parámetro... 7 Curvas M. Eugenia Rosado María Deartamento de Matemática Alicada Escuela Técnica Suerior de Arquitectura, UPM Avda. Juan de Herrera 4, 8040-Madrid, Sain E-mail: eugenia.rosado@um.es Índice 1 Reresentación

Más detalles

TEMA 11 : ESPACIO AFÍN

TEMA 11 : ESPACIO AFÍN TEMA : ESPACIO AFÍN. Ecuaciones de la recta en el esacio Al igual ue en el lano ( R ), en el esacio ( R ), una recta ueda determinada or un unto P(x,y,z ) y un ector director V = (,, ) no nulo. Para ue

Más detalles

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4.

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4. Practica. Determinar el volumen del solido que se genera al rotar la región acotada or las arabolas x = y y x = y y,alrededor de la recta x = 4. Encontremos los untos de interceccion de ambas curvas: y

Más detalles

con a 2 0 se denomina función cuadrática o función de segundo grado, cuyo dominio es

con a 2 0 se denomina función cuadrática o función de segundo grado, cuyo dominio es Función cuadrática Matemática 3º Año Cód. 1306-16 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. C a r l a N á o l i P r o f. J o r g e l i n a O s é s Dto. de M at emática FUNCIÓN CUADRÁTICA

Más detalles

XAX > i 0. i 4 2i. 2 i i 8

XAX > i 0. i 4 2i. 2 i i 8 Álgebra Lineal Caítulo. Tóicos Eseciales y Alicaciones.. Matrices y formas ositivas En esta sección estudiamos matrices ositivas, formas sesquilineales ositivas, y formas cuadráticas ositivas. a. Matrices

Más detalles

Algebra y Geometría Analítica. Ing. Carlos A. LOPEZ Prof. Ricardo Massucco. Con la colaboración del Ing. Carlos CHONG

Algebra y Geometría Analítica. Ing. Carlos A. LOPEZ Prof. Ricardo Massucco. Con la colaboración del Ing. Carlos CHONG Algebra Geometría Analítica Ing. Carlos A. LOPEZ Prof. Ricardo Massucco Con la colaboración del Ing. Carlos CHONG Para comenar : Quien nos uede decir ué es 1? Lo rimero ue nos deberíamos reguntar es Dónde?

Más detalles

Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N.

Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N. Cálculo Diferencial e Integral - Grá ca de una función. Farith J. Briceño N. Objetivos a cubrir Teorema de monotonía. De nición de máimos y mínimos locales y globales. Concavidad y untos de in eión. Grá

Más detalles

Introducción y errores

Introducción y errores 1 Introducción y errores Introducción De una forma sencilla, el Cálculo Numérico se uede definir como la rama del Análisis Matemático ue estudia y desarrolla rocedimientos matemáticos ara resolver roblemas

Más detalles

Ejercicios de Derivadas parciales., simplificar:

Ejercicios de Derivadas parciales., simplificar: Ejercicios de Derivadas arciales Pregunta Si: ( ( (, simlificar: E Nos iden: E (I Tenemos: ( ( ( De donde: Reemlaando en (I: E ( ( ( Simlificando: E 6 Pregunta, demostrar ue: k, Dada la función: f(, ln(

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS 1 MATEMÁTICAS FINANCIERAS LECCIÓN 1: Fundamentos de la valoración financiera. 1. Introducción. Actividad económica: se caracteriza or la roducción de bienes y servicios y or su intercambio entre los diversos

Más detalles

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006.

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006. E.T.S. INGENIEROS INUSTRIALES. PLAN. U.N.E. CÁLCULO INFINITESIMAL II. o CURSO. CÓIGO: 88 a SEMANA. CONVOCATORIA E JUNIO 6.. ados la función +y si 6= y f (, y) = y si =y yelconjuntom = {(, y) R / ( 4) +

Más detalles

Mecánica de Fluidos B 67.18

Mecánica de Fluidos B 67.18 Mecánica de Fluidos B 67.8 Exresiones útiles c v Ma c v h 0 h + 0 T ( ) + Ma ρ T 0 ρ 0 0 ρ ρ 0 ( ) + Ma 0 ( ) + Ma Ma : R T α asin T Ma velocidad del sonido ara gas ideal número de Mach ángulo del cono

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales.

