Triángulos y generalidades

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Triángulos y generalidades"

Transcripción

1 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp ) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro y su semiperímetro. = 9 m = 7 m = 6 m Pr onstruir el triágulo pedido, se estleen los segmentos, y on sus respetivs longitudes. Tomndo el ldo omo se del triángulo se diujn dos irunferenis. L primer de rdio on entro en el punto y l segund de rdio on entro en el punto. Ests dos irunferenis se ortn en el punto del ul se trzn los segmentos = y =. El triángulo tiene los ldos ddos. Por definiión el perímetro es l sum de ls longitudes de los ldos. sí, 2 p = + + = = 22 m de donde p= 11 m (semiperímetro) (3) onstruir un triángulo que teng un ángulo de 50 y los dos ldos que lo formn midn 5 m y 3.5 m. Sore el ldo myor orrespondiente l segmento = = 5 m, se olo el origen del trnsportdor pr mrr el ángulo 50 de 50 omo un punto sore l irunfereni que form el orde del trnsportdor (quí se h elegido ulquier de ls dos irunferenis onéntris trzds en olor mordo). Luego, sore l ret se mide el otro ldo ddo (menor) que orresponde l segmento = = 3.5 m. Uniendo los extremos y se form el terer ldo ompletndo sí el triángulo. = 3.5 m Este trnsportdor primitivo está dividido d 10, ls línes en nrnj señln los ángulos múltiplos de = 5 m

2 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/2 pítulo 5. Ejeriios Resueltos (pp ) (5) onstruir un triángulo que teng un ldo que mid 7 m y los dos ángulos dyentes midn 30 y 70. Trzr ls tres lturs y señlr el ortoentro. Sore el ldo ddo orrespondiente l segmento = = 7 m, se olo el origen del trnsportdor primero en pr mrr el ángulo de 30 on el punto y luego en pr mrr el ángulo de 70 on el punto. Después se trzn ls rets y ls ules, l prolongrls se ortn en el punto que orresponderá l terer vértie. Hipótesis: = 7, = 30, = Uniendo los extremos, y formn los ldos fltntes, respetivmente igules y, formndo sí el triángulo requerido que se muestr jo l izquierd. Ls lturs orresponden ls perpendiulres trzds de d vértie, y l ldo opuesto respetivo, y (ver Definiión, pág. 57) y onurren en el punto O que es el ortoentro. Pr trzr un ltur dee usrse l onstruión uxilir siguiente: por un punto exterior (vértie) un segmento ddo jr un perpendiulr del punto l segmento. O ien, empler un esudr linendo el ángulo reto l segmento en uestión. h O h h = 7 m

3 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/3 pítulo 5. Ejeriios Resueltos (pp ) (7) onstruir un triángulo equilátero de 5 m de ldo. Trzr ls meditries y señlr el irunentro. Sore l se (ulquier ldo, y que por hipótesis se trt de un triángulo equilátero) se olo el origen del trnsportdor primero en pr mrr el ángulo de on el punto y luego en pr mrr el mismo ángulo () on el punto. Después, se trzn ls rets y ls ules l prolongrls se ortn en el vértie. Hipótesis: = = y = = Not: puede resolverse este prolem usndo l onstruión heh en el Prolem (1) y en tl so solo se neesit el ompás y no el trnsportdor. Ls irunferenis olods en y se diujn d un on un rdio de 5 m. Uniendo los puntos extremos se formn los ldos fltntes = y =, formndo sí el triángulo equilátero requerido que se muestr jo l izquierd. Ls meditries orresponden ls perpendiulres trzds en el punto medio de d ldo, y (ver Definiión, pág. 57) y onurren en el punto K que es el irunentro. El trzo de ests perpendiulres emple l onstruión geométri 2) del rt. 57 (pág. 38). = 5 m = 5 m K M M M = 5 m

4 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/4 pítulo 5. Ejeriios Resueltos (pp ) (9) onstruir un triángulo retángulo que teng un teto que mid 8 m y uy hipotenus mid 10m. Diujr ls tres lturs. Sore el teto ddo se olo el origen del trnsportdor en pr mrr el ángulo de 90 on el punto. Se prolong l ret hi rri y del extremo se trz un punto sore, l hipotenus on l longitud dd. 90 Uniendo los puntos y se form el otro teto =, formndo sí el triángulo retángulo requerido que se muestr jo. En este so, ls lturs h y h son igules respetivmente los tetos y y l úni perpendiulr que se trz es l que v del vértie (ángulo reto) l hipotenus (ldo es opuesto). El ortoentro es O =. = h h = 10 m O = 90 = h = 8 m

5 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/5 pítulo 5. Ejeriios Resueltos (pp ) (11) onstruir un triángulo retángulo que teng un hipotenus que mid 5 m y un ángulo que mid 45. Diujr ls tres medins. Sore el teto horizontl (sin longitud dd) se olo el origen del trnsportdor en pr mrr el ángulo de 45 on el punto. Se prolong el segmento (hipotenus) hst que mid 5 m y de su extremo se j l perpendiulr (teto vertil) l teto sore el ul se oloó el trnsportdor. 45 = 5 m Uniendo los puntos y se form el teto horizontl =, formndo sí el triángulo retángulo requerido que se muestr rri l dereh. Ls medins son los segmentos que vn de d vértie l punto medio del ldo opuesto (ver definiión, pág. 56) donde el punto medio P (pr el ul, p. ej., P = P ) puede determinrse por l onstruión geométri 1) del rt. 57 (pág. 38). El punto G de onurreni es el rientro. m m G P m m

6 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/6 pítulo 5. Ejeriios Resueltos (pp ) (13) Dos ángulos de un triángulo miden 40 y 30 respetivmente. uánto mide el terer ángulo y d uno de los ángulos exteriores? Según el Teorem 18 (pág. 58), l sum de los tres ángulos interiores de un triángulo vle dos ángulos retos, es deir, si, y son los ángulos del triángulo, entones + + = 2 R. Por hipótesis, = 40 y = 30, de donde = 2 R ( + ) = = 110 omo 110 > R, el terer ángulo es otuso y se trt de un triángulo otusángulo. L onstruión del triángulo se muestr ontinuión Los ángulos exteriores son los que se formn por uno de los ldos del triángulo y l prolongión de otro (ver Definiión rt. 84, pág 58). Por ejemplo, el ángulo exterior X se form on el ldo = y l prolongión del ldo =. omo X, Y, Z son ángulos dyentes los respetivos ángulos interiores,, del triángulo, se otiene inmeditmente que: 30 Z Y X X = 2R = = 140 Y = 2R = = 150 Z = 2R = = 70 y se omprue que X + Y + Z = 360 = 4 R.

7 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/7 pítulo 5. Ejeriios Resueltos (pp ) (15) Puede ser otuso el ángulo en l se de un triángulo isóseles? Rzonmos por el método de reduión l surdo. sí, supóngse que el ángulo de l se en un triángulo isóseles es un ángulo otuso, por tnto, es myor un ángulo reto. Por hipótesis, trtándose de un triángulo isóseles, el otro ángulo de l se es igul on, de modo que (ver esquem jo l izquierd) + > R+ R= 2 R de donde + + > 2R+ > 2 R, desiguldd que ontrdie l Teorem 18 que estlee que l sum de los ángulos interiores de ulquier triángulo, en prtiulr de un triángulo isóseles, es igul un ángulo llno. onseuentemente, lo que se supuso omo verddero es flso y el ángulo en l se de un triángulo isóseles no puede ser otuso (ni ni ). No ostnte, el ángul0 opuesto l se si puede ser otuso y que si el ángulo > R (myor un reto), entones + = 2R < R R y = < 2 (17) Puede ser equilátero un triángulo retángulo? Por onstruión geométri, todos los ángulos de un triángulo equilátero son igules y omo sumn dos ángulos retos (Teorem 18) se dedue que d uno vle. omo un triángulo retángulo tiene un ángulo reto igul 90 (ver Definiión, pág. 56), result lro que este ángulo no es igul ningún ángulo de un triángulo equilátero (ver riterio de iguldd de triángulos en pág. 60). Por lo tnto, un triángulo retángulo no puede ser equilátero. triángulo retángulo triángulo equilátero = 90 ; + = 90 = = = 60

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general) 2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t 3- Clul l mplitud de los ángulos interiores de los siguientes udriláteros. s t 36 r u rstu trpeio isóseles û x 16 tˆ x 30 TRIÁNGULOS Se llm triángulo tod figur de tres ldos. Un triángulo tiene tres vérties,

Más detalles

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices.

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices. 1.- QUÉ ES UN TRIÁNGULO? Leión 10: TRIÁNGULOS Un triángulo es un polígono de tres ángulos y tres ldos. Tmién tiene tres vérties. ELEMENTOS DE UN TRIÁNGULO Ldo: Cd uno de los tres segmentos que limitn l

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III)

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III) PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Est or

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

b=c hipotenusa cateto

b=c hipotenusa cateto 1. nstruir un triángul equiláter nid l ltur. 2. nstruir un triángul isóseles nid l ltur y ls lds igules y.. 1. Diujr un triángul equiláter ulquier n ld ulquier 2. Prlngr l ltur st 50 mm (punt ) 3. Prlngr

Más detalles

Definición: Llamamos triángulo a la figura determinada por la intersección de tres semiplanos.

Definición: Llamamos triángulo a la figura determinada por la intersección de tres semiplanos. Mtemáti ª Año ESB Triángulos Cpítulo IV: Triángulos Definiión: Llmmos triángulo l figur determind por l interseión de tres semiplnos. Spl(R;o) Spl(S;o) Spl(T;o)= R Elementos: Vérties :son los puntos de

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Cabri. Construcciones RECURSOS.

Cabri. Construcciones RECURSOS. ri. Atividd 1.- Diujr: Un heptágono regulr, un pentágono estrelldo, un vetor, un elipse y un ro on dos puntos sore un ret punted. Atividd 2.- onstruir el punto medio del ldo B del triángulo AB y ls rets

Más detalles

Se tiene tres satélites geo-estacionarios A, B y C alrededor de la Tierra como se muestra en la figura. A B

Se tiene tres satélites geo-estacionarios A, B y C alrededor de la Tierra como se muestra en la figura. A B Triángulos Se tiene tres stélites geo-estionrios, y lrededor de l Tierr omo se muestr en l figur. señl que v del stélite psndo por se demor 0,28 s, l señl que v del stélite psndo por se demor 0,35 s y

Más detalles

PB' =. Además A PB = APB por propiedad de

PB' =. Además A PB = APB por propiedad de limpid de Mtemátis, Querétro GEMETRÍ: Trigonometrí, Áres, ílios, Ptolomeo Rosrio Velázquez 0 y de Junio, 005 PRLEM EL EXMEN ESTTL P es ulquier punto del interior de un triángulo. Sen, y los puntos medios

Más detalles

Trigonometría Ing. Avila Ing. Moll

Trigonometría Ing. Avila Ing. Moll Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

TEMA 39. Geometría del triángulo.

TEMA 39. Geometría del triángulo. TEM 9. Geometrí del triángulo. TEM 9. Geometrí del triángulo.. Introduión. El triángulo es el polígono ms estudido, su importni reside en ls múltiples propieddes que estos tienen y que todos los polígonos

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de

Más detalles

d) Área del triángulo = mitad de la base por la altura. Área del rectángulo = base por altura.

d) Área del triángulo = mitad de la base por la altura. Área del rectángulo = base por altura. CAPÍTULO VI 9 RELACIONES MÉTRICAS EN EL TRIÁNGULO Conoimientos previos: ) L líne más ort que puede trzrse entre dos puntos, es el segmento de ret que los une. ) El menor segmento que une un punto P on

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS TRIÁNGULOS DEFINIIÓN Un triángulo es un polígono errdo y onvexo, ompuesto por tres ldos. 1 ELEMENTOS ÁSIOS Los triángulos tienen muhs propieddes importntes pr el diujo y l geometrí, pero los más elementles

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉRICA (III)

CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉRICA (III) CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉRICA (III) Dnte Guerrero-Chnduví Piur, 2015 FACULTAD DE INGENIERÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo . PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 Cudriláteros 1º Año Mtemáti C o r r e i ó n y d p t i ó n : P r o f. M r í d e l L u j á n M r t í n e z P r o f. M ó n i N p o l i t n o Cód. 1106-17 Dpto. de Mtemáti 1.1. PARALELOGRAMO Definiión Un prlelogrmo

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno LSIFIION LOS TRINGULOS. TRINGULOS Los triángulos se lsifin según sus ldos y sus ángulos.. lsifiión de los triángulos según sus ldos.. Triángulo equilátero. s el que tiene sus tres ldos igules Sus tres

Más detalles

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º Preuniversitrio Populr Vítor Jr 7.. TRIGONOMETRÍA L trigonoetrí (del griego, trigono = tres ldos o triángulo, y etrí = edid) es l r de ls teátis que estudi ls reliones entre los ldos y los ángulos de triángulos,

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

CALCULAR LA RAZÓN DE DOS SEGMENTOS

CALCULAR LA RAZÓN DE DOS SEGMENTOS 9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

Qué tipo de triángulo es? Prof. Enrique Díaz González

Qué tipo de triángulo es? Prof. Enrique Díaz González Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

Repartido 1. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016

Repartido 1. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Repartido 1 Profesor Fernando Díaz Matemática II 5to cient. I.D..L. 2016 ONTEXTO : JUSTIFIIÓN : La ciencia utiliza el método deductivo, que consiste en encadenar los saberes de manera tal que se obtengan

Más detalles

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor? ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

GEOMETRÍA TRIÁNGULOS. 1. DEFINICIÓN: Si A, B y C son tres puntos no colineales entonces la unión de los segmentos

GEOMETRÍA TRIÁNGULOS. 1. DEFINICIÓN: Si A, B y C son tres puntos no colineales entonces la unión de los segmentos MISIÓN 2011-2 ONGRUENI E TRIÁNGULOS GEOMETRÍ TRIÁNGULOS 1. EFINIIÓN: Si, y son tres puntos no oinees entones unión de os segmentos, y se denomin triánguo y se denot omo. = /, y son puntos no oinees 1.1.

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio

Más detalles

A B Trazo AB se denomina AB

A B Trazo AB se denomina AB PITULO I.- GEOMETRI SI.- EL punto es un ente matemático creado por el hombre para poder representar las figuras geométricas. El punto no tiene peso, ni forma ni olor ni sabor; sólo tiene posición. Se representa

Más detalles

TRIEDROS. B c C O. A escribimos A. 0 A + B + C 360 Por otro lado una cara ha de ser menor que la suma de las otras dos mayor que su diferencia.

TRIEDROS. B c C O. A escribimos A. 0 A + B + C 360 Por otro lado una cara ha de ser menor que la suma de las otras dos mayor que su diferencia. TRIEDRS triedro. TRIEDR tres rists,, y tres seiplnos deliitdos, d uno, por dos rists que llreos rs,,. Teniendo en uent que los plnos,,. Por ser de l rist es de los plnos,. triedro is y ontenids un en d

Más detalles

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS.

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS. GYMNÁZIUM BUDĚJOVICKÁ MATEMÁTICAS TRIGONOMETRÍA EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS PROBLEMAS - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos:

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

Seminario de problemas. Curso Soluciones Hoja 18

Seminario de problemas. Curso Soluciones Hoja 18 Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto

Más detalles

Relaciones Métricas. 1º Año. Matemática. Cód

Relaciones Métricas. 1º Año. Matemática. Cód Reliones Métris 1º Año Cód. 1104-18 Mtemáti Dpto. de Mtemáti 1. PROPIEDAD DE LOS ÁNGULOS CONJUGADOS Los ángulos onjugdos internos (externos) determindos por dos rets prlels ortds por un terer son suplementrios.

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática Reliones Métris 1º Año Cód. 1104-16 Mtemáti Dpto. de M t emáti 1. SISTEMA DE MEDICIÓN DE ÁNGULOS Prolems de Revisión 1) Clul el vlor de ˆ, expresdo en grdos, minutos y segundos: ) ˆ 2,8 1735' ) 5ˆ 83'

Más detalles

Algunos resultados importantes de Geometría Euclidiana en el plano:

Algunos resultados importantes de Geometría Euclidiana en el plano: lgunos resultados importantes de Geometría Eulidiana en el plano: Grados y radianes El despeje de la siguiente euaión permite realizar la onversión de la unidad angular: grados 180º radianes π Triángulo

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprtmento de Mtemátis. º BAC UNIDAD : TRIGONOMETRÍA. MEDIDAS DE ÁNGULOS. GRADOS: Un grdo sexgesiml es el ángulo orrespondiente un de ls 60 prtes en que se divide el ángulo entrl

Más detalles