Análisis Matemático I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis Matemático I"

Transcripción

1 Análisis Matemático I Práctica No. Paralelo Yuri Miranda Gonzáles Agosto 07 Contenido Introducción. Relaciones y funciones Reaso de inecuaciones 4 Funciones eseciales 5 Alicaciones de funciones 4 6 Límites 5 7 Eeriencia con Matlab y Scienti c Work Place 6 Introducción.. Resumir en media lana: tres conclusiones a su criterio, del Caítulo "La Naturaleza de la Economía Matemática" de Alha Chiang, Fundamentos de Economía Matemática.. Leer el Documento: Introducción a la economía matemática y a la modelización - Albrieu R. UBA, de las áginas a 5. (se encuentra en lecturas de la ágina de la materia). Resumir máimo en media lana: tres conclusiones a su criterio sobre el uso de las matemáticas en economía. Relaciones y funciones. Para cada una de las siguientes relaciones, determinar el dominio, rango e indicar si es o no función. (a) A = f(; ); (; ); (; ); (4; ); (5; 4)g (b) A = (; y) : y = + si: 0 ; y = 5 si: < 8) (c) A = (; y) : y = si: jyj 4) (d) A = (; y) : y = si: < < ). Si: f() = + 6 hallar: f(); f(0); f(a); f(y ); f() q. Si: f() = 4 hallar: f( ); f(4); f(a ); f( + ) 4. Si: g() = hallar: g(0); g(); g( ) 5. Si: f() = hallar: f(4) f()

2 6. Hallar el dominio y el rango de las siguientes relaciones, también comente si es o no función, caso contrario comente la razón de or que no es función. (a) y = 0 5 (b) y = 4 (c) y = (d) y = 5 (e) y = (f) y = (g) = + y (h) 4 = + y 7. Se de nen las siguientes funciones: determinar: h() = g(t) = t + 4 t (a) g(7) g() ; h(4) g(0) ; g()+ h() 8. Se tiene la función f() = y g() = ( + ) 9. Se tiene h() = y g(y) = y +y, hallar g(h()) 0. Se tiene f() = 8 y g() = además q() = 0. Se ide hallar: q[f( ) + g()] Reaso de inecuaciones. Obtener el cojunto solución de las siguintes inecuaciones: (a) < 0 4 (b) 4 < (c) 5 4 (d) 8 (e) 4 < 0 (f) j + 8j 4 (g) Hallar el conjunto solución de: +4 7 < (h) , Solution is: (i) 4 > 7 6 (j) 4 (k) > + + 5; [ 4; 5 [ [ ; ] (l) El fabricante de cierto roducto or suerte uede vender todo lo que roduce, a un recio de Bs.60 cada artículo. Gasta Bs.40 en materia rima y mano de obra al roducir cada artículo, y tiene costos adicionales ( jos) de Bs..000 a la semana, en el roceso de roducción. Hallar el número de unidades que debería roducir y vender ara obtener una utilidad de al menos Bs..000 a la semana.

3 (m) El administrador de una fábrica debe decidir si deberán roducir sus roios emaques, que la emresa ha estado adquiriendo de roveerdores eternos a Bs.,0 cada uno. La fabricación de los emaques incrementaría los costos generales de la emresa en Bs.800 al mes y el costo de material y de mano de obra será de Bs.0,60 or cada emaque. Cuántos emaques deberá usar la emresa al mes ara justi car la decisión de fabricar sus roios emáques? 4 Funciones eseciales. Sea la siguiente función lineal f(). Hallar dicha función si se sabe que f( ) = y f() =. Hallar el dominio de las siguientes funciones: (a) f() = sen (b) f() = arccos( + ) Rta:( ; ) [ [ ; ) \ ( ; ] (c) f() = log( + + ) Rta:( ; ) [ (; ) (d) f() = log( + ) (e) f() = (f) f() = + + Rta:[ ; 0]. Una función f() se denomina función ar si: y f() es imar si: f( ) = f() f( ) = f() En los siguientes ejercicios determinar cuales son funciones ares e imares: (a) f() = log( + ) (b) f() = ( + ) + ( ) (c) Demostrar que la multilicación de dos funciones ares o de dos funciones imares es una función ar. (d) Demostrar que el roducto de una función ar con una imar es una función imar. 4. En los siguientes ejercicios, determinar si la función es eriódica o no y hallar el eriodo t (a) f() = sen (b) f() = 0sen() (c) f() = tan 5. Sea la siguiente función:f() = ; hallar f(f(f())) Rta: 6. Sea la siguiente función: f( ) = :Hallar f( + ) 7. Sea una función eonencial con argumento negativo. Se tiene los siguientes números ; ; que constituyen una rogresión aritmética. Demostrar que los numeros f( ); f( ); f( ) forman una rogresión geométrica. 8. Demostrar que f() + f(y) = f( +y + +y ); cuando f() = log( ) 9. Sea la siguiente función: hallar la función inversa y gra car f() y f () g() = ( ) ( )

4 0. Si f() = + 7, hallar (fof )(). Gra car y analizar las características de las siguientes funciones: (a) f() = 4 9 (b) f() = (c) f() = (d) f() = e 5 Alicaciones de funciones. Para cierto roducto, si el recio es Bs.4 or unidad, los consumidores comrarán unidades mensuales. Si el recio es Bs. 5 or unidad, los consumidores comraran unidadwes mensuales. (a) Suoniendo que la curva de la demanda es una línea recta determine su ecuación. (b) La ecuación de oferta ara estre roducto es: 8 < = : ; + ( q 000 ) 0 q ( q 5000 ) 6000 q Determine el unto de equilibrio y la cantidad total gatada or los consumidores en este roducto en el recio de equilibrio.. Hallar la recta aralela a la recta f() = 4 que asa or el unto (,6). Interretar las siguientes ecuaciones de funciones lineales: (a) f() = 5 + (a) f() = 4 4. Como se estableció en clases, la función demanda (u oferta) intenta reresentar una relación entre la cantidad demandada () y el recio de un servicio o de un bien (), desestimando otras variables que se relacionan con la demanda (ingresos, referencias, etc). = f(): (a) Se sabe que la función demanda de un bien se estima como lineal y además se tiene que si el recio del bien es de 70 Bs. se demanda una cantidad de 40 unidades, desues de un tiemo si el recio es de 40Bs. la cantiad demandada es de 0 unidades. Hallar la función demanda su dominio y su imágen y gra carla. (b) Si la función demanda de un roducto se uede eresar mediante: + 80 = 0 i. Reresentar grá camente la función y hallar su domínio y su imágen ii. Cuál es el mayor recio que estarían disuetos a agar los consumidores or dicho roducto? iii. Cuál es la mayor cantidad que demandarían or dicho roducto? (c) De las siguientes funciones, indicar cuál uede reresentar una función oferta y cuál una función demanda y justi car la resuesta i. = 4 4 ii. 0 = 0 iii. = 00 iv. = + 0 v. =

5 5. De las funciones demanda y oferta 6 + = 0 y = 4 resectivamente, hallar el unto de equilibrio analíticamente y grá camente. 6. Determinar analiticamente y gra camente el unto de equilibrio de las curvas de demanda ( + 5)( 6) = 80 y oferta = La función ingreso relacionada a un emresa donde la cantidad roducida solo deende del nivel de roducción, uede de nirse como I() = () donde () es la curva de la demanda y esta en función de la cantidad. (a) Si se conoce que la función demanda de un bien esta dada or + ingreso del roductor. 00 = 0, hallar la función 8. La función costo C() tiene dos comonetes: el costo jo y el costo variable. El costo jo es el costo que ermanece constante a cualquier nivel de roducción. Matemáticamente se de ne como el costo de roducir ninguna unidad es decir: CF = C(0): Por otro lado el costo variable es el que cambia con el nivel de roducción: CV () = C() C(0) (a) Si la función costo de un bien esta dada or la curva: hallar el costo jo y el costo variable. c() = La funcion bene cio esta directamente relacionada con las funciones ingreso y costo a través de la relación: Be() = I() C() (a) Si la función costo de un roducto esta reresentada or la eresión C() = y se conoce que la demanda de dicho roducto esta dada or = (000 ). Hallar la función bene cio y tambien el bene cio a un nivel de roducción de 00 unidades. 0. Tanto ara la función costo y bene cio se uede establecer la función media unitaria, dividiendo or la cantidad roducia, de la siguinete manera: de esta manera se obtiene: El costo medio uniatrio: C() = C() El ingreso medio unitario: I = I() = () El bene cio medio unitario: B() = Be() f() = f() = () (a) Si se conoce que la función bene cio de una emresa es Be() = + 7 0, hallar el bene cio medio y ara que valores de se obtiene un bene cio medio ositivo. 6 Límites. Usando la de nición de límite, demostrar la eistencia de los siguientes límites, hallando el valor de ; ara los " establecidos: (a)! 4 = 4 si " = 0:004 hallar (b)! (7 0 + ) = 5 si " = 0:00 hallar 5

6 (c)! = 4 si " = 0:05 hallar (d)! 4 = si " = 0:07 hallar (e)! = si " = 0:0 hallar (f)! 7 = 4 si " = 0:0 hallar. Hallar los siguientes límites 6 + (a) :! 4 (b)! (a + ) n a n (c)!0 5 (d)! (e)! (f)!0 (g) (h) (i) Sol : Sol : : : + Sol : + : ( + ) ( )! !! (j)!a (k)! ( (l)!64 + q + + Sol : : 9 Sol : (a + ) + a a Sol : a (a ) ) : 8 4 : (m) 4 4! Sol : 5!4 5 (n) (o) ( )! () ( + 8) 4 Sol : e!0 (q)!0 4 e (r) 8 e!0 e 6 e Sol : e 4 7 Eeriencia con Matlab y Scienti c Work Place. Resolver los ejercicios de a) a h) ara el reaso de inecuaciones mediante matlab.. Escribir el scrit de matlab ara resolver el ejercicio de funciones eseciales inciso b) (de nir un vector razonable ara la grá ca) 6

7 . Resolver los ejercicios de a) a h) ara el unto de límites mediante matlab 4. Realizar los ejercicios a anteriores con sw5 y comentar en una tabla las ventajas y desventajas entre sw5 y matlab. Fecha de entrega: sabado 6 de agosto 06 (sin el unto 7) 7

Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N. Cálculo Diferencial e Integral - Funciones (Parte II). Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI. Función ar, imar, creciente, decreciente e inyectiva. Identidades trigonométricas. Funciones

Más detalles

CÁLCULO II, 6 APLICACIONES

CÁLCULO II, 6 APLICACIONES CÁLCULO II, HANS SIGRIST UAC 8 infinitus cbna 1 Esta obra está ublicada bajo una Atribución. Chile de Creative Commons. Para ver una coia de esta licencia, visite htt://creativecommons.org/licenses/by/./cl/.

Más detalles

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS Universidad Carlos III de Madrid VARIABLE CONTINUA n En muchos juegos las estrategias uras que ueden elegir los jugadores no son, 3 o cualquier

Más detalles

Práctico N o 1. Números Complejos

Práctico N o 1. Números Complejos Práctico N o. Números Comlejos ) Clasi car los siguientes números comlejos en reales o imaginarios. Eseci car en cada caso cuál es la arte real y cuál es la imaginaria: a) 5 + 7i b) c) 5 d) i e) f) + g)

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

Una parábola. Figura 9.1

Una parábola. Figura 9.1 Caítulo 9 Secciones Cónicas 9.1 La Parábola Definición: Una arábola es el conjunto de todos los untos P del lano que equidistan de una recta fija L, llamada directriz, de un unto F (que no está en L),

Más detalles

con a 2 0 se denomina función cuadrática o función de segundo grado, cuyo dominio es

con a 2 0 se denomina función cuadrática o función de segundo grado, cuyo dominio es Función cuadrática Matemática 3º Año Cód. 1306-16 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. C a r l a N á o l i P r o f. J o r g e l i n a O s é s Dto. de M at emática FUNCIÓN CUADRÁTICA

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado Tema 5. LA FUNCIÓN DE DEMANDA INDIVIDUAL DE MERCADO.- Efecto sustitución y efecto renta.- El excedente del consumidor 3.- De la función de demanda individual a la de mercado..- Efecto sustitución y efecto

Más detalles

MICROECONOMÍA I NOTAS DE CLASE

MICROECONOMÍA I NOTAS DE CLASE MICROECONOMÍA I UNIA 5: La cometencia imerfecta 5.1.- Monoolio NOTAS E CLASE 5.1.1.- Equilibrio en un modelo monoólico Un mercado monoólico se caracteriza or la existencia de barreras a la entrada, que

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

U N I DAD 4. Introducción. Línea recta

U N I DAD 4. Introducción. Línea recta U N I DAD 4 Línea recta Introducción En el área económico-administrativa es de gran imortancia el estudio de variables como el costo total, el ingreso, el consumo, el ahorro, entre otros. Para oder estudiar

Más detalles

Economía - IN2C1. Otoño 2008 Auxiliar 3

Economía - IN2C1. Otoño 2008 Auxiliar 3 Economía - INC1 Otoño 008 Auxiliar 3 Comentes 1. He ganado la concesión ara vender helados en la laya Reñaca. Como sé que la demanda or helados en la laya en verano se torna más inelástica, ara aumentar

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Visión or Comutadora Unidad III Procesamiento Digital de Imágenes Rogelio Ferreira Escutia Contenido 1) Oeraciones Individuales a) Transformaciones Punto a Punto b) Transformaciones de 2 Imágenes Punto

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS Tema Funciones eonenciales, loarítmicas trionométricas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones eonenciales y logarítmicas EJERCICIOS Realiza una tabla de valores y reresenta las funciones eonenciales. y = c) y = y = d) y = (,) 5 c) d) y =,,7,, 9 7 8 y = y = 5 8 7 9,,,7, 9,65 5,65 6,5,5,,6,6,56

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función. Límites en infinito Sea f./ una función. Suongamos que.a; C/ D f. Diremos que el ite de f./ cuando tiende o diverge a C es [notación f./ D si los valores de f./ están tan!c

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación RESOLUCIÓN DE EJERCICIOS Ejercicio 1. x a) Resuelva: 2 + x 5 x 4 Solución: 6x + 4x 60 x 10x + x 60 1x 60 X 60 1 b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El

Más detalles

Teoría de la empresa. La empresa competitiva

Teoría de la empresa. La empresa competitiva Teoría de la emresa La emresa cometitiva La Emresa Cometitiva En un mercado cometitivo, el nivel de roducción de una emresa tiene un imacto insignificante sobre el recio de mercado. Por consiguiente, la

Más detalles

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO 1 10.1. INTRODUCCIÓN Qué es el análisis C-V-B? Modelo que estudia la relación existente entre costes, recios, volúmenes de venta y beneficios, tomando ara el análisis

Más detalles

Universidad Torcuato Di Tella ECONOMIA I

Universidad Torcuato Di Tella ECONOMIA I Universidad Torcuato Di Tella LICENCIATURA EN ECONOMÍA Y ECONOMÍA EMPRESARIAL ECONOMIA I Profesor: Audantes de trabajos rácticos: Martín Besfamille Cristian Alonso EAMEN PARCIAL Lunes 3 de Mao del 2010

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

TRIGONOMETRÍA DEL CÍRCULO UNITARIO

TRIGONOMETRÍA DEL CÍRCULO UNITARIO TRIGONOMETRÍA DEL CÍRCULO UNITARIO 9 En este caítulo 9. Las funciones circulares 9. Gráficas de las funciones seno coseno 9. Gráficas de otras funciones trigonométricas 9. Identidades eseciales 9.5 Funciones

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

El mercado de dinero. El mercado de dinero

El mercado de dinero. El mercado de dinero El mercado de dinero El mercado de dinero 3.1 Introducción 3.2 El sistema financiero 3.3 Mercado de dinero y de bonos 3.3.1 La demanda de dinero 3.4 Determinación de la oferta monetaria 3.4.1 El multilicador

Más detalles

MATEMATICA CPU Práctica 6 MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA

MATEMATICA CPU Práctica 6 MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA ECT UNSAM MATEMATICA CPU Práctica MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA I. Módulo. Ecuaciones e inecuaciones.. Calcular: a) 8 b) 8 8 c). Resolver las

Más detalles

El beneficio de la empresa

El beneficio de la empresa 14/03/013 Tema 3 Microeconomía II Alfonso Rosa García Grado en Administración y Dirección de Emresas Modalidad emiresencial Alfonso Rosa García Tlf. 968 7866 - arosa@ucam.edu Universidad atólica an Antonio

Más detalles

ECONOMÍA INDUSTRIAL APLICADA

ECONOMÍA INDUSTRIAL APLICADA Licenciatura en Economía Deartamento de Estructura Económica Curso 2002-2003 ECONOMÍ INDUSTRIL PLICD Tema 8. Publicidad maro Sanchis Llois Juan ntonio Mañez Castillejo Tema 8: Publicidad Juan. Mañez Castillejo/

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión

Más detalles

Tema 1. La compra y la venta (Ref: Capítulo 9 Varian)

Tema 1. La compra y la venta (Ref: Capítulo 9 Varian) Tema. La comra y la venta (ef: aítulo 9 Varian) Autor: Joel Sandonís Versión:.0.4 (Javier Lóez) Deartamento de Fundamentos del Análisis Económico Universidad de Alicante Microeconomía Intermedia Introducción

Más detalles

Examen Parcial. UNIVERSITAT DE LES ILLES BALEARS Profesora: Jenny de Freitas Economía del Sector Público. Curso Marzo 2009.

Examen Parcial. UNIVERSITAT DE LES ILLES BALEARS Profesora: Jenny de Freitas Economía del Sector Público. Curso Marzo 2009. UNIVERSITAT DE LES ILLES BALEARS Profesora: Jenny de Freitas Economía del Sector Público. Curso 2008-09 Examen Parcial Marzo 2009 Nombre: Firma: DNI/NIU: Grupo: Instrucciones: El examen es más corto de

Más detalles

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por:

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por: Distribución Bernoulli Una rueba o exerimento Bernoulli tiene uno de dos resultados mutuamente excluyentes, que generalmente se denotan S (éxito) y F (fracaso). Por ejemlo, al seleccionar un objeto ara

Más detalles

1. Introducción. Por qué nos interesa estudiar la teoría del comercio internacional?.

1. Introducción. Por qué nos interesa estudiar la teoría del comercio internacional?. . Introducción Por qué nos interesa estudiar la teoría del comercio internacional?. En los últimos años, el crecimiento del comercio internacional ha sido muy suerior al crecimiento del PIB en las economías

Más detalles

Modelo analítico de rendimiento

Modelo analítico de rendimiento AT5128 Arquitectura e Ingeniería de Comutadores II Modelo analítico de rendimiento Curso 2011-2012 AT5128 Arquitectura e Ingeniería de Comutadores II Índice Fuentes de overhead en rogramas aralelos. Métricas

Más detalles

Contenidos. Marco Alfaro C Límites de Funciones 3

Contenidos. Marco Alfaro C Límites de Funciones 3 Marco Alfaro C. Contenidos. Límites de Funciones. Cálculo de Límites.................................................................. 6.. Leyes de los Límites............................................................

Más detalles

Linealización de Modelos

Linealización de Modelos Caítulo Linealización de Modelos Debido a que la mayoría de herramientas ara el análisis de sistemas y diseño de sistemas de control requieren que el modelo sea lineal, es necesario entonces disoner de

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

SOLUCIONES DE LOS EJERCICIOS PROPUESTOS

SOLUCIONES DE LOS EJERCICIOS PROPUESTOS SOLUCIONES DE LOS EJERCICIOS ROUESTOS TEMA 1 El IC recoge la subida de los recios de los bienes de una cesta de bienes y servicios que se considera reresentativa del consumo de una familia. Se obtiene

Más detalles

Función inversa. ExMa-MA0125 W. Poveda 1

Función inversa. ExMa-MA0125 W. Poveda 1 Función inversa. ExMa-MA01 W. Poveda 1 Objetivos. Interpretar y aplicar los conceptos de función inyectiva, función sobreyectiva función biyectiva, función invertible Función Inyectiva De nición. Sea una

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3

Más detalles

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2 Oferta y demanda Tema 2 Oferta y demanda La oferta y la demanda son los instrumentos más imortantes de la Teoría Económica Vamos a ver los asectos más básicos de la oferta y la demanda, así como el análisis

Más detalles

1 Funciones, Dominio, Rango y Grá ca

1 Funciones, Dominio, Rango y Grá ca Universidad Nacional Maor de San Marcos Facultad de Ciencias Económicas Matemática ara Economistas I TEMA: Funciones (Auntes de clase) Miguel Ataurima Arellano mataurimaa@economia.unmsm.e miguel.ataurima@uc.edu.e

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: MATERIA: FÍSICA De las dos ociones rouestas, sólo hay que desarrollar una oción comleta.

Más detalles

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar: TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos

Más detalles

r v (1; v) = (1; 2v; 1) ; p 9u (3u + 2v) 2 dudv:

r v (1; v) = (1; 2v; 1) ; p 9u (3u + 2v) 2 dudv: E.T.S. Arquitectura Curvas y Suer cies. Curso 6/. Segundo Control APELLIDOS... NOMBRE... Gruo... Ex.... Se considera la suer cie S arametrizada or Se ide r(u; v) = u + v; u v ; v ; (u; v) R R (a) Indicar,

Más detalles

Tema 9. La fijación de precios con poder de mercado. Microeconomía Intermedia 2011/12. Tema 9 1

Tema 9. La fijación de precios con poder de mercado. Microeconomía Intermedia 2011/12. Tema 9 1 Tema 9 La fijación de recios con oder de mercado Microeconomía Intermedia 0/. Tema 9 . Conceto de discriminación de recios. iscriminación de recios de rimer grado 3. iscriminación de recios de segundo

Más detalles

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades lineales en una variable Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o Inecuaciones Una inecuación o desigualdad,

Más detalles

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA 65 GENERALIDADES SOBRE LA DEMANDA DE UN BIEN CUALQUIERA. 66 CANTIDAD DEMANDADA DE UN BIEN: Aquella que están dispuestas a adquirir los compradores

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

Competencia perfecta: el corto plazo

Competencia perfecta: el corto plazo Competencia perfecta: el corto plazo José C. ernías Curso 2015 2016 Índice 1 Características de los mercados competitivos 1 2 La curva de oferta a corto plazo 4 3 Estática comparativa 8 Esta obra está

Más detalles

TRABAJO Y ENERGÍA (página 109 del libro)

TRABAJO Y ENERGÍA (página 109 del libro) TRABAJO Y ENERGÍA (ágina 09 del libro).- TRABAJO MECÁNICO. El conceto de trabajo, al igual que vimos con el conceto de fuerza, en la vida diaria es algo intuitivo que solemos asociar con una actividad

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN FUNCION INVERSA Y FUNCIONES EXPONENCIALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN FUNCION INVERSA Y FUNCIONES EXPONENCIALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN FUNCION INVERSA Y FUNCIONES EXPONENCIALES Propiedad de la Función Inversa Sea f una función uno a uno con dominio D f y rango R f. La

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

Preparando la selectividad

Preparando la selectividad Preparando la selectividad PRUEBA nº 2. Ver enunciados Ver Soluciones Opción A Ver Soluciones Opción B Se elegirá el ejercicio A o el ejercicio B, del que se harán los TRES problemas propuestos. LOS TRES

Más detalles

2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA

2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA 2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA Para poder abordar este tema, se debe de conocer y/o repasar: Costos Fijos ( CF ) Costos variables ( CV ) Costos totales (CT) Ingresos totales ( IT ) Utilidad

Más detalles

D 07. 1) Al factorizar (x 2 25y 2 ) (x + 5y), uno de los factores es. A) x + 5y B) x 5y C) x + 5y 1 D) x 5y 1

D 07. 1) Al factorizar (x 2 25y 2 ) (x + 5y), uno de los factores es. A) x + 5y B) x 5y C) x + 5y 1 D) x 5y 1 D 07 Escuela Conciente de Matemática GAUSS 550 ) Al factorizar ( 5 ) ( + 5), uno de los factores es A) + 5 5 + 5 5 ) Al factorizar 3 3 + 4, uno de los factores es A) 3 + 3 ( ) 3) Al factorizar 6 6 9 4,

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

Matemáticas - Guía 1 Proposiciones

Matemáticas - Guía 1 Proposiciones LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Teoría economica TEORÍA ECONÓMICA. Programa. Objetivos de este curso. Universidad de Alicante Curso

Teoría economica TEORÍA ECONÓMICA. Programa. Objetivos de este curso. Universidad de Alicante Curso Teoría economica TEORÍA ECONÓMICA Universidad de Alicante Curso 2010-11 Iñigo Iturbe-Ormaeche (iturbe@merlin.fae.ua.es) Clases teoría: Martes 11:30-13:30 Jueves 12:30-14:30 Tutorías: Lunes: 14:30-16:30

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

Ecuaciones Diferenciales de Primer Orden. Aplicaciones.

Ecuaciones Diferenciales de Primer Orden. Aplicaciones. CALCULO. Hoja 4. Ecuaciones Diferenciales de Primer Orden. Alicaciones. Una ecuaci on diferencial de rimer orden es de la forma F (, u(), u0 ()) = 0. Eresado en forma normal ser ıa: u0 () = f (, u()).

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Tema 11. El equilibrio general y la eficiencia económica. Microeconomía Intermedia 2011/12. Tema 11 1

Tema 11. El equilibrio general y la eficiencia económica. Microeconomía Intermedia 2011/12. Tema 11 1 Tema 11 El equilibrio general la eficiencia económica Microeconomía Intermedia 2011/12. Tema 11 1 1. El análisis de equilibrio general 2. La eficiencia en el intercambio Microeconomía Intermedia 2011/12.

Más detalles

TEMA 1 CONCEPTOS BÁSICOS

TEMA 1 CONCEPTOS BÁSICOS Matemática Financiera Diaositiva 1 TEMA 1 CONCEPTOS BÁSICOS 1. Caital financiero. Fenómeno Financiero 2. Elección financiera. Postulado de royección financiera 3. Conceto de ley y sistema financiero. Proiedades

Más detalles

Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos:

Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos: Actividades de verano 017 Nombre y apellidos: Curso: Grupo: 1º Bachillerato Matemáticas Ciencias 1.- Representa los siguientes conjuntos: TRABAJO DE VERANO.- Suma y simplifica: 3.- Racionaliza denominadores

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Función eponencial función logarítmica Matemática Programa Entrenamiento Desafío Cierto medicamento, una vez que es inectado, decrece de manera eponencial a lo largo del tiempo

Más detalles

ELASTICIDAD DE LA DEMANDA

ELASTICIDAD DE LA DEMANDA 2 ELASTICIDAD DE LA DEMANDA Dr. Jorge Ibarra Salazar rofesor Asociado Departamento de Economía Tecnológico de Monterrey Importancia Al márgen de la estructura de mercado que pueda enfrentar una empresa

Más detalles

PAU Movimiento Vibratorio Ejercicios resueltos

PAU Movimiento Vibratorio Ejercicios resueltos PU Moviiento Vibratorio jeriios resueltos 99-009 PU CyL S995 ley Hooke alitud y freuenia Colgado de un soorte hay un resorte de onste = 0 N/ del que uelga una asa de kg. n estas irunsias y en equilibrio,

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 MATEMÁTICAS III LABORATORIO PARA EXAMEN EXTRAORDINARIO ETAPA 1 RELACIONES Y FUNCIONES POLINOMIALES Elemento de competencia: Modela gráficamente y analíticamente

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

Apéndice: Sistemas de dos ecuaciones lineales con dos incógnitas

Apéndice: Sistemas de dos ecuaciones lineales con dos incógnitas Apéndice: Sistemas de dos ecuaciones lineales con dos incógnitas Vamos a centrar nuestra atencion en sistemas lineales de ecuaciones con incógnitas De nición: Consideremos el sistema a x + b y = c x +

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA

FUNCIONES EXPONENCIAL Y LOGARÍTMICA FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante

Más detalles

Mónica Sánchez Céspedes Programa de Posgrado en Ingeniería Eléctrica y Electrónica - PPIEE Escuela de Ingeniería Eléctrica y Electrónica Facultad de

Mónica Sánchez Céspedes Programa de Posgrado en Ingeniería Eléctrica y Electrónica - PPIEE Escuela de Ingeniería Eléctrica y Electrónica Facultad de Mónica Sánchez Céspedes rograma de osgrado en Ingeniería Eléctrica y Electrónica - IEE Escuela de Ingeniería Eléctrica y Electrónica Facultad de Ingeniería Santiago de Cali, 6 de Febrero de 2016 Mercado

Más detalles

DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL. CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015)

DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL. CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015) DEPARTAMENTO DE MATEMATICA CARRERAS: QUIMICA, ALIMENTOS, FISICA, CIVIL CALCULO II MAXIMOS Y MINIMOS (27 septiembre 2015) ( Docente : G. Cupé C. ). La vida es un problema de optimización con restricciones.

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

Ejercicios propuestos para el cálculo de áreas

Ejercicios propuestos para el cálculo de áreas Aplicaciones geométricas y mecánicas de la integral definida 191 Ejercicios propuestos para el cálculo de áreas 1) Calcular el área de la figura limitada por la parábola verticales = 1, = y el eje OX y

Más detalles

Álgebra de Funciones

Álgebra de Funciones Funciones polinómicas Álgebra de Funciones Guía 5: Función cuadrática y racional. Profesores: Ximena Cánovas & César Fernández Un polinomio de grado n es una función f: R R tal que : n n1 n 1 f ( x) an

Más detalles