04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales"

Transcripción

1 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1

2 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema del bloqueo de por cortante (shear locking) Integración reducida Imposición del campo de deformación por cortante 2

3 Teoría de Euler-Bernoulli Los desplazamientos verticales (flechas) de todos los puntos de una sección transversal son pequeños e iguales a los del eje de la viga. El desplazamiento lateral es nulo (esto es el coeficiente de Poisson se asume cero). Las secciones transversales normales al eje de la viga antes de la deformación, permanecen planas y ortogonales a dicho eje después de la deformación. 3

4 4

5 Campo de desplazamientos De acuerdo con las hipótesis anteriores el campo de desplazamientos de un punto cualquiera se puede escribir como: 5

6 Campo de deformaciones 6

7 Campo de esfuerzos Al reemplazar en la ley de Hooke usando un coeficiente de Poisson igual cero se obtiene: siendo los otros esfuerzos nulos.

8 Momento flector Observe que aquí el momento negativo produce tracción en la fibra superior 8

9 Momento flector 9

10 Momento de inercia Centro de gravedad, área y momento de inercia al rededor del eje y para algunas secciones transversales de viga 10

11 Sentidos positivos de la carga 11

12 PTV para vigas

13 13

14 + + 14

15 Ecuaciones diferenciales de la viga de Euler-Bernoulli + -q q es positiva hacia arriba + Aquí se hace la sumatoria de momentos 15

16 Solución mediante el comando bvp5c de MATLAB 16

17 Solución mediante el comando bvp5c de MATLAB (para E, I constantes) Se obtiene por lo tanto el sistema de ecuaciones: La solución de este sistema con bpv5c brindará: 17

18 Condiciones de apoyo Q Q 18

19 EJEMPLO 1 19

20 20

21 EJEMPLO 2 21

22 22

23 23

24 Interpolación polinómica de Hermite Polinomio interpolador de Lagrange 24

25 Interpolación polinómica de Hermite 25

26 26

27 Elemento finito hermítico de dos nodos 27

28 28

29 29

30 O sea: 30

31 31

32 Las funciones de forma pertenecen a la familia de los llamados polinomios de Hermite 32

33 Curvatura en el punto de coordenada ξ 33

34 34

35 + + Esta matriz coincide con aquella obtenida por los métodos vistos en Estructuras III 35

36 + positivo hacia arriba

37 Cálculo de momento flector y fuerza cortante Observe que los momentos flectores varían de forma lineal y las fuerzas cortantes son constantes dentro del elemento 37

38 positivo hacia arriba + 38

39 EJEMPLO 39

40 Puntos óptimos para el cálculo de esfuerzos y deformaciones 40 flectores

41 Repaso de mínimos cuadrados 41

42 Puntos óptimos para el cálculo de esfuerzos y deformaciones 42

43 Propiedad de las raíces del polinomio de Legendre Suponga que tenemos un polinomio de grado n y otro de grado n-1 obtenido por medio de un ajuste por mínimos cuadrados del anterior. Ambos polinomios se intersectan en la ubicación de las raíces del polinomio de Legendre de orden n 43

44 44

45 Cuadraturas de Gauss Legendre 45

46 46

47 47

48 48

49 Este criterio para el cálculo de esfuerzos es también válido en más dimensiones 49

50 Puntos óptimos para el cálculo de esfuerzos y deformaciones flectores 50

51 La viga de Timoshenko

52 La viga de Timoshenko La viga de Timoshenko aproxima mejor la deformación real de la sección transversal de vigas de gran canto que la teoría de EulerBernoulli. A medida que la relación longitud/altura disminuye, las secciones transversales dejan de conservarse planas después de la deformación. 52

53 La viga de Timoshenko Los desplazamientos verticales (flechas) de todos los puntos de una sección transversal son pequeños e iguales a los del eje de la viga. El desplazamiento lateral es nulo (esto es el coeficiente de Poisson se asume cero en cuanto a la deformación lateral; G puede ser diferente de E/2). Las secciones transversales normales al eje de la viga antes de la deformación, permanecen planas pero no necesariamente ortogonales a dicho eje después de la deformación. 53

54 La hipótesis de Timoshenko supone tomar un giro medio de la sección, de manera que a efectos prácticos pueda seguir 54 considerándose plana.

55 55

56 Campo de desplazamientos De acuerdo con las hipótesis anteriores el campo de desplazamientos de un punto cualquiera se puede escribir como: 56

57 Campo de deformaciones Por consiguiente la teoría de Timoshenko considera el57 efecto de la deformación angular

58 Campo de esfuerzos Al reemplazar en la ley de Hooke usando un coeficiente de Poisson igual cero en λ pero uno diferente de cero en G se obtiene: siendo los otros esfuerzos nulos.