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales. AN ALISIS MATEM ATICO B ASICO. DE LOS NATURALES A LOS REALES. Los numeros Naturales N: Los numeros naturales los escribimos con diez dgitos: N = f0; ; ; :::; 8; 9; 0; ::::; 87; 88; :::::; n; n + ; (n +

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones eonenciales y logarítmicas EJERCICIOS Realiza una tabla de valores y reresenta las funciones eonenciales. y = c) y = y = d) y = (,) 5 c) d) y =,,7,, 9 7 8 y = y = 5 8 7 9,,,7, 9,65 5,65 6,5,5,,6,6,56

Más detalles

RAZONES Y PROPORCIONES

RAZONES Y PROPORCIONES RAZONES Y PROPORCIONES Se ama razón entre dos números a y b (con b 0), a cociente de a división de a por b. a b Por ejempo, si digo que hay una computadora cada 0 aumnos estoy habando de a razón de. 0

Más detalles

EJERCICIOS COMPLEMENTARIOS DEL MÓDULO 6

EJERCICIOS COMPLEMENTARIOS DEL MÓDULO 6 EJERCICIOS COMPLEMENTARIOS DEL MÓDULO 6 EJERCICIO 1: De los siguientes conjuntos, decid si son abiertos o cerrados, y acotados o no acotados. Hay alguno que sea comacto? Y coneo? (a) [ 1,] (b) [5,1) (c)

Más detalles

ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN Y SISTEMAS DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN Y SISTEMAS DE PRIMER ORDEN Tema 5 Grado en Ingeniería Mecánica ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN Y SISTEMAS DE PRIMER ORDEN CONOCIMIENTOS PREVIOS Para oder seguir adecuadamente este tema, se requiere que el alumno rease

Más detalles

Contenidos. Tema 1. Geometría Diferencial. Definición: superficies regulares

Contenidos. Tema 1. Geometría Diferencial. Definición: superficies regulares Contenidos Tema 1. Geometría Diferencial Suerficies en el esacio Definición: suerficies regulares Suerficies arametrizadas Deartamento de Matemática Alicada E.P.S. Universidad de Málaga 2 o semestre. Curso

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

TRABAJO Y ENERGÍA (página 109 del libro)

TRABAJO Y ENERGÍA (página 109 del libro) TRABAJO Y ENERGÍA (ágina 09 del libro).- TRABAJO MECÁNICO. El conceto de trabajo, al igual que vimos con el conceto de fuerza, en la vida diaria es algo intuitivo que solemos asociar con una actividad

Más detalles

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función Eamen. ª evaluación 4//8 Oción A Ejercicio. (Puntuación máima: untos) Obtener el valor del siguiente límite: lim ( + ) t ln 4t dt 5 Alicación del teorema fundamental del cálculo integral: Si f ( ) es continua

Más detalles

Problemas - Vehículos Espaciales

Problemas - Vehículos Espaciales Chater 1 Problemas - Vehículos Esaciales 1.1 Problema E.1 Un satélite es uesto en órbita or un vehículo lanzador a una altitud de 1594 km con velocidad V y orientación ϕ (ϕ es el ángulo formado or el vector

Más detalles

f (x; y) = a) Calcula la derivada direccional en el punto (1; 1) y en la dirección del vector! v = (2; 2).

f (x; y) = a) Calcula la derivada direccional en el punto (1; 1) y en la dirección del vector! v = (2; 2). Ejercicios de clase Ejercicio. Dada la función f (x; y) xy + x + y. a) alcula la derivada direccional en el unto (; ) y en la dirección del vector v ;. b) En qué dirección crece la función f lo más ráidamente

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA UNIDD HIDRÚLIC. GENERLIDDES Caítulo PRESIONES EN LOS LÍQUIDOS : HIDROSTTIC SECCIÓN : PRESIÓN. ECUCIÓN GENERL DE L HIDROSTÁTIC INTRODUCCIÓN La Hidrostática es la arte de la Hidráulica que estudia los líquidos

Más detalles

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a:

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a: Potenciación Sea a R; n N; la eresión a n de ne un número real asi: a n a a ::: a; n veces El número real a recibe el nombre de base, n el de eonente y el resultado del roducto es la otencia de orden n

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDAD NAIONAL EXPERIMENTAL POLITENIA ANTONIO JOSÉ DE SURE VIERRETORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMIA ONTROL DE PROESOS QUÍMIOS Prof: Ing. (MSc). Juan Enrique Rodríguez. Octubre,

