Ejercicios de Derivadas parciales., simplificar:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de Derivadas parciales., simplificar:"

Transcripción

1 Ejercicios de Derivadas arciales Pregunta Si: ( ( (, simlificar: E Nos iden: E (I Tenemos: ( ( ( De donde: Reemlaando en (I: E ( ( ( Simlificando: E 6 Pregunta, demostrar ue: k, Dada la función: f(, ln( donde k es una constante. Hallar el valor de k. Nos iden k Dato: k (α Tenemos: f(, ln( Necesitamos las rimeras derivadas arciales de con resecto a e.

2 uscando : Derivamos con resecto a ( ( ( ( uscando : Derivamos con resecto a ( ( 0 ( ( Reemlaamos lo obtenido en (α: ( k ( k ( ( k

3 k De donde: k Constante Pregunta Dada la función cumla: f(,, hallar los valores de e tal ue se cuando Tenemos: Nos iden: f(, los valores de e Dato: Cuando : O en forma euivalente: (I Necesitamos encontrar uscando :,. Para encontrar derivamos f(, con resecto a : hora, ara encontrar derivamos con resecto a : ( (II uscando : Para encontrar derivamos f(, con resecto a : ln hora, ara encontrar ( ln ln derivamos con resecto a : (III (ln

4 uscando : Para encontrar odemos derivar con resecto a o odemos derivar con resecto a. Haremos lo rimero. Tenemos: ln licamos la regla del roducto [ ].ln. [ ].ln [ ln ] (IV Reemlaando (II, (III (IV en (I: ( ( ( [ ln ] ( (ln ( ln (ln [ ( ln (ln ] ( ( [ ln (ln ] Simlificando: ln (ln Factoriamos simlificamos: ln (ln (ln ln 0 Resolviendo la ecuación: i ln de donde: e ii ln de donde: e Dado ue :. Con e : e ln ln ln( e

5 . Con Pregunta ln Resuesta : ( e e ln ln e ln ( ln ln Resuesta Dada la función: f(,, hallar el valor de las constantes k k sabiendo ue se cumle ue: i k. ii k era arte: Nos iden k Dato: k (I uscamos las derivadas arciales de con resecto a e : Tenemos: f(, f(, f(, Derivando con resecto a : (II Derivando con resecto a : (III

6 Reemlaando (II (III en (I: [ ] [ ] k De donde k da arte: Nos iden k ( k ( k ( Dato: k (α Para calcular k necesitamos:, De (II: De (II: De (III: Derivando con resecto a : Derivando con resecto a : 0 Derivando con resecto a : Reemlaando estos resultados en (α: ( (0 ( k ( Pregunta 5 k ( k ( De donde: k Si: e, a. Hallar el valor de m sabiendo ue m( b. Hallar los valores de sabiendo ue:

7 Parte a. Nos iden: el valor de m Dato: m( (α Dato: (β Tenemos: e e uscamos las derivadas arciales de con resecto a e : ( : (e e ( e e ( : e ( (I e (II Reemlaamos (I (II en (β: ( e e ( e e e e e (III Reemlaamos (III en (α: e m( Parte b. e e Luego: m Resuesta Nos iden: los valores de m( e m( e

8 Dato: (θ De (III tenemos: e uscamos las derivadas arciales de con resecto a e : : (e ( e ( e e : ( e ( ( e ( Reemlaamos ( ( en (θ: ( e e ( e e e e e Podemos reescribir: Pregunta 6 e De donde:, Resuesta Dada la función: n f(, ln, si se cumle ue: Nos iden 5n 7.hallar el valor de 5n 7. Dato: (I uscamos las derivadas arciales de con resecto a e :

9 Tenemos: n f(, ln ( n f(, ln ( f(, ln n : ( n ( n( (II : ( n ( n( (III Reemlaando (II (III en (I: n( n( n( ( n( Pregunta 7 De donde n n Luego: 5 n 7 Las ecuaciones de la demanda ara dos artículos ue son roducidos or un monoolista son: 6 7 donde las cantidades están dadas en miles de unidades los recios de cada artículo están dados en dólares or unidad.

10 Parte a. a. Hallar el ingreso marginal relativo al roducto de este monoolista, cuando los recios de los artículos son $7.00 $.00 ara los artículos resectivamente. b. Si cuesta $ $ roducir cada unidad del artículo resectivamente, hallar el recio del artículo ara ue las utilidades marginales sean nulas. Nos iden: Ingreso marginal relativo al roducto cuando 7, Es decir: I cuando 7, Dato: Ecuaciones de Demanda (I 6 7 (II Dado ue el Ingreso marginal es la derivada del Ingreso con resecto a la cantidad, debemos formar la función Ingreso en términos de las cantidades, es decir I f(,. Para ello las ecuaciones de demanda deben estar eresadas de forma ue los recios estén en términos de las cantidades. Sumamos (I (II: Reemlaamos en (II: 7 ( 0 La función Ingreso total será: I I ( ( 0 I 0 Ingreso marginal relativo al roducto : I 0 (α Cuando 7, : 6 (7 ( 7 (7 (

11 I Con, en (α: 0 ( ( I $/unid Parte b. Nos iden: Dato: tilidades marginales deben ser nulas Debemos construir la función tilidad: Tenemos la función Ingreso total: I 0 De acuerdo a los datos, formamos la función Costo total: C CF La función tilidad será: I C tilidades marginales: 7 CF 7 Por dato: Resolviendo:. 5,

12 Pregunta 8 Las ecuaciones de la demanda ara dos artículos roducidos or un monoolista son: Donde reresentan las cantidades de los artículos ; reresentan los recios de cada artículo. Hallar los ingresos marginales, cuando las cantidades demandadas de los artículos son resectivamente 7 8 unidades resectivamente. Nos iden: Ingresos marginales cuando 7 8. Debemos formar la función Ingreso total I en términos de las cantidades : I f(,. Para esto es necesario ue las ecuaciones de demanda ueden eresadas en términos de las cantidades : f(, f(,. Tenemos: ( ( De (: ( Reemlaamos ( en (: 79

13 9 ( Reemlaando ( en (: 9 8 (5 Ingreso total: I Reemlaando ( (5: 9 I 9 I, f( I Los ingresos marginales estarán dados or: mg I I mg I I Evaluando ara 7 8 : 7 6 (8 (7 I mg (8 (7 I mg

14 Pregunta 9 Si ( ln(, hallar el valor de la constante k ara ue se verifiue: (k. Nos iden: k Dato: (k (α Tenemos: ln( ( ( ln( Necesitamos las segundas derivadas arciales de ero. uscando : Derivamos con resecto a : licamos la regla del roducto (ln( ( ( ln( Derivamos con resecto a : (( ( ( ( ( ( (I ( do. uscando : Derivamos con resecto a : licamos la regla del roducto ( ln( ( (

15 ln( Derivamos con resecto a : ( ( ( ( ( ( ( (II ( ero. uscando : Derivamos con resecto a : ( ( ( ( ( ( ( (III ( Reemlaamos (I, (II (III en (α: ( ( (k ( ( (k ( ( ( (k k ( k De donde: k ± Resuesta

16 Pregunta 0 Si f(,, calcular el valor de: E e f (e, e f (e, f (e, Tenemos: f(, Nos iden: E e f (e, e f (e, f (e, (I Necesitamos encontrar f, f f. ero. Para encontrar f derivamos f(, con resecto a : f hora, ara encontrar f derivamos f con resecto a : f ( 0 Evaluando en ( e, : f (e, e (II do. Para encontrar f derivamos f(, con resecto a : f ln hora, ara encontrar f derivamos f con resecto a : f ( ln ln (ln f Evaluando en ( e, : f (e, e (ln e e (III ero. Para encontrar f odemos derivar f con resecto a o odemos derivar f con resecto a. Haremos lo rimero. Tenemos: f ln f f [ ].ln. [ ].ln f [ ln ]

17 Reemlaando (II, (III (IV en (I: E e E 5e Evaluando en ( e, : f (e, e ( ln e e (IV ( e ( e ( e Pregunta Si (,,, hallar el valor de la constante k tal ue: k Dato: k (α Para encontrar el valor de k necesitamos las segundas derivadas arciales de. Tenemos: uscando : Derivamos con resecto a : ( Derivamos con resecto a : licamos la regla del cociente ( ( (

18 ( Damos mínimo común múltilo en el numerador ( Reducimos alicamos el roducto de etremos medios ( (I Nótese ue la función es simétrica con resecto a sus variables,. De acuerdo a esto las derivadas arciales también serán simétricas or lo ue odemos inferirlas. artir de obtenido en (I odemos decir ue: (II (III Reemlaando (I, (II (III en (α: k k ( k ( k De donde: k Resuesta

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA Prof. Juan Gutiérrez Césedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se enera or la rotación de un rayo desde una osición inicial hasta otra osición final, siemre alrededor de un unto

Más detalles

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS Universidad Carlos III de Madrid VARIABLE CONTINUA n En muchos juegos las estrategias uras que ueden elegir los jugadores no son, 3 o cualquier

Más detalles

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez Estática tica comarativa: asectos formales icroeconomía Douglas Ramírez aimización de la tilidad Por simlicidad la elección es entre dos bienes (, ), las utilidades marginales son ositivas. Los recios

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy Geometría Analítica; C. H. Lehmann. Ejercicio, gruo 8, caítulo II, ágina. Los etremos de la base de un triángulo son los untos A (0; 0) B (; 0). Hallar la ecuación del lugar geométrico del vértice ouesto

Más detalles

Solución del 1er. nivel (2da. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C.

Solución del 1er. nivel (2da. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C. . Los múltilos son: Solución del er. nivel (da. etaa) da. Olimiada Cientí ca Estudiantil Plurinacional Boliviana Resonzable: Mgr. Alvaro H. Carrasco C. 8 ; 85 ; 86 ; :::; 9 luego hay 9 8 + = 36 múltilos

Más detalles

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos II. Teoría del Consumidor EJERCICIO Considere a un individuo que maximiza la siguiente función de utilidad: ux (, x) x a - = x a, 0< a 0. a. Derive

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función Eamen. ª evaluación 4//8 Oción A Ejercicio. (Puntuación máima: untos) Obtener el valor del siguiente límite: lim ( + ) t ln 4t dt 5 Alicación del teorema fundamental del cálculo integral: Si f ( ) es continua

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006.

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006. E.T.S. INGENIEROS INUSTRIALES. PLAN. U.N.E. CÁLCULO INFINITESIMAL II. o CURSO. CÓIGO: 88 a SEMANA. CONVOCATORIA E JUNIO 6.. ados la función +y si 6= y f (, y) = y si =y yelconjuntom = {(, y) R / ( 4) +

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

El beneficio de la empresa

El beneficio de la empresa 14/03/013 Tema 3 Microeconomía II Alfonso Rosa García Grado en Administración y Dirección de Emresas Modalidad emiresencial Alfonso Rosa García Tlf. 968 7866 - arosa@ucam.edu Universidad atólica an Antonio

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Parte II. Teoría a del Consumidor

Parte II. Teoría a del Consumidor Parte II. Teoría a del Consumidor Tema 2: La conducta de los consumidores Tema 3: Teoría de la demanda Tema 4: El modelo de elección intertemoral. Parte I. Teoría a del Consumidor Tema 2: La conducta de

Más detalles

Teoría de la empresa. La empresa competitiva

Teoría de la empresa. La empresa competitiva Teoría de la emresa La emresa cometitiva La Emresa Cometitiva En un mercado cometitivo, el nivel de roducción de una emresa tiene un imacto insignificante sobre el recio de mercado. Por consiguiente, la

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 7. Potenciales termodinámicos

TERMODINÁMICA FUNDAMENTAL. TEMA 7. Potenciales termodinámicos ERMODINÁMICA FUNDAMENAL EMA 7. Potenciales termodinámicos 1. Potenciales termodinámicos 1.1. Potenciales termodinámicos en sistemas simles P Hasta el momento hemos visto dos funciones energéticas de estado:

Más detalles

ECONOMÍA INDUSTRIAL APLICADA

ECONOMÍA INDUSTRIAL APLICADA Licenciatura en Economía Deartamento de Estructura Económica Curso 2002-2003 ECONOMÍ INDUSTRIL PLICD Tema 8. Publicidad maro Sanchis Llois Juan ntonio Mañez Castillejo Tema 8: Publicidad Juan. Mañez Castillejo/

Más detalles

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a:

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a: Potenciación Sea a R; n N; la eresión a n de ne un número real asi: a n a a ::: a; n veces El número real a recibe el nombre de base, n el de eonente y el resultado del roducto es la otencia de orden n

Más detalles

SOLUCIÓN Examen de Microeconomía Junio 2010 ESTUDIOS DE GADE Y GECO Duración: 2h. Cada pregunta = 2 puntos.

SOLUCIÓN Examen de Microeconomía Junio 2010 ESTUDIOS DE GADE Y GECO Duración: 2h. Cada pregunta = 2 puntos. SOLUCIÓN Eamen de Microeconomía 0605 Junio 00 ESTUDIOS DE GADE Y GECO Duración: h. Cada regunta = untos.. Una emresa ofrece a sus trabajadores dos esuemas de sueldo diferentes: A) Cobrar las rimeras 8

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones eonenciales y logarítmicas EJERCICIOS Realiza una tabla de valores y reresenta las funciones eonenciales. y = c) y = y = d) y = (,) 5 c) d) y =,,7,, 9 7 8 y = y = 5 8 7 9,,,7, 9,65 5,65 6,5,5,,6,6,56

Más detalles

Introducción y errores

Introducción y errores 1 Introducción y errores Introducción De una forma sencilla, el Cálculo Numérico se uede definir como la rama del Análisis Matemático ue estudia y desarrolla rocedimientos matemáticos ara resolver roblemas

Más detalles

) tan tan + tan tan + tan tan = (10 puntos c/u) Resuelva cada ecuación siguiente:

) tan tan + tan tan + tan tan = (10 puntos c/u) Resuelva cada ecuación siguiente: Universidad Católica de Valaraíso. a Prueba de Cátedra Instituto de Matemáticas MAT 46-00 Licenciatura y Pedagogía en Matemáticas. lunes 6 de octubre, 009 Tiene 90 ara resolver la rueba. Justi que todas

Más detalles

p x + h x + x 2 p x h p x + h + p x x + h +

p x + h x + x 2 p x h p x + h + p x x + h + Aéndice B Cálculo de derivadas Versión: 9 de setiembre de 06 B. Derivadas de las funciones elementales La derivada de las funciones elementales se calcula recurriendo directamente a la definición, como

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales. Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS Tema Funciones eonenciales, loarítmicas trionométricas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las

Más detalles

EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD. para cada una de las siguientes reacciones reversibles: O (g) FNO. p p.

EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD. para cada una de las siguientes reacciones reversibles: O (g) FNO. p p. 8 EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD Constante de equilibrio 1 Escribe la eresión de las constantes de equilibrio K y K c ara cada una de las siguientes reacciones reversibles:

Más detalles

Mecánica de Fluidos B 67.18

Mecánica de Fluidos B 67.18 Mecánica de Fluidos B 67.8 Exresiones útiles c v Ma c v h 0 h + 0 T ( ) + Ma ρ T 0 ρ 0 0 ρ ρ 0 ( ) + Ma 0 ( ) + Ma Ma : R T α asin T Ma velocidad del sonido ara gas ideal número de Mach ángulo del cono

Más detalles

TEMA 3. = luego: Las utilidades marginales (UM) se obtienen derivando la función de utilidad total tal que: dut dx dut dy

TEMA 3. = luego: Las utilidades marginales (UM) se obtienen derivando la función de utilidad total tal que: dut dx dut dy TEMA 3 BLOQUE 1 1. C. D 3. C 4. D ROBLEMA. Sabiendo que la función de utilidad de un consumidor responde a la expresión = 3 +10, siendo la ecuación de su recta de balance 60=6+8. Determine: a) Las cantidades

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

t t 20 + y 17 = R, en donde R sale de: 19a n. Veamos la tabla de cálculo de a

t t 20 + y 17 = R, en donde R sale de: 19a n. Veamos la tabla de cálculo de a A continuación veremos las soluciones de algunos ejercicios de diversas Olimíadas de Matemáticas resueltas or jóvenes almassorenses, actualmente alumnos del Colegio y Liceo Esañol del Uruguay, Liceo Miguel

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes 2018

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes 2018 ÁLGEBRA Y GEOMETRÍA ANALÍTIA Trabajo Práctico Nº 7 Matrices Determinantes 8 Nota Imortante: En los arciales asociados a la arobación directa, el alumno deberá ser caa de reroducir las demostraciones, las

Más detalles

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ).

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ). EDO ara Ingenieros CAPITULO 4 FACTORES ITEGRATES Suongamos que aora que nos dan una ecuación diferencial M (, ) + (, ) d = 0 ( I) Que no es eacta Eiste alguna forma de acerla eacta? Con más recisión, Eistirá

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Práctica No. Paralelo Yuri Miranda Gonzáles Agosto 07 Contenido Introducción. Relaciones y funciones Reaso de inecuaciones 4 Funciones eseciales 5 Alicaciones de funciones 4 6 Límites

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

Ejercicios Resueltos Tema 4

Ejercicios Resueltos Tema 4 Ejercicio 1 Estudiar si la aplicación f : R 2 R 2 R definida por f ((x 1, x 2 ), (y 1, y 2 )) = x 1 y 1 3x 1 x 2 es una forma bilineal. Solución. No es forma bilineal ya que y f (α(x 1, x 2 ) + β(x 1,

Más detalles

Matriz de transformación en PostScript

Matriz de transformación en PostScript v Matriz de transformación en PostScrit En PostScrit, las oeraciones de traslación translate, rotación rotate y cambio de escala scale uedan abarcadas en una transformación afín de la forma: x x m s x

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integración.8 Combinación de métodos de integración.8. Introducción En las secciones anteriores hemos tratado con tres métodos de integración: cambio de variable, or artes y fracciones

Más detalles

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte.

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte. E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Setiembre (-9-), rimera arte. PROBLEMA A) [ untos] Dada la función f() e : i) Localice el máimo absoluto de f()

Más detalles

Una parábola. Figura 9.1

Una parábola. Figura 9.1 Caítulo 9 Secciones Cónicas 9.1 La Parábola Definición: Una arábola es el conjunto de todos los untos P del lano que equidistan de una recta fija L, llamada directriz, de un unto F (que no está en L),

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

y 0 = y p x y (0) = 1 Z px2 t + sinh (t) cosh (t) = 4 cosh 2 (t) cosh (t) dt = 4 cosh 2 (t) dt = 4 cosh arg sinh!

y 0 = y p x y (0) = 1 Z px2 t + sinh (t) cosh (t) = 4 cosh 2 (t) cosh (t) dt = 4 cosh 2 (t) dt = 4 cosh arg sinh! Pregunta. + 4 () Solución: d d + 4 d + 4d Integrando Z Z d + 4d Por una arte Z d ln jj or otra arte Z Z q sinh (t) + 4d 4 sinh (t) + 4 cosh (t) dt d cosh (t) dt Z q Z t + sinh (t) cosh (t) 4 cosh (t) cosh

Más detalles

Química Física II - Guía de problemas 2018

Química Física II - Guía de problemas 2018 Química Física II - Guía de roblemas 08 Serie termodinámica de sistemas gaseosos Gases uros (reaso de FQ) -. [Fugacidad de un gas a artir de una ecuación de estado] Un gas de esferas rígidas se ajusta

Más detalles

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy.

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy. 5 ESTUDIO DEL CILINDRO PARABÓLICO 1 - Estudio de la Simetría a) Simetría resecto a los lanos coordenados Simetría resecto al lano Como la ecuación de la suerficie no contiene a la variable, concluimos

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejercicio 6, Oción A Reserva 1, Ejercicio 3, Oción A Reserva 1, Ejercicio 5, Oción B Reserva, Ejercicio 6, Oción

Más detalles

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado Tema 5. LA FUNCIÓN DE DEMANDA INDIVIDUAL DE MERCADO.- Efecto sustitución y efecto renta.- El excedente del consumidor 3.- De la función de demanda individual a la de mercado..- Efecto sustitución y efecto

Más detalles

1Tema 11 Representación de funciones

1Tema 11 Representación de funciones 1Tema 11 Representación de funciones 1. Del estudio a la gráfica. a) Representa una función y f () sabiendo que: Dominio: 0 Corta a OX en = 1. Asín. horizontal y = 0: Asín. vertical = 0: Si Si Si Si, y

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

XAX > i 0. i 4 2i. 2 i i 8

XAX > i 0. i 4 2i. 2 i i 8 Álgebra Lineal Caítulo. Tóicos Eseciales y Alicaciones.. Matrices y formas ositivas En esta sección estudiamos matrices ositivas, formas sesquilineales ositivas, y formas cuadráticas ositivas. a. Matrices

Más detalles

MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I ( ) Lapso

MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I ( ) Lapso Primera Prueba Integral Lapso 004-7-76-77 UNIVERSIDAD NACIONAL ABIERTA CENTRO LOCAL METROPOLITANO ÁREA DE MATEMÁTICA MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I (7 76 77) Lapso.004- OBJ PTA

Más detalles

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco Universidad ecnológica Nacional ermodinámica POEM. En una transformación a resión constante (resión atmosférica) el volumen de un gas varía en 0, litros. Se le suministran,8 cal.. En una transformación

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

CÁPITULO 4. METODOLOGÍA. Para la implementación de cualquier plan de pensiones es necesario, después de haber

CÁPITULO 4. METODOLOGÍA. Para la implementación de cualquier plan de pensiones es necesario, después de haber CÁPITULO 4. METODOLOGÍA Para la imlementación de cualquier lan de ensiones es necesario, desués de haber establecido las características de éste, el cálculo de las aortaciones que serán requeridas ara

Más detalles

ESPEJOS ESFÉRICOS. f 2

ESPEJOS ESFÉRICOS. f 2 ESPEJS ESÉRS Suericie ulida Suericie ulida luz r luz r Eje ótico Esejo cóncavo ig. 1 Esejo convexo r + en un esejo cóncavo - en un esejo convexo Para esejos eséricos, siendo r 2 resulta: + esejo cóncavo

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011 UPR Deartamento de Ciencias Matemáticas RUM MATE 7 Primer Examen Parcial de marzo de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de libros,

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales.

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales. AN ALISIS MATEM ATICO B ASICO. DE LOS NATURALES A LOS REALES. Los numeros Naturales N: Los numeros naturales los escribimos con diez dgitos: N = f0; ; ; :::; 8; 9; 0; ::::; 87; 88; :::::; n; n + ; (n +

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

Introducción a la Economía. Grado en ADE

Introducción a la Economía. Grado en ADE Introducción a la Economía. Grado en AE Ejercicios de los bloues y 3 Ejercicios numéricos 1. En un mercado de cometencia erfecta, la curva de demanda es 1.000/ y la curva de oferta es 10+00. Un reciente

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice Tema : Cálculo diferencial de funciones de varias variables I: Aéndice Ejercicio: Comrobar que la derivada direccional de la función f, ) + si, ) 6 0, 0) 0 si, ) 0, 0) en el origen en la dirección del

Más detalles

Derivadas en variedades

Derivadas en variedades Derivadas en variedades Luis Guijarro UAM 19 de mayo de 2010 Luis Guijarro ( UAM) Derivadas en variedades 19 de mayo de 2010 1 / 68 Curvas suaves en una variedad Definición Una curva suave en una variedad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO ROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 00 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejercicio 3, Oción A Junio, Ejercicio 6, Oción B Reserva 1, Ejercicio 3, Oción A Reserva 1, Ejercicio 5, Oción B Reserva,

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función. Límites en infinito Sea f./ una función. Suongamos que.a; C/ D f. Diremos que el ite de f./ cuando tiende o diverge a C es [notación f./ D si los valores de f./ están tan!c

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

Proceso Selectivo para la XXIII IMC, Bulgaria

Proceso Selectivo para la XXIII IMC, Bulgaria Proceso Selectivo ara la XXIII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Esera la indicación ara voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS (Tomado de: Stewart, James. "Precálculo". Quinta Edición. Sección.3.) Una exresión algebraica es una combinación

Más detalles

Eficiencia del Equilibrio de Mercado y Fallas de Mercado

Eficiencia del Equilibrio de Mercado y Fallas de Mercado Eficiencia del Equilibrio de Mercado y Fallas de Mercado Cuando estudiamos equilibrio general, se demostró que la asignación del mercado bajo cometencia erfecta es eficiente (Primer Teorema del Bienestar).

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

TEMA 11 : ESPACIO AFÍN

TEMA 11 : ESPACIO AFÍN TEMA : ESPACIO AFÍN. Ecuaciones de la recta en el esacio Al igual ue en el lano ( R ), en el esacio ( R ), una recta ueda determinada or un unto P(x,y,z ) y un ector director V = (,, ) no nulo. Para ue

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

Problemas de optimización vía álgebra Gustavo de J. Castañeda R., José Albeiro Sánchez Cano

Problemas de optimización vía álgebra Gustavo de J. Castañeda R., José Albeiro Sánchez Cano www.fisem.org/web/union htt://www.revistaunion.org ISSN: 85-060 Número 9. Abril 07 Página -60 Problemas de otimización vía álgebra Gustavo de J. Castañeda., José Albeiro Sánchez Cano Fecha de receción:

Más detalles

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0. PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT0) Primer semestre de 0 Semana 7: Lunes 9 de Abril Viernes 0 de Mayo CÁLCULO Contenidos Clase : Técnicas de Integración: Fracciones Parciales. Clase : Sustituciones trigonométricas.

Más detalles

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C.

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C. Solución del do. nivel (ra. etaa) da. Olimiada Cientí ca Estudiantil Plurinacional Boliviana Resonzable: Mgr. Alvaro H. Carrasco C.. Como 000 = entonces los divisores ares de 000 son: ; ; ; ; ; ; ; ; ;

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado en Economía Maestría en T. P. Económica Avanzada FACES UCV Microeconomía I Prof. Angel García Banchs contact@angelgarciabanchs.com Clase/Semana 9 Teoría de la oferta roductiva Hasta ahora hemos

Más detalles

Modelo analítico de rendimiento

Modelo analítico de rendimiento AT5128 Arquitectura e Ingeniería de Comutadores II Modelo analítico de rendimiento Curso 2011-2012 AT5128 Arquitectura e Ingeniería de Comutadores II Índice Fuentes de overhead en rogramas aralelos. Métricas

Más detalles

Universidad Torcuato Di Tella ECONOMIA I

Universidad Torcuato Di Tella ECONOMIA I Universidad Torcuato Di Tella LICENCIATURA EN ECONOMÍA Y ECONOMÍA EMPRESARIAL ECONOMIA I Profesor: Audantes de trabajos rácticos: Martín Besfamille Cristian Alonso EAMEN PARCIAL Lunes 3 de Mao del 2010

Más detalles

Universidad Torcuato Di Tella ECONOMIA I

Universidad Torcuato Di Tella ECONOMIA I Universidad Torcuato Di Tella LICENCIATURA EN ECONOMÍA Y ECONOMÍA EMPRESARIAL ECONOMIA I Profesor: Audantes de trabajos rácticos: Martín Besfamille Cristian Alonso EAMEN PARCIAL Lunes 3 de Mao del 2010

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señales en Geofísica 4 Clase Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina 1 kz cula o diolo 1 1 kz inversa de un diolo 1+kz cociente de diolos

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

INSTITUCIÓN EDUCATIVA ALFONSO LÓPEZ PUMAREJO Virtud orientación y ciencia. Actividades complementarias de superación - ACES

INSTITUCIÓN EDUCATIVA ALFONSO LÓPEZ PUMAREJO Virtud orientación y ciencia. Actividades complementarias de superación - ACES INSTITUCIÓN EDUCATIVA ALFONSO LÓPEZ PUMAREJO Virtud orientación y ciencia Fecha: Noviembre de 2016 Área: Matemáticas Indicadores de desemeño: Actividades comlementarias de sueración - ACES Docente(s):

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA Índice Presentación... 3 Introducción... 4 Descripción matemática mediante una función de varias variables... 5 Funciones marginales de funciones económicas... 6 Maximización de beneficios... 8 Optimización

Más detalles