59 Fuerza cortante y momento flector Un momento negativo produce tracción en la fibra superior - - -

60 Fuerza cortante y momento flector

61 - -

62

63 Principio de los trabajos virtuales + +

64 La energía virtual interna se puede expresar como: - Observe que solo se están utilizando las derivadas primeras de la flecha y el giro, lo que permite la utilización de elementos finitos de clase C0

65 Elementos finitos de dos nodos para la flexión de vigas de Timoshenko

66

67

68

69 +

70 +

71

72 Integración exacta de las matrices de rigidez

73

74

75

76 Integración con cuadraturas de GaussLegendre y singularidad de la matriz K

77 Singularidad de la matriz de rigidez Cuando K es singular se tiene que j-kp>0. Esta es una condición necesaria pero no suficiente. Si j-kp>0, muy probablemente K es singular Si j-kp 0, K es invertible El criterio j-kp>0 es aplicable a cualquier tipo de elemento finito y también es aplicable a la estructura en su totalidad. Es aplicable individualmente a la matriz K, a la matriz Kf o a la matriz Kc.

78 Puntos de integración de Gauss-Legendre Ejemplo Num #gld/nodo nodos En este caso en particular se debe usar la estrategia de integración d #gdl restringidos

79 29 nodos j = 29x2 3 = 55 gdl libres k = 3 componentes deformación (ex, ey, gxy) p = 6 (puntos de integración) j kp = 55 3x6 = 27 > 0 (Kdd es singular) 29 nodos j = 29x2 3 = 55 gdl libres k = 3 componentes deformación (ex, ey, gxy) p = 24 (puntos de integración) j kp = 55 3x24 = -17 > 0 (Kdd es invertible)

80 La técnica de integración reducida

81 Integración reducida de las matrices de rigidez de cortante Integración exacta con 1 punto de GL Integración reducida (1p GL) Integración reducida con un punto de GL Integración exacta (2p GL) NO USAR

82 EJEMPLO K exacta

83

84

85

86

87

88

89

90 Kf Kc

91 j=2 Viga modelada con un solo elemento finito de Timoshenko lineal Kf Kc K Integración reducida p=1 j-kp 2 1x1 = 1 2 1x1 = 1 2 2x1 = 0 Integración exacta p=2 j-kp 2 1x2 = 0 2 1x2 = 0 2 2x2 = -2

92 j=1 Viga modelada con un solo elemento finito de Timoshenko lineal Kf Kc K Integración reducida p=1 j-kp 1 1x1 = 0 1 1x1 = 0 1 2x1 = -1 Integración exacta p=2 j-kp 1 1x2 = x2 = x2 = -3

93 Evaluación de los momentos flectores y las fuerzas cortantes para el elemento de Timoshenko de dos nodos

94 Este criterio para el cálculo de esfuerzos es también válido en más dimensiones 94

95 Ejemplo EulerBernoulli vs Timoshenko

96 Integración reducida Kc integrada con GL de orden 1 L=6m, h=0.01m Shear locking Integración exacta Kc integrada con GL de orden 2 L=6m, h=0.01m

97 Integración reducida Kc integrada con GL de orden 1 L=6m, h=0.4m Integración exacta Kc integrada con GL de orden 2 L=6m, h=0.4m

98 Integración reducida Kc integrada con GL de orden 1 L=6m, h=2.0m Integración exacta Kc integrada con GL de orden 2 L=6m, h=2.0m

99 Elemento de viga de Timoshenko cuadrático

100 Funciones de forma e incógnitas nodales del elemento de Timoshenko de tres nodos

101 Cálculo de la curvatura

102 Cálculo de la deformación por cortante

103

104

105 Matrices de rigidez para el elemento de viga de Timoshenko de tres nodos obtenidas con una cuadratura de Gauss-Legendre de dos puntos Con Kc, tres puntos produce la matriz exacta, pero sufre esta de shear locking

106 Evaluación de los momentos flectores y las fuerzas cortantes para el elemento de Timoshenko de tres nodos

107 Este criterio para el cálculo de esfuerzos es también válido en más dimensiones 107

108 Alternativas para desarrollar elementos de viga de Timoshenko sin bloqueo por cortante Integración reducida Uso de interpolaciones para los desplazamientos verticales y para la rotación de diferentes grados Interpolación acoplada Asumir el campo de deformaciones angulares γxz

109 Uso de interpolaciones para los desplazamientos verticales y para la rotación de diferentes grados Ejemplos: grado w = 1/ grado t = 0 (const) grado w = 2/ grado t = 1 grado w = 3/ grado t = 2 En el libro de Oñate se discuten algunos problemas de este elemento con respecto a la convergencia de los esfuerzos cortantes. Toca programarlo para verificar que es lo que pasa.