Más detalles

Matemáticas I: C2-2015

Matemáticas I: C2-2015 Matemáticas : - 5 Problema.Sobre una determinada montaña, la elevación z arriba de un unto (x; ) en el lano XOY a nivel del mar es de z :x :4, donde x, z están en metros. El eje x ositivo señala hacia

Más detalles

El proceso estocástico de muerte. Diferentes estrategias para la elaboración de tablas recargadas. Análisis de sensibilidad

El proceso estocástico de muerte. Diferentes estrategias para la elaboración de tablas recargadas. Análisis de sensibilidad ESTADÍSTICA ESPAÑOLA Vo. 45, Núm. 53, 3, ágs. 53 a 74 E roceso estocástico de muerte. Diferentes estrategias ara a eaboración de tabas recargadas. Anáisis de sensibiidad or JOSÉ MANUEL PAVÍA MIRÁLLES (*)

Más detalles

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA E.U. P. de Sevilla, curso 8-9 Ingeriería Técnica Instrial. Esecialidades Electricidad, Electrónica Mecánica. Bloue II: Cálculo diferencial e integral de funciones

Más detalles

UNIDAD 2 Geometría 2.3 Cuadriláteros 23

UNIDAD 2 Geometría 2.3 Cuadriláteros 23 UNIDAD Geometría. Cuadriáteros. Cuadriáteros OBJETIVOS Cacuar e área y e perímetro de cuadrado, rectánguo, paraeogramo, rombo y trapecio. Resover probemas en os cuaes se invoucran cuadriáteros y triánguos.

Más detalles

Una parábola. Figura 9.1

Una parábola. Figura 9.1 Caítulo 9 Secciones Cónicas 9.1 La Parábola Definición: Una arábola es el conjunto de todos los untos P del lano que equidistan de una recta fija L, llamada directriz, de un unto F (que no está en L),

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS I

MATEMÁTICAS APLICADAS A LAS CCSS I MATEMÁTICAS APLICADAS A LAS CCSS I Curso: 00-0 ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las siuientes

Más detalles

Palabras Claves: Viga Tirante Análisis - Dimensionado

Palabras Claves: Viga Tirante Análisis - Dimensionado Bellagio: a Viga Atirantada a Viga Atirantada Carlos Bellagio cbellg@arnet.com.ar Resumen En este trabajo nos roonemos analizar el comortamiento de la viga atirantada, estructura constituida or una viga

Más detalles

Cálculo I Me-003. Universidad Técnica Nacional (UTN)

Cálculo I Me-003. Universidad Técnica Nacional (UTN) Cálculo I Me-003 Universidad Técnica Nacional (UTN) 07 ii Índice general. Límite y continuidad de una función.. Noción intuitiva............................. Ejemlos.......................... 5.. Proiedades

Más detalles

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA REL SOCIEDD MTEMÁTIC ESPÑOL LII OLIMPID MTEMÁTIC ESPÑOL Comunidad de Madrid FSE CERO: viernes 7 de noviembre de 05 En la hoja de resuestas, escribe la letra de la oción que creas correcta. Cada resuesta

Más detalles

Es bien conocido que tres números e; f; g están en progresión aritmética (AP) si f e = g f: Además, f = e+g

Es bien conocido que tres números e; f; g están en progresión aritmética (AP) si f e = g f: Además, f = e+g TRIÁNGULOS ARMÓNICOS K.R.S.SASTRY, Bangalore, India Es bien conocido que tres números e; f; g están en rogresión aritmética (AP) si f e = g f: Además, f = e+g 2 es la media aritmética de los números e;

Más detalles

Cálculo II 8 de junio de 2016

Cálculo II 8 de junio de 2016 Cálculo II 8 de junio de 6 Publicación de notas: 3-6-6. Revisión del examen: 6-6-6. Problema (3 untos). Se de ne la siguiente función en R : f (x; y) x 4 + y 4 4xy: (a) Calcula la derivada de f en el unto

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE Auntes 3 TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE 3.. El rinciio de estado El rinciio de estado informa de la cantidad de roiedades indeendientes necesarias ara esecificar el estado

Más detalles

UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAA Azcapotzalco DIVISION DE CIENCIAS BASICAS E INGENIERIA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAA Azcapotzalco DIVISION DE CIENCIAS BASICAS E INGENIERIA DEPARTAMENTO DE CIENCIAS BÁSICAS UNIVERSIDD UTONOM METROPOLITN UNID zcaotzalco DIVISION DE CIENCIS BSICS E INGENIERI DEPRTMENTO DE CIENCIS BÁSICS EXMEN GLOBL DE ECUCIONES DIFERENCILES (Trimestre 09I / abril) Nombre: Gruo: Matrícula: 6:00

