11La demostración La demostración en matemáticas (geometría)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "11La demostración La demostración en matemáticas (geometría)"

Transcripción

1 L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es muy senillo. En ls próxims págins se v nlizr en qué onsiste un propiedd mtemáti y uáles son ls rterístis de un demostrión. demás, se ofree un demostrión senill de un propiedd de nturlez geométri y se reomiend, omo tividd, el demostrr lguns otrs. unque se hn esogido ejemplos espeilmente senillos y onitos, est prte de demostrión puede que solo resulte útil quellos estudintes que sen lgo fiiondos ls mtemátis o que se esfueren onsiderlemente en entenderl y prtirl fondo.

2 ág. ropieddes mtemátis Ls mtemátis están plgds de propieddes, es deir, reliones entre distintos elementos que se verifin en sos perfetmente determindos. vees se ls llm leyes y, otrs vees, teorems. ontinuión ponemos lguns. I. n n = ( ) n II. Si dos números son múltiplos de n, entones su sum tmién lo es. III. Los puntos de l meditriz de un segmento equidistn de sus extremos. IV. Teorem de itágors Si es l hipotenus de un triángulo retángulo y, son sus tetos, entones se verifi que = +. Tods ls propieddes mtemátis tienen un estrutur similr: HIÓTESIS NDIINES REVIS TESIS NLUSIÓN Vemos, omo ejemplo, ómo se enunirín ls propieddes II y III de rri según est estrutur: y son múltiplos de n + es múltiplo de n es un punto de l meditriz de (es deir, l perpendiulr desde ort l segmento en su punto medio). = En muhos sos, l propiedd se onfunde on l tesis. Es el so I. En est propiedd l hipótesis podrí ser: y son números rionles y n es un número nturl. El símolo, que se lee impli, signifi que lo que hy su dereh es onseueni lógi (se dedue) de lo que hy su izquierd. L onsttión de este heho, es deir, l den de rgumentos por l ul se ve que de l hipótesis se dedue l tesis, es lo que se llm demostrión de l propiedd. tividd 1. Enuni ls propieddes I y IV medinte l estrutur HIÓTESIS TESIS.

3 En qué onsiste un demostrión Vemos lguns demostriones pr nlizr sus rterístis. ág. 3 Demostrión de l propiedd I n n = ( ) ( ) = ( ) ( ) ( ) = ( ) n n vees n vees n vees En d trnsformión se h plido un propiedd. En l primer y en l terer se h tenido en uent, senillmente, l definiión de poteni. ero en l segund, pr romper préntesis y regrupr, se plin ls propieddes soitiv y onmuttiv de l multipliión. Demostrión del teorem de itágors Est demostrión y l hrás visto en lgún liro de texto, oservndo que si en d uno de los udros grndes suprimimos utro triángulos, quedn áres igules. Sin emrgo, pr pror que el áre que qued l dereh es tendrímos que estr seguros de que el ángulo señldo on un fleh es de 90. Esto se demuestr viendo que los otros dos ontiguos y sumn 90 porque = 180. En est demostrión se h tenido en uent que l sum de los ángulos de un triángulo es 180. En generl, pr efetur un demostrión hemos de her un serie de rzonmientos que permitn ver que siempre que ourre lo que die l hipótesis tiene que ourrir lo que firm l tesis. En esos rzonmientos se utilizn definiiones y otrs propieddes que y se dn por sids. En ls próxims págins vs enontrr vris propieddes mtemátis (de ritméti, álger, geometrí y estdísti). Ls demostriones se efetún metiulosmente. Se pretende que ls omprends y pliques minos preidos pr demostrr ls que se te proponen más delnte. Es muy importnte que siempre tengs muy lro uál es l hipótesis, uál l tesis y qué propiedd plis en d pso de tu rgumentión. tividd 1. Intent demostrr ls propieddes II y III.

4 Demostrión de propieddes geométris ág. 4 ropiedd de ls medins Ls tres medins de un triángulo se ortn en un punto (el rientro). Vmos demostrrlo en dos etps. rimer propiedd El punto en el que se ortn dos medins divide ests en dos segmentos, uno de los ules es dole que el otro: = ' = ' Demostrión ' ' '' es l prlel medi en el triángulo. 1 or tnto, ''// y '' =. Tommos M y N, puntos medios de y, respetivmente. MN es l prlel medi ' de en el triángulo. 1 or tnto, MN// y MN =. M ' N Hemos prodo que '' y MN son igules y prlelos. or tnto ''NM es un prlelogrmo. or ser ''MN prlelogrmo, sus digonles se ortn en su punto medio. M = ' N = ' or tnto: = ', = ' ' ' Segund propiedd Ls tres medins se ortn en un punto. M N tividdes 1. Repite l demostrión nterior justifindo d pso e identifindo ls propieddes que se utilizn (por ejemplo: el segmento que une los puntos medios de los ldos de un triángulo es prlelo l otro ldo prlel medi y su longitud es l mitd).. Demuestr l segund propiedd (ls tres medins se ortn en un punto) teniendo en uent que l terer medin ort d un de ls nteriores en un punto que umple l primer propiedd.

5 Ángulo insrito en un irunfereni ág. 5 Un ángulo insrito en un semiirunfereni es, neesrimente, reto. Reformulmos el enunido. HIÓTESIS TESIS está en un semiirunfereni de diámetro = 90 Trzmos el rdio. omo, y son rdios de un irunfereni, son igules entre sí. or tnto, los triángulos y son isóseles. β + β β β or ser isóseles, el triángulo tiene igules los ángulos  = ˆ =. nálogmente, en es ˆ = ˆ =. omo los ángulos de un triángulo sumn 180, tenemos: + ( + ) + = = 90 Es esto lo que querímos demostrr. r her est demostrión hemos tenido que her uso de dos propieddes: Si un triángulo tiene dos ldos igules, entones sus ángulos opuestos tmién son igules. L sum de los ángulos de un triángulo es 180.

6 tividdes ág. 6 Demuestr ls siguientes propieddes: 1. Repite l demostrión nterior justifindo d pso.. serv l figur de l dereh. Demuest que si M es un diámetro entones =. M β N 3. Demuestr que l sum de los ángulos de un triángulo es 180. Indiión: trz por uno de los vérties un ret prlel l ldo opuesto. serv los ángulos que se formn. 4. r es l isetriz de  y s l isetriz de ˆ. r y s se ortn en I; Q ps por I y es prlel. Demuestr que Q = + Q. Indiión: rue que 1ˆ = ˆ y ˆ = 3ˆ. ˆ 1ˆ ˆ3 r I s Q 1. Si el áre de un triángulo retángulo es l urt prte del udrdo de l hipotenus, entones el triángulo es isóseles. yud: El áre de un triángulo retángulo de tetos y es..,, son los ldos opuestos los vérties,,, respetivmente. R rue que = +. Q yud: Ls tngentes trzds desde un punto un irunfereni son igules. 3. En un triángulo retángulo l isetriz del ángulo reto es tmién isetriz del ángulo que formn l ltur y l medin trzd desde ese vértie. yud: Rzon que son igules los tres ángulos designdos en l figur por. De est iguldd se dedue que es isetriz del ángulo formdo por h y m. h m

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo . PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

Números Irracionales

Números Irracionales Números Irrionles Los griegos ern onoedores de los números nturles: 0, 1,,,, 5, Estos números son los que se utilizn pr numerr o ontr, pero no nos sirven si queremos expresr ntiddes no exts, omo "l mitd

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS TRIÁNGULOS DEFINIIÓN Un triángulo es un polígono errdo y onvexo, ompuesto por tres ldos. 1 ELEMENTOS ÁSIOS Los triángulos tienen muhs propieddes importntes pr el diujo y l geometrí, pero los más elementles

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática Reliones Métris 1º Año Cód. 1104-16 Mtemáti Dpto. de M t emáti 1. SISTEMA DE MEDICIÓN DE ÁNGULOS Prolems de Revisión 1) Clul el vlor de ˆ, expresdo en grdos, minutos y segundos: ) ˆ 2,8 1735' ) 5ˆ 83'

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Trigonometría Ing. Avila Ing. Moll

Trigonometría Ing. Avila Ing. Moll Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos.

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos. 0 Demuestr, de form rzond, ls siguientes igulddes: lul el ángulo de elevión del Sol sore el orizonte, se ) ( sen ) ose o se siendo que un esttu proyet un somr que mide otg os tres vees su ltur. ) ( sen

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

Qué tipo de triángulo es? Prof. Enrique Díaz González

Qué tipo de triángulo es? Prof. Enrique Díaz González Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS MISIÓN 010-I GEOMETRÍ SEMEJNZ E TRIÁNGULOS 1. EFINIIÓN os triángulos se llmn semejntes uno tienen sus ángulos respetivmente ongruentes y los los homólogos proporionles. Los los homólogos son los opuestos

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

SECCIÓN 1 NOCIONES DE ESCRITURA MATEMÁTICA

SECCIÓN 1 NOCIONES DE ESCRITURA MATEMÁTICA SEMANA SECCÓN NOCONES DE ESCRTURA MATEMÁTCA L mtemáti es l ieni que trt de ls ntiddes, onstituid por un lenguje ifrdo onvenido universlmente, medinte el ul nos omunimos, on relión los álulos numérios plidos

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Llamamos ángulo plano convexo abc y se simboliza

Llamamos ángulo plano convexo abc y se simboliza 1. SISTEMA DE MEDICIÓN DE ÁNGULOS 1.1.Ángulo plno onvexo Segurmente reordrás que en ursos nteriores hrás prendido un definiión de ángulo plno onvexo. En est oportunidd te rindremos un nuev definiión que

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

b sen A = a sen B = b sen C = c sen B =

b sen A = a sen B = b sen C = c sen B = T3: TRIGONOMETRÍ 1º T 9. TEOREM EL SENO emstrión: 2R sen sen R Trzms l ltur rrespndiente l vértie : En el triángul se verifi: h h h En el triángul se verifi: h sen h sen Igulnd ms expresines result l iguldd:

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles