Volúmenes Finitos. Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile. Semestre Primavera 2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Volúmenes Finitos. Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile. Semestre Primavera 2011"

Transcripción

1 MODELACION NUMERICA CON APLICACIONES EN INGENIERIA HIDRAULICA Y AMBIENTAL.. Volúmenes Finitos Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile Semestre Primavera 2011

2 Leyes de Conservación En términos generales, dado una función de flujo f de una variable u, que es conservada dentro de un volumen fijo V con superficie Ω, la ecuación de balance se escribe como f dω = udv t Utilizando el teorema de la divergencia, f dω = fdv Como el volume V es fijo, Ω Ω t V V udv = V V u t dv 2 / 17

3 Leyes de Conservación Entonces, u V t dv = fdv V Finalmente, como esta relación es válida para cualquier volumen V, u t + f = 0 NOTA: Partimos de una Ley de Conservación definida sobre cierto volumen de control para derivar una ecuación diferencial parcial. Sin embargo, la física del problema está completamente capturada en las ecuaciones originales de balance. 3 / 17

4 Ejemplo: Ecuación de Advección-Difusión Por ejemplo, la ecuación de advección-dispersión para casos con ρ = ρ 0 puede ser escrita definiendo un flujo, f = vc D C Entonces la ecuación de balance de masas se escribe como, que es una EDP de segundo orden. C t + f = 0 C t + (vc) D 2 C = 0 4 / 17

5 Volúmenes Finitos Resolver, en vez de, f dω = t Ω V udv u t + f = 0 Para eso necesitamos definir volúmenes finitos y expresiones para evaluar flujos. Expresiones basadas en volúmenes finitos satisfacen las ecuaciones de balance por construcción si tenemos cuidado en definir las aproximaciones de los flujos. 5 / 17

6 Ejemplo: Aplicación de Volúmenes Finitos Como ejemplo tomemos la ecuación de conducción de calor, ( K T ) = S x x Tomando el volumen de control, La ecuación original puede ser reemplazada por la siguiente expresión, F w F e = S x 6 / 17

7 Ejemplo: Aplicación de Volúmenes Finitos (cont.) F w F e = S x Los flujos son definidos como, T F w = K w T x F e = K e w x e Para evaluar las derivadas debemos hacer una suposición respecto a la distribución de temperatura en cada volumen. Por ejemplo, constante o lineal. 7 / 17

8 Ejemplo: Aplicación de Volúmenes Finitos (cont.) El supuesto de distribución constante no es bueno porque las derivadas no están definidas en los bordes de los volúmenes. Entonces asuminos distribución lineal, T x = T P T W T w δx w x = T E T P e δx e 8 / 17

9 Ejemplo: Aplicación de Volúmenes Finitos (cont.) Reemplazando en, obtenemos, K w T P T W δx w F w F e = S x + K e T E T P δx e = S x Asumiendo medio homógeneo (K W = K E = K) y grilla regular (δx w = δx e = x), o, K ( x) 2 (T E 2T P + T W ) = S K ( x) 2 (T i+1 2T i + T i 1 ) = S Idéntica a la expresión de Diferencias Finitas!!!! 9 / 17

10 Ejemplo: Aplicación de Volúmenes Finitos (cont.) Volviendo a la expresión de volúmenes finitos, K w T P T W δx w + K e T E T P δx e = S x podemos escribir está expresión de forma más económica, donde, a E = K e δx e ; Extendiendo a 2D y 3D, a P T P = a E T E + a W T W + b a w = K w δx w ; a P = a E + a W ; b = S x a P T P = i a i T i + b; i = vecinos 10 / 17

11 Volúmenes Finitos: Condiciones de Conservación a P T P = i a i T i + b; i = vecinos Entonces, valor de T P es una combinación lineal de los valores de T en los nodos vecinos. Esto implica que los coeficientes a i deben satisfacer ciertas restricciones, a i > 0. Está condición es directa de la expresión anterior, pero también tiene bases físicas porque aumentos en T i deben contribuir de forma positiva en T P. a P = a i. Demostración simple, si sistema alcanza régimen i estacionario T i = T 0, entonces T P = T 0 sólo si esta condición se cumple. 11 / 17

12 Volúmenes Finitos: Flujos Una condición adicional para la consistencia de la formulación es que las expresiones para evaluar los flujos deben ser continuas a través de los bordes. Por ejemplo, qué pasa si K P K E? Flujo F e evaluado en volumen P, F P e = K P T E T P δx e Flujo F w evaluado en volumen E, F E w = K E T E T P δx e Entonces, Fe P Fw E. Esto no es físicamente posible y resulta en que la solución numérica no satisface la ecuación de conservación original. Además, esto se puede manifestar en problemas de estabilidad u oscilaciones de la solución. 12 / 17