Más detalles

Paramagnetismo de Pauli

Paramagnetismo de Pauli Paramagnetismo de Pauli Hasta ahora no habíamos tenido en cuenta el esín electrónico a la hora de tratar sistemas magnéticos. En realidad, el hamiltoniano comleto de un electrón sometido a un camo magnético

Más detalles

Clase 3: Teorema de Fundamental de la Aritmética

Clase 3: Teorema de Fundamental de la Aritmética Clase 3: Teorema de Fundamental de la Aritmética Dr. Daniel A. Jaume, * 12 de agosto de 2011 1. Primos Definición 1.1 Un entero ositivo se dice que es un número rimo si tiene exactamente 2 divisores ositivos

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DEPARTAMENTO DE MATEMÁTICA FACULTAD DE INGENIERÍA CLAVE DE EXAMEN

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DEPARTAMENTO DE MATEMÁTICA FACULTAD DE INGENIERÍA CLAVE DE EXAMEN UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DEPARTAMENTO DE MATEMÁTICA FACULTAD DE INGENIERÍA CLAVE DE EXAMEN CURSO MATEMÁTICA APLICADA SEMESTRE PRIMERO CÓDIGO DE CURSO 6 TIPO DE EXAMEN SEGUNDO PARCIAL FECHA

Más detalles

5.2. Selección Adversa parte II el modelo de Rothschild y Stiglitz (1976)

5.2. Selección Adversa parte II el modelo de Rothschild y Stiglitz (1976) 5.. Selección Adversa arte II el modelo de Rothschild y Stiglitz (1976) Matilde P. Machado matilde.machado@uc3m.es Resumen: Muestra el imacto de la información imerfecta en el resultado de equilibrio de

Más detalles

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice Tema : Cálculo diferencial de funciones de varias variables I: Aéndice Ejercicio: Comrobar que la derivada direccional de la función f, ) + si, ) 6 0, 0) 0 si, ) 0, 0) en el origen en la dirección del

Más detalles

GUIA 10. Series de Fourier. 1. Revisión sobre el espacio euclideo R n

GUIA 10. Series de Fourier. 1. Revisión sobre el espacio euclideo R n GUIA 1 Series de Fourier A finaes de sigo XVIII Jan Baptiste Joseph Fourier (1768-183) descubrió un método que permite aproximar funciones periódicas mediante combinaciones ineaes de funciones trigonométricas

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Alicadas a las iencias Sociales II Antonio Francisco Roldán Lóez de Hierro * onvocatoria de 2006 Las siguientes áginas contienen

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

Información de la práctica

Información de la práctica PRÁCTICA DE LABORATORIO NÚM 4 P-SLM-4 Página 1 de 15 Rev. nº 1. Fecha 28/1/21 REDES DE DIFRACCIÓN CON UN SLM Información de a ráctica Títuo: Asignatura: Autores: Horas: Conocimientos revios: Redes de difracción

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

Hoja 5. Diferenciabilidad de funciones de varias variables.

Hoja 5. Diferenciabilidad de funciones de varias variables. CÁLCULO Hoja 5. Diferenciabilidad de funciones de varias variables. 1. Dada la función < 4x 3 x 2 + y 2 si x; y) 6= 0; 0) a) Estudiar la continuidad de f. b) Hallar las derivadas arciales y direccionales

Más detalles

Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N. Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI. Función ar, imar, creciente, decreciente e inyectiva. Identidades trigonométricas. Funciones

Más detalles

Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. I. Sistemas de ecuaciones.

Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. I. Sistemas de ecuaciones. Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. Instrucciones: Todas las pruebas de acceso a la universidad contienen las siguientes instrucciones, que serán consideradas

Más detalles

ALGEBRA Y GEOMETRÍA ANALÍTICA

ALGEBRA Y GEOMETRÍA ANALÍTICA FACULTAD DE CIENCIAS EACTAS, INGENIERÍA AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA GEOMETRÍA ANALÍTICA Ecuación General de Segundo Grado Patricia Có Mariel Ugarte -08- ECUACIÓN

Más detalles

Sustancias puras. Diagramas de equilibrio en cuerpos puros. Ø características generales. Ø cambios de fase. Sólido Líquido. Presión. Gas.

Sustancias puras. Diagramas de equilibrio en cuerpos puros. Ø características generales. Ø cambios de fase. Sólido Líquido. Presión. Gas. Sustancias uras Presión Sólido Líquido Gas Ø características generales Vaor Ø cambios de fase Volumen Temeratura Sustancias Puras Sistema hidrostático: cualquier sistema de masa constante que ejerce sobre

Más detalles

EJERCICIOS RESUELTOS DE CALCULO I. Alvaro Cabrera Javier

EJERCICIOS RESUELTOS DE CALCULO I. Alvaro Cabrera Javier EJERCICIOS RESUELTOS DE CALCULO I Alvaro Cabrera Javier 4 de setiembre de 4 Alvaro Cabrera Javier CALCULO I - CHUNGARA ÍNDICE GENERAL Índice general. NUMEROS REALES Y DESIGUALDADES 7. VECTORES EN EL PLANO.

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

SOLUCIONES. <, >: H H C (x, y) ; <x, y>

SOLUCIONES. <, >: H H C (x, y) ; <x, y> 1. Teoría Ingeniero Industria Curso 99\ Asignatura: Transformadas Integraes y Ecuaciones en Derivadas Parciaes. Test sobre e Método de Separación de Variabes. 7 de Noviembre de 1999. SOLUCIONES (a) Qué

Más detalles

Resumen de campos y Corrientes

Resumen de campos y Corrientes Resumen de camos y Corrientes Algunas alicaciones Resumen del camo electrostático La materia está comuesta or cargas ositivas y negativas. Las odemos oner de manifiesto or frotamiento (Triboelectricidad)

Más detalles

ELASTICIDAD DE LA DEMANDA

ELASTICIDAD DE LA DEMANDA TRILE aítulo ELTIIDD DE L DEMND I. DEFINIIÓN : Mide la variación orcentual en la cantidad demandada que se origina or una variación rocentual de otra variable. La elasticidad mide la sensibilidad de la

Más detalles

Eficiencia del Equilibrio de Mercado y Fallas de Mercado

Eficiencia del Equilibrio de Mercado y Fallas de Mercado Eficiencia del Equilibrio de Mercado y Fallas de Mercado Cuando estudiamos equilibrio general, se demostró que la asignación del mercado bajo cometencia erfecta es eficiente (Primer Teorema del Bienestar).

Más detalles

1.2. Repaso de Geometría III

1.2. Repaso de Geometría III 1.2. REPASO DE GEOMETRÍA III 9 1.2. Reaso de Geometría III El lector desués de haber asado or [Di] o [GoJ] debería haber sacado la conclusión de que el gran cambio del curso de Geometría III con resecto

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMRE INSTRUIONES: El examen resenta dos ociones y ; el alumno deerá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que consta dicha oción en h. min. OPIÓN Ejercicio. ( Puntuación

Más detalles

UNIVERSIDAD DE CONCEPCIÓN. Definición: Se llama ángulo diedro a la figura formada por dos semiplanos que nacen de una misma recta.

UNIVERSIDAD DE CONCEPCIÓN. Definición: Se llama ángulo diedro a la figura formada por dos semiplanos que nacen de una misma recta. UNIVERSIDD DE CONCECIÓN 5. ÁNGULOS DIEDROS 5.. Definiciones y Generaidades Definición: Se ama ánguo diedro a a figura formada por dos semipanos que nacen de una misma recta. Los semipanos son as caras

Más detalles

ECUACIONES PARAMÉTRICAS

ECUACIONES PARAMÉTRICAS ECUACIONES PARAMÉTRICAS CONTENIDO. De la elise. De la circunferencia 3. De la arábola 4. De la hiérbola 5. Ejercicios 6. Trazado de una curva dadas sus ecuaciones aramétricas Hemos visto, que si un lugar

Más detalles

ESTÁTICA DE LOS FLUIDOS. José Agüera Soriano

ESTÁTICA DE LOS FLUIDOS. José Agüera Soriano ESTÁTI DE LOS FLUIDOS José güera Soriano 0 ESTÁTI DE LOS FLUIDOS EQUILIBRIO DE UN LÍQUIDO LÍQUIDO EN REPOSO LÍQUIDO IRNDO LREDEDOR DE EJE VERTIL LÍQUIDDO UNIFORMEMENTE ELERDO MNÓMETROS FUERZ SOBRE UN PRED

Más detalles