110 Elemento con w cúbico y Ɵ cuadrático

111 Interpolación acoplada

112 Asumiendo el campo de deformaciones angulares γxz

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Nota Una deducción teóricamente rigurosa de las ecuaciones

Más detalles

Teoría General del Método de los Elementos Finitos

Teoría General del Método de los Elementos Finitos Teoría General del Método de los Elementos Finitos MASTER'S DEGREE IN SAFETY, DURABILITY AND REPARATION OF CONCRETE STRUCTURES UNIVERSIDAD INTERNACIONAL MENÉNDEZ PELAYO This document can be used as reference

Más detalles

O.C. Zienkiewicz, R.L. Taylor. El Método de los Elementos Finitos. Vols 1 y 2. CIMNE-Mc Graw Hill, 1994.

O.C. Zienkiewicz, R.L. Taylor. El Método de los Elementos Finitos. Vols 1 y 2. CIMNE-Mc Graw Hill, 1994. Índice de la teoría 1. Presentación. Estas lecciones sólo pretenden ser una introducción que sirva para orientar sobre los conceptos, para un estudio más amplio se recomienda leer alguna publicación especializada,

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

MECANICA I Carácter: Obligatoria

MECANICA I Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil 1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales D1 Diseño utilizando elementos finitos Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Tabla de contenido Observaciones generales Interpretación de gráficos

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

Presentación del curso

Presentación del curso Análisis Numérico Presentación del curso CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2010. Reproducción permitida bajo los términos

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A.

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A. Anexo A: Modelación de vigas en PERFORM 3D Se muestra un modelamiento de una viga asimétrica VT-06-A con un f c= 21 Mpa (210 kg-f/cm 2 ), módulo de Poisson ν=0.15 y modulo elástico E= 2.13 E+08 Mpa (2.1737E+09

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Ecuaciones de la elástodinámica Las ecuaciones diferenciales

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Técnica Industrial Mecánica Proyecto Fin de Carrera CÁLCULO

Más detalles

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

Facultad de Ciencias Experimentales Universidad de Almería PRÁCTICA 1

Facultad de Ciencias Experimentales Universidad de Almería PRÁCTICA 1 PRÁCTICA 1 APLICACIONES INFORMÁTICAS I OBJETIVOS 1. Utilización de MATLAB para multiplicar matrices, encontrar la inversa de una matriz, obtener las raíces de una ecuación polinómica de orden tres o superior

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Función Cuadrática: Es toda función de la forma: f() = a ² + b + c con a, b, c números Reales Puede suceder que b ó c sean nulos, por ej: f() = ½ ² + 5 f() = 5 ² ¾ Pero a no puede ser = 0, de los contrario

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Sílabo de Cálculo III

Sílabo de Cálculo III Sílabo de Cálculo III I. Datos Generales Código Carácter UC0067 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Cálculo II Horas Teóricas 4 Prácticas 2 II. Sumilla de la Asignatura La asignatura

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas y sus gráficas Marzo de 2006 Índice 1 polinómicas función constante función lineal función afín función cuadrática 2 racionales función de proporcionalidad inversa función racional 3 exponenciales 4 Ejemplos

Más detalles

Titulación: Asignatura: Código: Año: Periodo: Carácter: Nº de Créditos: Departamento: Área de Conocimiento: Curso: OBJETIVOS DOCENTES

Titulación: Asignatura: Código: Año: Periodo: Carácter: Nº de Créditos: Departamento: Área de Conocimiento: Curso: OBJETIVOS DOCENTES Titulación: Asignatura: Código: Año: Periodo: Carácter: Nº de Créditos: Departamento: Área de Conocimiento: Curso: OBJETIVOS DOCENTES Ingeniero en Telecomunicación Fundamentos Matemáticos de la Ingeniería

Más detalles

11.2. Anexo-B Anexo C... 57

11.2. Anexo-B Anexo C... 57 ÍNDEX 1. Introducción... 1 1.1. Antecedentes... 1 1.2. Objeto... 1 1.3. Alcance... 1 2. El Pandeo... 2 2.1 Carga critica de Euler... 4 3. Método de resolución... 7 4. Método de elementos finitos... 9 4.1.

Más detalles

IN ST IT UT O POLIT ÉCN ICO N A CION A L SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

IN ST IT UT O POLIT ÉCN ICO N A CION A L SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS CARRERA: Ingeniería Civil PROGRAMA SINTÉTICO ASIGNATURA: Resistencia de Materiales SEMESTRE: Quinto OBJETIVO GENERAL: El alumno calculará el comportamiento mecánico de los materiales, a partir de los esfuerzos

Más detalles

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc. Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica 8. Flexión Asimétrica (Biaxial) de Vigas 8.1 Introducción En esta sección, el análisis de la flexión en elementos-vigas, estudiado en las secciones precedentes, es ampliado a casos más generales. Primero,

Más detalles

Solución de Sistemas de Ecuaciones Diferenciales Lineales

Solución de Sistemas de Ecuaciones Diferenciales Lineales Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS

ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS ETS de ARQUITECTURA de MADRID, UNIVERSIDAD POLITÉCNICA DE MADRID ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS Planteamiento: JOSÉ L. FERNÁNDEZ CABO Desarrollo: MARÍA LUCÍA CERMEÑO, RUBÉN CONDE

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Teorema de la Mínima Energía Potencial Total

Teorema de la Mínima Energía Potencial Total ESTABIIDAD III acultad de Ingeniería Introducción: Teorema de la ínima Energía Potencial Total El teorema de la mínima energía potencial total es otra poderosa herramienta que permite resolver una serie

Más detalles

Arcos planos. J. T. Celigüeta

Arcos planos. J. T. Celigüeta Arcos planos J. T. Celigüeta Arcos planos. Definición Directriz curva plana. Sección transversal despreciable. Curvatura pequeña: radio mucho mayor que el canto R>>h Varias condiciones de apoyo en los

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Presentación: Ing. Carlos Gerbaudo

Presentación: Ing. Carlos Gerbaudo Colegio de Profesionales de la Ingeniería Civil de Entre Ríos DISEÑO Y CONSTRUCCIÓN DE PUENTES DE LUCES MEDIAS PARANÁ - 3 MARZO 2 016 Presentación: Ing. Carlos Gerbaudo UNIVERSIDAD NACIONAL DE CORDOBA

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León Ecuaciones de 1er Grado 2 Incógnitas Ing. Gerardo Sarmiento Díaz de León 2009 Teoría sobre ecuaciones de primer grado con 2 icognitas solución por los 3 metodos CETis 63 Ameca, Jalisco Algebra Área matemáticas

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA CARRERA: Licenciatura en Química PLAN DE ESTUDIOS: 2010 ASIGNATURA: Matemática III

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Leyes de esfuerzos y funciones de desplazamiento a lo largo de una barra

Leyes de esfuerzos y funciones de desplazamiento a lo largo de una barra Lees de esfuerzos funciones de desplazamiento a lo largo de una barra Apellidos, nombre Basset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios Continuos Teoría de Estructuras Escuela

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA Sección Ingeniería Mecánica CARACTERIZACIÓN DE UNA MATRIZ DE POLIÉSTER ISOFTÁLICA REFORZADA CON FIBRAS DE VIDRIO SIMÉTRICA COMO

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y EIGENVECTORES DE UNA MATRIZ

PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y EIGENVECTORES DE UNA MATRIZ PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y OBJETIVO EDUCACIONAL EIGENVECTORES DE UNA MATRIZ El alumno aprenderá a obtener el polinomio característica, los eigenvalores (valores

Más detalles

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL RESISTENCIA DE MATERIALES SILABO I. DATOS GENERALES CODIGO CARRERA

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

ν= 0.3; E=1.8e10; t= 0.05; q=-0.5;

ν= 0.3; E=1.8e10; t= 0.05; q=-0.5; Analisis de placas y lamina 56 7.- COMPARACIÓN DE MÉTODOS MEDIANTE EJEMPLOS NUMÉRICOS DE CÁLCULO DE PLACAS A continuación se va ha hacer un análisis comparativo de los resultados obtenidos, para el cálculo

Más detalles

ECUACIÓN DE CAUCHY-EULER 2013

ECUACIÓN DE CAUCHY-EULER 2013 ECUACIÓN DE CAUCHY-EULER 3 LA ECUACIÓN DE CAUCHY-EULER Se trata de una ecuación con coeficientes variables cua solución general siempre se puede epresar en términos de potencias, senos, cosenos, funciones

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles