1.- Deduce para un gas ideal los coeficientes de compresibilidad, durante procesos: a) Isotermos, κ t. b) Adiabáticos, κ s.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.- Deduce para un gas ideal los coeficientes de compresibilidad, durante procesos: a) Isotermos, κ t. b) Adiabáticos, κ s."

Transcripción

1 Nombr: Exmn xtrordinrio d Introduión l Fíi Ambintl. Curo 1/ (un 16 d Sptimbr dl. Cution (1 punto d utión. 1.- Ddu pr un g idl lo oiint d ompribilidd, durnt proo: Iotrmo, t. b Adibátio,. diniión dl oiint d ompribilidd iotrmo : (1/ Drindo l uión d tdo (nr/ y dpjndo obtnmo: 1 diniión n l o dl oiint dibátio : S (1 / S En t o y qu mplr l uión d l trytori dibáti rribl pr un g idl: Ct. Dpjndo l olumn rpto d l prión y drindo obtnmo: S 1.- Dmutr qu l trytori dibáti ui-táti pr un g idl inn rmind por l iguint uión, Ct. rtimo d l uion lorimétri qu obtinn pr un g idl prtir dl primr prinipio d l trmodinámi y d l diniión d g idl. igulmo ro y qu l proo dibátio y rribl: δq d + d δq d d d d d d Diidindo ntr í mb uion: d d Finlmnt intgrndo l ntrior uión dirnil: t M. RAMOS ágin 1 16/9/

2 3.- Dmutr l torm d ontinuidd n un luido idl. Conidrmo omo ipóti d prtid qu trt d un luido inompribl, dir on dnidd ontnt. Admá, l proo rliz n régimn tionrio. or llo, n un intnt d timpo rii l iguint rlión: M dl luido ntrnt n un timpo, M dl luido lint n un timpo,. Si dm dm ρ S ρs S S 4. Expli uál l proo d utntión d un l, utiliz pr llo l torm d Brnouilli. En l l, dbido u diño, l loidd dl ir myor n l prt uprior, 1 qu n l inrior.. or lo tnto, l prión mnor n l prt lt dl l 1 qu n l bj gnrándo un urz d utntión. Emplndo l uión d Brnouilli, podmo llr l lor d di urz: ρ( 1 F ( 1 S Sρ( 1 M. RAMOS ágin 16/9/

3 Nombr: Exmn xtrordinrio d Introduión l Fíi Ambintl. Curo 1/ (un 16 d Sptimbr dl. Cution (1 punto d utión. 5. Aplindo l torm d Gu. Dtrmin uál l mpo létrio n l proximidd d un uprii ondutor, n quilibrio ltrotátio. moilidd d l rg, gnrn dntro dl ondutor un orrint d dplzminto t iturl n l uprii y lnzr l quilibrio ltrotátio. od l rg d un ondutor rid n u uprii. En un pl pln (r igur, lulmo l lujo dl mpo létrio qu tri l uprii Guin. El mpo létrio n l uprii dl ondutor prpndiulr ll, on l iguint lor, plindo l torm d Gu: φ r E. nds r E A int n ds + EndS En ds En A A' A ε Q σa ε or lo tnto, tndrmo do zon d mpo, dntro dl ondutor, dond no y prni d rg y l mpo nulo, y ur d él dond gún l álulo rlizdo ntriormnt tndrá un lor: E n σ ε 6.- Utiliz l ly d Ampèr y rmin l lor dl mpo mgnétio; gnrdo por un ondutor rtilíno ininito por l qu irul un intnidd d orrint, I, un ditni R d él. ly d Ampr no di qu l irulión dl mpo mgnétio tré d un lín rrd proporionl l intnidd d orrint qu irul por lo ondutor qu trin di lín por u intrior. r r B. dl µ I En l o d un ondutor rtilíno omo tnmo imtrí olnoidl, tommo un irunrni omo lín d intgrión tl y omo pr n l igur. Dond lo tor mpo y longitud d lín on prllo, dmutr l iguint rlión. r r B. dl Bdl B dl B(πr µ I B µ I πr M. RAMOS ágin 3 16/9/

4 Nombr: Exmn xtrordinrio d IFA.-ROBEMAS ( unto d uno un 16 d Sptimbr d 1.- Un o d idrio on un m, m, d 15 grmo ontin ml d gu i º C (onidér dibátio l ripint. Si olon do ubo d ilo º C, d uno on un m, m /, d grmo n t o, uál rá l tmprtur inl,, d l bbid?, dpri l to d l diltión dl itm. Dto: lor píio dl idrio,,15 l/g K, lor ltnt d uión dl ilo, 8 l/g, lor píio dl gu, 1 l/g K y dnidd dl gu, d 1 3 Kg/m 3. ( punto. Conidrmo l itm inl, o, gu y ilo, ildo, dmá dprimo l trbjo mánio dbido l diltión dl mimo. or lo tnto, l riión d nrgí intrn dl itm rá ro y l ontribuion pril d lo dirnt ubitm, rán l dbid xluimnt l intrmbio d lor ntr llo. nrgí intrn iniil rá l um d l orrpondint lo dirnt ubitm: 1. Agu líquid: m i, m d. o: m i 3. Hilo: lor ltnt m Ui mi + mi + m nrgí n l tdo inl, undo lnz l quilibrio térmio un z mzldo l ilo on l gu líquid n l o. 1. Agu líquid: (m +m. o: m m d ilo trnormdo n gu líquid y lnz l tmprtur d quilibrio on l rto d lo omponnt. U ( m + m + m Al tr ildo l itm globl rii D U. Con l xprion ntrior y dpjndo, nutr inógnit. ( m ( m + m m i 6.6º + m + m C M. RAMOS ágin 4 16/9/

5 .- S prtnd l ontruión d un ntrl idrolétri qu uminitr un potni, 3,1 Mw n un río uyo udl mdio φ3 m 3 /. Si uponmo qu ólo un 15% d l nrgí potnil grittori dl gu trnormd n nrgí létri por lo gnrdor, uál db r l ltur d l pr?. Cuál rá l prión máxim qu d oportr l muro d ontnión mx?. Si umimo qu l dnil mdio d l grgnt dl río d 3º, uánto mtro d l ribr qudrán ngdo por l gu d? (r igur. ( punto. Como ipóti d prtid onidrmo qu l gnrión d nrgí létri rliz n régimn tionrio, dir qu un z qu lnz l pr u máximo nil d gu, lii l udl d gu qu port l río y í mntin l ot d gu ontnt. nrgí potnil grittori dl gu n u íd dd l ot uprior d l pr t u pi : Epmg Como l úni ribl tmporl dl gundo término l m d gu qu ontinumnt, l potni grittori gnrd por l udl d gu qu rá: de p dm g ( ρφ g Como l potni máni gnrd por l lto d gu trnorm n potni létri on un rndiminto d 15%, tndrmo: de p.15.15( ρφ g Enton, l ltur dl nil dl gu rá: 7. 3m.15 g ( ρφ or rzonminto trigonométrio mo qu l ipotnu, tá rliond on u tto oputo, mdint l unión no: dn3 º d 14. 6m n3º prión máxim rá l jrid n l b d l pr, prtir d l uión d Eulr: mx tm +rg 7.8 tm M. RAMOS ágin 5 16/9/

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

3.11 Trasformada de Laplace de una función periódica 246

3.11 Trasformada de Laplace de una función periódica 246 3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo

Más detalles

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2 Unividd Simón Bolív Dtmnto d Convión y Tnot d Engí Auto: Edudo Albánz. Cnt: 06-91 Pofo: J. M. All Máquin Eléctic II CT-11 Un moto d inducción monofáico d 1 HP, 10V, 60Hz, 1650m, 65% d ndiminto y 75% d

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR . SISEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR INRODUCCIÓN La rfrigraión mpla para xtrar alor d un rinto, diipándolo n l mdio ambint. Como ta pud r también la dfiniión dl nfriaminto omún, priarmo un poo má:

Más detalles

Tema 5 - EL VOLUMEN DE CONTROL

Tema 5 - EL VOLUMEN DE CONTROL Tm 5 - EL VOLUMEN DE CONTROL ÍNDICE. TRANSICIÓN DE MASA DE CONTROL A VOLUMEN DE CONTROL...5.. CONSERVACIÓN DE LA MASA EN UN VOLUMEN DE CONTROL...5.4. DESARROLLO DEL BALANCE DE MATERIA...5.4. EXPRESIÓN

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

BE FREE. energía creativa. Te presentamos la herramienta de comunicación online más innovadora!

BE FREE. energía creativa. Te presentamos la herramienta de comunicación online más innovadora! Gnt con nrgí crtiv. BE FREE. EL FREEBIE ONLINE: LA HERRAMIENTA DE INBOUND MARKETING MÁS CREATIVA. EL REGALO INFINITO. El frbi un hrrint d prooción y counicción onlin originl, intrctiv, virl, útil y grtuit.

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

FIGURAS PLANAS EJERCICIOS RESUELTOS - 3º E.S.O. 1 Calcula el valor de x en estos polígonos: 2 Calcula x en cada caso: a) b) a) b) c) 8 m.

FIGURAS PLANAS EJERCICIOS RESUELTOS - 3º E.S.O. 1 Calcula el valor de x en estos polígonos: 2 Calcula x en cada caso: a) b) a) b) c) 8 m. EJERIIOS RESUELTOS - 3º E.S.O. FIGURS PLNS 1 alcula el valor de en estos polígonos: a) b) 8 cm c) d) 10 dm 15 cm dm 8 m a) 6 3 7 5, m 3 m b) 8 + 15 89 17 cm c) 1 dm 5 dm 1 +5 169 13 dm d) 8 +8 18 11,3

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: 15 INSTITUTO NIONL D IINI NRGTI Y NRGIS RNOVLS INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 13 : 19/3/15 OR: 11:4:58 Descripcion del ur IV rrado laboracion probado G=- del Traslado ntregado

Más detalles

TALLER PRACTICO. Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s :

TALLER PRACTICO. Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s : TALLER PRACTICO Indica que variables s o n c u a l i t a t i v a s y c u a l e s c u a n t i t a t i v a s : 1 C o m i d a F a v o r i t a. 2 P r o f e s i ó n q u e t e g u s t a. 3 N ú m e r o d e g

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

BALASTROS ELECTRÓNICOS 14W

BALASTROS ELECTRÓNICOS 14W LSTROS LTRÓNIOS PR LL T G 14W LSTROS LTRÓNIOS 14W LSTROS 1X14W ONIGURIÓN VOLTJ LV LV TIPO IMNSIONS mm L LÁMPR LIMNTIÓN NNIO 1-216-X3X -0404-1 1X14W 127V~± 10% 0/60 Hz 0. RÁPIO 26 168 19 17 Ø 4.2 IGRM ONXIÓN

Más detalles

PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL

PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL 1.- Dcripción d la práctica Excitar un cabl coaxial d 5 mtro d longitud con una tnión inuoidal d 5 voltio d amplitud n un rango amplio d valor rcuncia.

Más detalles

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro)

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro) UNIDAD.- Produto etoril mixto. Apliione. (tem 7 del liro). PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire - Si 0 ó 0 ó on proporionle, entone - En o ontrrio, etore

Más detalles

TECNOLOGIA EN ABATIMIENTO PARTE I

TECNOLOGIA EN ABATIMIENTO PARTE I TNOOGI N BTIMINTO PRT I alidad en la cocina quiere decir frescura Irinox presenta ynamic Fresh ystem ualquier chef cocina con pasión y desea satisfacer y asombrar a sus clientes con creaciones excelentes.

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

AIRE HUMEDO AIRE HUMEDO

AIRE HUMEDO AIRE HUMEDO AIRE HUMEDO AIRE HUMEDO El air húmdo una mzcla d air co y vapor d agua. El air co una mzcla d ga, cuya compoición química : Nitrogno 78,08% Oxigno 20,95% Argón 0,93% CO2, CO, O2, O3,... 0,03% Otro 0,01%

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR 201 SRTRI L DMINISTRION PULI INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 8 : 04/02/201 OR: 10:40:00 rrado laboracion D=- G=- del Traslado ntregado I=- NTIDD 082-0000-0000 SRTRI L DMINISTRION

Más detalles

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.- 1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Axonometria, calculos y artefactos

Axonometria, calculos y artefactos , o9 r t di do 2 o d c ln ln i t b li po tiro o r c o 3 d cid n s ri ln io ñ o b ofus C tir r, D s T CIA: 9 Sig TAN DIS C n D ri s Sig tiro b d DIS s T ln cro TA ro c po li NC d IA: fusio o 2 til,3 n tiro

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

En imprenta: Anuario Martiano. Revista del Centro de Estudios Martianos. (La Habana, Cuba). Sección Estudios y aproximaciones

En imprenta: Anuario Martiano. Revista del Centro de Estudios Martianos. (La Habana, Cuba). Sección Estudios y aproximaciones Publicado en: Revista Cubana de Filosofía. Edición Digital No. 15. Junio - Septiembre 2009. ISSN: 1817-0137 En: http://revista.filosofia.cu/articulo.php?id=549 En imprenta: Anuario Martiano. Revista del

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

HERE I AM, LORD (Aquí Estoy, Señor) C/G. sea snow wind cie llu vien. and and. sky, rain, flame, mar, sol, paz, de de. lo y via y to y.

HERE I AM, LORD (Aquí Estoy, Señor) C/G. sea snow wind cie llu vien. and and. sky, rain, flame, mar, sol, paz, de de. lo y via y to y. HERE M, LOR (quí Esy, ) Melody VERSES Mor mpo, with mjesty ( = c. 80) / / Keybord poor es y el l s nd do cry. p. lme. chr. lor,,, Text: Bd on h 6; glish, n Schut, b. 1947; Spnish tr., Jun J. Sos, Pbro,

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

El uso de la luz para la medida de temperatura. María José Martín

El uso de la luz para la medida de temperatura. María José Martín El uso d la luz para la mdida d tmpratura María José Martín Algo d historia Todo urpo a una tmpratura > 0 K mit radiaión ltromagnétia. Esto s algo muy vidnt uando obsrvamos urpos muy alints qu mitn radiaión

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12 PRO PO RCIO NALIDADES 1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : a) 4 x 10 60 b) 9 12 12 x c) 8 2 32 3 x x d) x 12 Sol : a) x= 2 4, b) x= 1 6, c)

Más detalles

FÍSICA NUCLEAR - CUESTIONES Y EJERCICIOS

FÍSICA NUCLEAR - CUESTIONES Y EJERCICIOS I.E.S BERIZ DE SUBI Dpto. Fíica y Quíica FÍSIC UCLER - CUESIOES Y EJERCICIOS PROBLEMS. Dtrina l núro atóico y l núro áico d cada uno d lo iótopo qu 8 rultará dl U al itir ucivant 9 do partícula alfa y

Más detalles

Problemas de difusión

Problemas de difusión Probla d difuión PROBLEMA 1 Un acro contin 8,5 % n po d Ni n l cntro d un grano d F... y 8,8% n l líit dl grano. Si lo do punto tán parado 0 μ ual l flujo d átoo ntr to punto a 0 º?. a 0,65 n Ma Ni 58,71

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

$ 234 $ 55 MODERNA ATR ACTIVA. Higiene es Salud Línea Regular Consulta la Hoja Anexa

$ 234 $ 55 MODERNA ATR ACTIVA. Higiene es Salud Línea Regular Consulta la Hoja Anexa b u t O 2013 x y tu 5 0 ml n l d l. Dub d Tl Oint guni Fl Fg R 8 4 521 PR L T ÚBL CIO P IC O R G U L R 234 d gu 50 ml Futl. ph d Fll Tgni F L TR R 4 4700 PR C ÚB IO P 55 TR CTIV 62 Higin lud Lín Rgul Cnult

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

Exportación e Importación en formato XML

Exportación e Importación en formato XML Exportcó Importcó formto XML Tléfoo (506) 2276-3380 Fx (506) 2276-3778 d@c.co.cr www.d.com 1 Exportcó d Iformcó formto XML Pr xportr dto dd lpho formto XML, l mú Admtrcó, cutr l opcó Exportr S motrrá l

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES Ejrcicio Rulto TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES 1.- S dtrminaron la caractrítica mcánica d un trato d arna ncontrándo qu, al obtnr una mutra rprntativa, u volumn ra d 420 cm 3 y u

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

POLITÉCNICA SUPERIOR DE LINARES

POLITÉCNICA SUPERIOR DE LINARES El POLITÉCNICA SUPERIOR DE LINARES Gr Igirí Qíi Iil Uivri Jé GRADO EN INGENIERÍA QUÍMICA INDUSTRIAL PRESENTACIÓN DEL GRADO L titl Gr Igirí Qíi Iil hbilit r l jri l rf rgl Igir Té Iil ili Qíi Iil. Et títl

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

Temperature Control Based on a Modified Smith Predictor for Injectable Drug Formulations

Temperature Control Based on a Modified Smith Predictor for Injectable Drug Formulations Tmprtur Control Bd on Modifid Smith Prditor for Injtl Drug Formultion I. O. Bnitz, R. Riv, V. Fliu, Snior Mmr, IEEE nd F. J. Ctillo Atrt Thi ppr propo modifid Smith prditor hm for tmprtur ontrol during

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

OSCILADOR ARMÓNICO SIMPLE

OSCILADOR ARMÓNICO SIMPLE OSIDOR RÓNIO SIPE 0409 1 ey e Hooe rterzón e ovmento rmóno Sme (..S.) Veo y eerón en e..s. Ejemo. Reorte en oón horzont y vert Pénuo me Pénuo fo Energ en e movmento rmóno ovmento rmóno mortguo ey e Hooe

Más detalles

Determinación de Humedad en la Atmósfera. Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006

Determinación de Humedad en la Atmósfera. Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006 Dtrminación d Humdad n la Atmófra Darrollado por Carolina Mruan y Rné Garraud DGF Abril 2006 1. Antcdnt Tórico 1.1 Humdad n la atmófra El air n la atmófra conidra normalmnt como una mzcla d do componnt:

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

ORGANIZACIÓN INDUSTRIAL EUROPEA

ORGANIZACIÓN INDUSTRIAL EUROPEA ORGNIZCIÓN INDUSTRIL EUROPE TEM COMPLEMENTRIO 5B PRODUCCION, COSTES Y MERCDOS 1 Dciión humana: l rcto balanc ntr apcto poitivo (pro) y ngativo (contra) El comportaminto racional corrpond con l modlo d

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

PENSAMIENTO GEOMETRICO-METRICO

PENSAMIENTO GEOMETRICO-METRICO PENSAMIENTO GEOMETRICO-METRICO El S i st e m a Métri co Dec i m al El Si st e m a Métri co Dec i m al e s un s i s t em a de u ni dades en el c ua l l os m úl t i plos y s ubmúltipl os de una unida d de

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

MANUAL DE FUNCIONES Y COMPETENCIAS. COMO?

MANUAL DE FUNCIONES Y COMPETENCIAS. COMO? MANUAL DE FUNCIONES Y COMPETENCIAS. QUE ES? Herramienta que indica el papel de cada cargo dentro de la organización a través de las funciones que le son propias. COMO? Con información explicitaordenada

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1 Ejriios rlizos y prouios por Alro Aguilr Gutiérrz. Sions plns.. Diujr ls prts vists y oults ls sións qu proun los plnos P sor ls supriis s. P P g g P P Ejriios rlizos y prouios por Alro Aguilr Gutiérrz.

Más detalles

Temporada Primavera-Verano Ropa Corporativa y de Trabajo

Temporada Primavera-Verano Ropa Corporativa y de Trabajo Temporada Primavera-Verano Ropa Corporativa y de Trabajo TE.(56-2) 2809 2598 Presentación Brandcorp, inicia sus actividades en el año 1993 en la Sexta Región. En sus comienzos se especializa en la confección

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Tema Nro. 4 2º Ley de la Termodinámica

Tema Nro. 4 2º Ley de la Termodinámica PET 206 P1 TERMODINAMICA Tma Nro. 4 2º Ly d a Trmodinámica Ing. Ocar Varga Antzana 1. TRODUCCIÓN La 2º Ly d a Trmodinámica: baa n principio d a conrvación d a nrgía, utiiza para abr o prdcir a dircción

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Modelo A PID# Cuartos 3.5 Baños Garaje Sencillo 195 m 2

Modelo A PID# Cuartos 3.5 Baños Garaje Sencillo 195 m 2 PI D#140 P ne t or or t ConR ol nt o L oung B r G mn o L OMEJ ORDEL ACOMUNI DAD L uj o ot ownhom y v on ub d nun omun d dpr v d20m nut odd n y.cu nt onun nf í ndá r r r t v n uy ndounp n onr o nt o, p

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones Radiación y Radiocomunicación Tema 2 Fundamentos de antenas Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones ccrespo@us.es 17/03/2006 Carlos Crespo RRC-4IT 1 Radiación y Radiocomunicación

Más detalles