13 Volúmenes Finitos: Flujos (cont.) Discontinuidad de los flujos desaparece si usamos una aproximación única para K e. Por ejemplo, K e = (K P + K E ) /2. Esto resuelve el problema de discontinuidad pero los flujos calculados con esta aproximación no son físicamente correctos. El coeficiente equivalente para el caso de coeficientes discontinuos es, K w = 2K P K E K P + K E = 2 1 K P + 1 K E Entonces, el coeficiente equivalente es igual la media armónica de los coeficientes. 13 / 17

14 Volúmenes Finitos: Flujos (cont.) Los flujos también pueden ser discontinuos dependiendo de las funciones que se usen para aproximar las variables. Por ejemplo, 14 / 17

15 Extensión a múltiples dimensiones 15 / 17

16 Staggered grid 16 / 17

17 Condiciones de Borde 17 / 17

Clasificación de Ecuaciones Diferenciales Parciales

Clasificación de Ecuaciones Diferenciales Parciales Clasificación de Ecuaciones Diferenciales Parciales Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile Semestre Primavera 2011 Calendario Cátedras sólo los miércoles.

Más detalles

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice.

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS La solución de diferencias finitas es ocupada en los análisis numéricos, por ejemplo:

Más detalles

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Hugo Franco, PhD Principios de Modelado y Simulación CLASIFICACIÓN DE LAS ECUACIONES DIFERENCIALES PARCIALES (PDE s) Definiendo la

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

Modelo de propagación de un contaminante en el aire

Modelo de propagación de un contaminante en el aire Modelo de propagación de un contaminante en el aire 1 Temario Explicación del problema Condiciones bajo la cual se desarrolla el modelo Derivación de la ecuación que describe el problema Explicación de

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones Métodos de elemento finito 7.4.. Método de Galerkin 7.4.. Formulación n de elemento finito en dimensiones Los métodos m de elemento finito (MEF) son una estrategia numérica alternativa muy popular para

Más detalles

Problemas de flujo en redes: aplicación a redes de transporte urbano

Problemas de flujo en redes: aplicación a redes de transporte urbano Problemas de flujo en redes: aplicación a redes de transporte urbano Cristián E. Cortés Universidad de Chile V Escuela de Invierno, Luis A. Santaló 23-27 de Julio 2012 1 1 Outline Caracterización del equilibrio

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Corriente Eléctrica. Alfonso Zozaya. Julio de 2003

Corriente Eléctrica. Alfonso Zozaya. Julio de 2003 Corriente Eléctrica Alfonso Zozaya Julio de 2003 Índice Índice 1 1. Densidad de corriente 2 1.1. Conservación de la carga o continuidad de la corriente, 3. 1.2. Tiempo de expansión o de relajación, 3.

Más detalles

Aproximación Polinomial de Funciones.

Aproximación Polinomial de Funciones. Aproximación Polinomial de Funciones José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E 1 Introducción En estas notas se presentan los fundamentos de los

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Superposición de Ondas en una dimensión y Propagacion de pulsos en medios disipativos

Superposición de Ondas en una dimensión y Propagacion de pulsos en medios disipativos Superposición de Ondas en una dimensión y Propagacion de pulsos en medios disipativos Ángel Rincón Electrodinámica Pontificia Universidad Católica de Chile. Instituto de Física. Santiago, 4 de Noviembre

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

5.1 Primera ley de la termodinámica

5.1 Primera ley de la termodinámica 55 Capítulo 5 Energía En este capítulo se verán los aspectos energéticos asociados al flujo de un fluido cualquiera. Para ésto se introduce, en una primera etapa, la primera ley de la termodinámica que

Más detalles

MÉTODO DE DIFERENCIAS FINITAS (FDM)

MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) Cambia ecuaciones diferenciales ecuaciones en diferencias finitas a Relaciona el valor de la variable dependiente en un punto a valores

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

Ecuación de Bessel Definición. Puntos singulares

Ecuación de Bessel Definición. Puntos singulares Capítulo 9 Ecuación de Bessel 9.1. Definición. Puntos singulares La ecuación de Bessel, una de las más importantes en física matemática, es una ecuación diferencial lineal de orden 2, x 2 y + xy +(x 2

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 4. Series de Fourier. 4.1 Serie de Fourier Vamos a intentar representar algunas funciones por su serie de Fourier de senos. Tomamos

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Partial Differential Equation PDE Toolbox

Partial Differential Equation PDE Toolbox Partial Differential Equation PDE Toolbox Por: Henry Copete QUE ES PDE TOOLBOX? Es una herramienta de MATLAB que facilita la resolución de problemas de ecuaciones diferenciales parciales (EDP) La solución

Más detalles

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL POSGRADOS DE CIENCIAS DE LA TIERRA Y DE CIENCIA E INGENIERÍA DE LA COMPUTACIÓN UNAM AUTOR: ISMAEL HERRERA REVILLA 1 Basado en el Libro Mathematical

Más detalles

TRAZADO DE LÍNEAS EQUIPOTENCIALES

TRAZADO DE LÍNEAS EQUIPOTENCIALES TRAZADO DE LÍNEAS EQUIPOTENCIALES Nota: Traer, por comisión, dos hojas de papel carbónico de x 30 cm c/u, una hoja A3 o similar de 5 x 30 cm un pendrive o cualquier otro tipo de dispositivo estándar de

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

1. El Método de Diferencias Finitas

1. El Método de Diferencias Finitas 1. El Método de Diferencias Finitas Por Guillermo Hernández García El Método consiste en una aproximación de derivadas parciales por expresiones algebraicas envolviendo los valores de la variable dependiente

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Métodos Matemáticos en Física Lección 7A: Coordenadas curvilíneas (app_d_apl)

Métodos Matemáticos en Física Lección 7A: Coordenadas curvilíneas (app_d_apl) Lección 7A: Coordenadas curvilíneas (app_d_apl) Operadores diferenciales: gradiente, divergencia y laplaciano Recordatorio: Coordenadas cartesianas Gradiente 1 Divergencia 2 1 Leccion: Coordenadas curvilíneas

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

REACTORES HOMOGENEOS. Dr. Rogelio Cuevas García 1

REACTORES HOMOGENEOS. Dr. Rogelio Cuevas García 1 Ingeniería de Reactores Obtención de las ecuaciones de diseño para reactores ideales Dr. Rogelio Cuevas García 1 Ingeniería de Reactores REACTORES IDEALES INTRODUCCIÓN BALANCE DE MATERIA ECUACIONES DE

Más detalles

Simulación Numérica de Yacimientos

Simulación Numérica de Yacimientos Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza email: frodriguezd@pep.pemex.com Tel: 5550871, 56 3017 al 19 Capítulo 3. Diferencias Finitas 1 3.1 Diferencias Finitas Considerar que

Más detalles

Solución de ecuaciones diferenciales por el método de elementos finitos

Solución de ecuaciones diferenciales por el método de elementos finitos Solución de ecuaciones diferenciales por el método de elementos finitos Departamento de Matemáticas Método de elemento finito Un problema del método de diferencias finitas es que al aplicarlo obtenemos

Más detalles

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 3: Técnicas de Conteo 1 /

Más detalles

Análisis de Volumen de Control

Análisis de Volumen de Control Capítulo 5 Análisis de olumen de Control Una técnica muy importante en mecánica de fluidos es el análisis a través de volúmenes de control. Ésta consiste en reexpresar las leyes básicas de conservación

Más detalles

Conducción en régimen transitorio

Conducción en régimen transitorio Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio.

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D) Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A B) Encargado de responder a todas las preguntas de la asignatura de todas las tutorías. Bartolo Luque (grupos C D) Este no tiene ni idea. No

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

METODO DE LOS VOLUMENES FINITOS

METODO DE LOS VOLUMENES FINITOS METODO DE LOS VOLUMENES FINITOS CI71D MODELACION NUMERICA EN INGENIERIA HIDRAULICA Y AMBIENTAL Prof. Y. Niño Sem. Primavera 2002 1 Introducción El método de los volúmenes de control finitos permite discretizar

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA DIPLOMA DE ESPECIALIZACIÓN EN FÍSICA (ANEP UDELAR) FÍSICA ESTADÍSTICA Curso 013 Práctico II Fundamentos de Probabilidad y Estadística. Fecha de Entrega: 13 de

Más detalles

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich.

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich. Simulación de Sistemas Continuos y a Tramos Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich 26 de junio 27 Hasta ahora solamente tratamos con ecuaciones diferenciales ordinarias

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

Aplicaciones Numéricas de la derivada

Aplicaciones Numéricas de la derivada Aplicaciones Numéricas de la derivada por Oliverio Ramírez La derivada como razón de cambio. De acuerdo con Fuenlabrada (001, p.151) razón es comparar dos cantidades por su cociente, es decir, a través

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

2.003 Primavera 2002 Prueba 1: soluciones. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1.

2.003 Primavera 2002 Prueba 1: soluciones. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1. Figura 1. Sección transversal y vista superior. Este montaje es parecido al que se utilizó en la práctica 2. El

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Simulación Numérica de Yacimientos

Simulación Numérica de Yacimientos Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza e-mail: frodriguezd@pep.pemex.com Tel: 5550872, 5622 307 al 9 Capítulo 4. Simulación Numérica de Flujo Multifásico Unidimensional 4.

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas Diseño óptimo de estructuras mecánicas bajo incertidumbre en las cargas Felipe Alvarez y Miguel Carrasco II Encuentro Núcleo Científico Milenio Sistemas Complejos de Ingeniería Universidad de Chile 15-16

Más detalles

2008/ INGENIERÍA DE LAS REACCIONES QUÍMICAS. Tipo: TRO Curso: 2 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS PROGRAMA RESUMIDO

2008/ INGENIERÍA DE LAS REACCIONES QUÍMICAS. Tipo: TRO Curso: 2 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS PROGRAMA RESUMIDO 2008/2009 Tipo: TRO Curso: 2 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS 6 2 1 0 0 2 PI 0 PL 1 PC 0 - Diseñar adecuadamente un reactor químico, partiendo de la aplicación de la cinética química

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1]

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1] TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS IngQui-5 [1] OBJETIVOS! Definir la etapa de reacción química como base del diseño de reactores, destacando la importancia de la cinética química, tanto en

Más detalles

Así, la incoporación de esta ecuación obliga a reescribir la ecuación modelo como:

Así, la incoporación de esta ecuación obliga a reescribir la ecuación modelo como: La ecuación de balance de masa total para un estanque con un Volumen V R de fluido, que descarga un fluido de densidad ρ a un flujo F S mientras entra un flujo F E, corresponde a la ecuación particular:

Más detalles

MECU 3031 ECUACIONES DE RECTAS

MECU 3031 ECUACIONES DE RECTAS MECU 3031 ECUACIONES DE RECTAS Diferentes formas de una ecuación Una ecuación en dos variables se puede expresar en más de una forma equivalente utilizando correctamente operaciones inversas para despejar

Más detalles

Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre

Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción Contenidos 1 Ecuaciones Diferenciales Ordinarias Método de

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES Objetivo: El alumno conocerá las ecuaciones en derivadas parciales y aplicará el método de separación de variables en su resolución.

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Limites: Definición: lim

Limites: Definición: lim Limites: Definición: El concepto de límite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Por ejemplo: Consideremos la función yy

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Control Automático. Compensadores de adelanto en el dominio de la frecuencia

Control Automático. Compensadores de adelanto en el dominio de la frecuencia Control Automático Compensadores de adelanto en el dominio de la frecuencia Contenido Introducción Estrategia Ecuaciones del compensador de adelanto Cálculo de un compensador de adelanto para corrección

Más detalles

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María 1 Mecánica Clásica - II Semestre 2014 Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María Problema 1. Una barra rígida (de altura despreciable)

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

Unidad I. CINÉTICA QUÍMICA AVANZADA

Unidad I. CINÉTICA QUÍMICA AVANZADA Universidad Nacional Experimental Francisco de Miranda Complejo Académico El Sabino Área de Tecnología Programa de Ingeniería Química Cátedra: Ingeniería de las Reacciones Profesora: Ing. Vanessa Molina

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Termodinamica II. CURSO ACADÉMICO - SEMESTRE Segundo semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Termodinamica II. CURSO ACADÉMICO - SEMESTRE Segundo semestre ANX-PR/CL/001-02 GUÍA DE APRENDIZAJE ASIGNATURA Termodinamica II CURSO ACADÉMICO - SEMESTRE 2015-16 - Segundo semestre GA_05TI_55000029_2S_2015-16 Datos Descriptivos Nombre de la Asignatura Titulación

Más detalles

Potencia y energía electromagnética.

Potencia y energía electromagnética. Potencia y energía electromagnética. Importancia. Existen muchos dispositivos de interés práctico para los ingenieros electrónicos y eléctricos que se basan en la transmisión o conversión de energía electromagnética.

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Secuencias Aleatorias

Secuencias Aleatorias Caminantes aleatorios. Secuencias Aleatorias Contenidos. Secuencias aleatorias. Caminantes aleatorios. Movimiento Browniano. La hipótesis de eficiencia de los mercados implica que la cotización de un título

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO GUÍA DOCENTE DE LA ASIGNATURA (2014-2015) REACTORES QUÍMICOS MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Química Industrial Ingeniería de la Reacción Química 3º 2º 6 Obligatoria PROFESORES DIRECCIÓN COMPLETA

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias Métodos Básicos basado en el libro Numerical Methods for Physics, de Alejandro L. García Ecuaciones Diferenciales Ordinarias p. 1 Derivada para Adelante La expansión

Más detalles

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 5 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos numéricos en la conducción de calor Muchos problemas que se encuentran en la practica comprenden configuraciones geométricas

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA

FUNCIONES EXPONENCIAL Y LOGARÍTMICA FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles