Funciones de Varias Variables. Juan Manuel Rodríguez Prieto

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de Varias Variables. Juan Manuel Rodríguez Prieto"

Transcripción

1 Funciones de Varias Variables Juan Manuel Rodríguez Prieto

2 Consideremos el volumen de un cilindro circular recto El volumen del cilindro depende de: radio Altura Matemáticamente, se puede escribir como sigue: V ( r, h) 2 r h Decimos entonces que el volumen, es un función que depende de el radio y la altura

3 V ( r, h) 2 r h x 2 y y 2 4 x 6 8 1

4 V ( r, h) 2 r h A los valores que pueden tomar r y h, lo llamaremos dominio de la función. Qué valores pueden tomar r y h en la función de volumen del cilindro? A los valores que puede tomar V(r,h) los llamaremos rango de la función. Qué valores pueden tomar V?

5 Considere la siguiente función: w( x, y) y x 2 Qué valores pueden tomar x y y? Cual es el dominio de w? Debido a que la raíz cuadrada, puede tener como dominio solo valores positivos, se tiene que O que 2 y x y x 2

6 Considere la siguiente función: w( x, y) y x 2 Recordemos la gráfica de y x 2

7 Considere la siguiente función: w( x, y) y x Qué valores de la grafica satisfacen la desigualdad? 2 y x 2 el dominio es cualquier pareja de puntos que se encuentran sobre la parábola.

8 Considere la siguiente función: w( x, y) y x 2 El rango de la función w va a estar dado por:, )

9 Considere la siguiente función: w( x, y) 1 xy El dominio de la función w va a estar dado por: xy El rango de la función w va a estar dado por:,) (, )

10 Considere la siguiente función: sin(x y) w( x, y) sin( xy) El dominio de la función w va a estar dado por: todo el plano x y y El rango de la función w va a estar dado por: 1,1 -.5 y x.5 1

11 Considere la siguiente función: w( x, y) y 1 x y 2 2 y/(x 2 + y 2 + 1) y -5-5 x

12 Considere la siguiente función: w( x, y) x y 2 2 x 2 + y y x.5 1

13 Considere la siguiente función: w x y x y 2 2 (, ) sin( ) sin(x 2 + y 2 ) sin(x 2 + y 2 ) z y -1-1 x y x 2 4

14 Considere la siguiente función: w x y x y 2 2 (, ) cos( ) cos(x 2 + y 2 ) cos(x 2 + y 2 ) z y -1-1 x y x 2 4

15 Considere la siguiente función: w( x, y) sin( x)cos( y) cos(y) sin(x) y -2-2 x 2

16 Considere la siguiente función: w( x, y, z) x y z El dominio de la función w va a estar dado por: todo el espacio (cualquier valor de x y y z) El rango de la función w va a estar dado por:, )

17 Ecuación de un plano

18 Ecuación de un paraboloide

19 Paraboloide hiperbólico o silla de montar

20 Curvas de nivel

21 Curvas de nivel El conjunto de puntos en el plano donde una función f(x,y) tiene un valor constante f(x,y) = c es una curva de nivel de f Dada la función 2 2 Trace las curvas de nivel x f ( x, y) 1 x y f ( x, y) f ( x, y) 51 f ( x, y) 75 y 2 2 Circulo de radio 1 y centro en el origen 1 x y 2 2 Circulo de radio 7 y centro en el origen 49 Las tres ecuaciones se reconocen como la ecuación de un circulo x y 2 2 Circulo de radio 5 y centro en el origen 25

22 Curvas de nivel El conjunto de puntos en el plano donde una función f(x,y) tiene un valor constante f(x,y) = c es una curva de nivel de f Dada la función 2 2 Trace las curvas de nivel f ( x, y) 1 x y f ( x, y) f ( x, y) 51 f ( x, y) 75 SI f representa la temperatura y x y y dos puntos en el espacio, f(x,y)= representa todo el conjunto de puntos donde la temperatura es. De la misma manera f(x,y)=51, representa todos los puntos donde la temperatura es 51, sobre el circulo de radio 7 y centro en el origen la temperatura es 51.

23 Curvas de nivel El conjunto de puntos en el plano donde una función f(x,y) tiene un valor constante f(x,y) = c es una curva de nivel de f Dada la función 2 2 f ( x, y) 1 x y Curvas de nivel altura radio

24 Curvas de nivel El conjunto de puntos en el plano donde una función f(x,y) tiene un valor constante f(x,y) = c es una curva de nivel de f Dada la función 2 f ( r, h) r h Curvas de nivel 2.35e e e e+3 altura e radio

25 Curvas de nivel eje y eje x

26

27 Curvas de nivel estatura peso

28

29 (2 x + 3 y)/(5 x - 2 y) y -5-5 x

30 (x 2 + y 2-64) 1/ z y x 1 2

31 x y y -5-5 x

32 (2 x)/(x 2 + y 2 + 3) y x 5 1

33 log(2 x + y - 1) y -5-1 x 5

34 sugeridos

35 Paraboloide elíptico

36 curvas de nivel Paraboloide elíptico

37

38

39 Paraboloide

40 Curvas de nivel paraboloide

41

42

43

44

45 Superficies de nivel

46 Sección z=

47

48 Sección x= Plano zy

49 Paraboloide Secciones Plano xy, z= Plano xz, y=

50 Paraboloide

51 Cilindro parabólico Sección: plano xz, y=

52

Funciones de Varias Variables. Juan Manuel Rodríguez Prieto

Funciones de Varias Variables. Juan Manuel Rodríguez Prieto Funciones de Varias Variables Juan Manuel Rodríguez Prieto Consideremos el volumen de un cilindro circular recto El volumen del cilindro depende de: radio Altura Matemáticamente, se puede escribir como

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Clase 1: Funciones de Varias Variables

Clase 1: Funciones de Varias Variables Clase 1: Funciones de Varias Variables C. J. Vanegas 29 de abril de 2008 1. La geometría de funciones con valores reales Considere la siguiente función f: donde x = (x 1,..., x n ). f : A R n R m x A f(x)

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

SUPERFICIES CUÁDRICAS

SUPERFICIES CUÁDRICAS SUPERFICIES CUÁDRICAS Un cuarto tipo de superficie en el espacio tridimensional son las cuádricas. Una superficie cuádrica en el espacio es una ecuación de segundo grado de la forma Ax + By + Cz + Dx +

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES

1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES 1.. Conjuntos definidos mediante funciones 1. CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES A lo largo de este texto se verá la necesidad de diferenciar dos eventos: dada una función, encontrar los diferentes

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Algebra Lineal y Geometría

Algebra Lineal y Geometría Algebra Lineal y Geometría Unidad n 11:Ecuación General de Segundo Grado en Tres Variables. Algebra Lineal y Geometría Esp.Liliana Eva Mata 1 Contenidos Superficies. Relaciones elementales entre propiedades

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

Superficies cuádricas

Superficies cuádricas Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO 4. Funciones de varias variables. 1. Describe y dibuja en el plano el dominio de las siguientes funciones en el espacio: f(x, y) = f(x, y) = 36 4x 2 9y 2

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..

Más detalles

CLASE 1: Funciones y Gráficas

CLASE 1: Funciones y Gráficas CLASE 1: Funciones y Gráficas Sergio Stive Solano Sabié Agosto de 2011 CLASE 1: Funciones y Gráficas Sergio Stive Solano Sabié Agosto de 2011 Cuatro maneras de representar una función Definición 1.1 Una

Más detalles

2 x. x y &

2 x. x y & Sea y(x) = 3 sen(x) con x(t) = t - 3 a) d y d t no se puede calcular pues depende de la variable x y no de la variable t b) 3 cos (t -3) c) 3 cos (t -3) 4 t 4.- Cuál es la verdadera? e % x a) d x no existe

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

CALCULO DE CENTROS DE MASA

CALCULO DE CENTROS DE MASA CALCULO DE CENTOS DE MASA Determinar la posición del C.M. de un semicono. Solución: I.T.I., I.T.T., 4 Sea el semicono de la figura orientado a lo largo del eje X, de altura radio. Dado que el plano XY

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,

Más detalles

b) En qué se diferencia la gráfica de un elipsoide que tiene un par semiejes iguales, con la de otro elipsoide cuyos semiejes son todos distintos?

b) En qué se diferencia la gráfica de un elipsoide que tiene un par semiejes iguales, con la de otro elipsoide cuyos semiejes son todos distintos? Unidad Trabajo Práctico Superficies en 3D 01 CONOCIMIENTOS PREVIOS PARA SUPERFICIES Es necesario que sepas: - operar con expresiones algebraicas - resolver sistemas de ecuaciones e interpretar sus soluciones

Más detalles

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Funciones de dos o más variables. Gráficas. Curvas de nivel

Funciones de dos o más variables. Gráficas. Curvas de nivel Funciones de dos o más variables. Gráficas. Curvas de nivel 1 1 Departamento de Física y Matemáticas. Universidad de Alcalá de Henares. Contenidos Introducción 1 Introducción 2 3 4 Índice Introducción

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

REPRESENTACION GRAFICA EN R 3

REPRESENTACION GRAFICA EN R 3 1 REPRESENTACION GRAFICA EN R 3 Próximamente se estudiarán relaciones entre tres variables, está relación puede venir dada a través de una ecuación o una función. Para visualizar mejor las relaciones siempre

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables 5.1. Introducción Supongamos que tenemos una placa rectangular R y necesitamos conocer la temperatura T en cada uno de sus puntos. T es una función que depende de las

Más detalles

Práctica 3. Derivadas parciales

Práctica 3. Derivadas parciales Práctica 3. Derivadas parciales Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- DERIVADAS PARCIALES Dada f@x, yd una función

Más detalles

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo.

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo. Diez ejemplos de clasificación de puntos críticos cuando el hsiano nulo. 1. Consideramos el campo calar f(x, y) = x 2 y 3 definido sobre R 2. Su gradiente f(x, y) = ( 2xy 3, 3x 2 y 2), y los puntos críticos

Más detalles

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS La Cadena y la Catenaria MATH 2252 Calculus II Dra. Carmen Caiseda Copyright 2015 La Cadena y la Catenaria Engage: 1. Introducción: MSEIP Engineering Everyday

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

TALLER DE CONICAS. Ejemplo 1: En las siguientes ecuaciones diga que posible curva es:

TALLER DE CONICAS. Ejemplo 1: En las siguientes ecuaciones diga que posible curva es: TALLER DE CONICAS Ejemplo 1: En las siguientes ecuaciones diga que posible curva es: 1. y -4x =4. x=y. x-y+6=0 4. 9x +4y -18x+16y-11=0 5. 9x -4y -18x-16y-4=0 6. 4x +y =4 7. 4x 9y =6 8. 4x+=0 9. 5y-=0 10.

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Entonces inventamos los números enteros: Z = { -2, -1,

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Capitulo V: Relaciones

Capitulo V: Relaciones Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano

Más detalles

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables Grado en Ingeniería agrícola y del medio rural Tema 4 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS 0-0 Guaaquil, 7 de diciembre de 00 NOMBRE: No. DE CÉDULA DE IDENTIDAD: FIRMA: INSTRUCCIONES Escriba sus

Más detalles

A partir de la gráfica de las siguientes funciones, indica cuál es su dominio de definición y su recorrido:

A partir de la gráfica de las siguientes funciones, indica cuál es su dominio de definición y su recorrido: Modelo de eamen Ejercicio nº. Halla el dominio de definición de las siguientes funciones: a) y = ( 3) b) y = S Fecha: b) > 0 > Dominio = (, + ) Ejercicio nº. A partir de la gráfica de las siguientes funciones,

Más detalles

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico Materia: Matemática de 5to Tema: Ecuación vectorial Marco Teórico Como ya sabemos y = mx + b es la forma pendiente-intersección de una recta. Mientras que esta ecuación funciona bien en el espacio de dos

Más detalles

TEMA 5: DERIVADAS PARCIALES

TEMA 5: DERIVADAS PARCIALES Matemáticas. Curso 2011/2012 Graos en ADE e Consultoría. Universidade de Vigo. En muchos problemas comunes aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza)

Más detalles

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas Secciones cónicas Tema 02: Cónicas, cuádricas, construcción de conos y cilindros Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Las secciones cónicas toman su

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Limite de funciones de dos variables independientes - Limite Doble

CALCULO DIFERENCIAL E INTEGRAL II. Limite de funciones de dos variables independientes - Limite Doble CACUO DIFERENCIA E INTEGRA II TEMA 2 (Última modificación 8-7-2015) imites Antes de definir el concepto de ites para funciones de dos o mas variables, recordaremos el concepto de ites para funciones de

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

(b) Monotonía, máximos y mínimos locales y absolutos.

(b) Monotonía, máximos y mínimos locales y absolutos. CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1400 1) Sea fx) = x 3 x 3 Encontrar: a) Dominio, raíces y paridad b) Monotonía, máximos y mínimos locales y absolutos, y el rango c) Concavidad

Más detalles

Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando

Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando Hallar el dominio de las siguientes funciones : 4. F() = 3 8 0 6 5. F() = 3 7 6. F() = 6 7. F() = 9 4 8. F() = ln 9. F() = e e 30. F() = e 3 3. F() = log 7 3. F() = sen 33. F() = 3 8 34. F() = 3 3 4 35.

Más detalles

Práctica

Práctica UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica. 5141. Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones

Más detalles

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA FUNCIONES Y TRIGONOMETRÍA 1. Determine el dominio de las siguientes funciones: a) f() = + 7 b) g() = + 7, 0 6 c) f() = 5 d) f() = 5 + + 1 e) f() = 1 f ) f() = 1 g) f() = ( 1)( )( ) h) g() = i) g() = 1

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

#Apartado (b): 4x 2 C9 y 2 = 1 : elipse de centro 0, 0 ; semiejes a = 1 2, b = 1 3.

#Apartado (b): 4x 2 C9 y 2 = 1 : elipse de centro 0, 0 ; semiejes a = 1 2, b = 1 3. #Ejercicio 1: identifica las siguientes curvas del plano with plots : # Apartado (a): x 2 Cy 2 = 4 : circunferencia de centro 0, 0, radio 2. En efecto, obsérvese que la ecuación puede escribirse xk0 2

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Ejercicios típicos del primer parcial

Ejercicios típicos del primer parcial Ejercicios típicos del primer parcial El primer examen parcial tiene tres ejercicios teóricos y dos prácticos. Los límites entre los dos tipos de ejercicios son difusos. A continuación se proponen ejercicios

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA N o 2 DE GEOMETRÍA ANALÍTICA Profesor: David Elal Olivero Primer año Plan Común de Ingeniería Primer Semestre 2009

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Ejercicios Propuestos. Tarea No. 2. f z, y. z 1. Encontrar las derivadas parciales,, x. de los siguientes ejercicios: a. z = x 5 y 4 + ye 2x b. c. d.

Ejercicios Propuestos. Tarea No. 2. f z, y. z 1. Encontrar las derivadas parciales,, x. de los siguientes ejercicios: a. z = x 5 y 4 + ye 2x b. c. d. Ejercicios Propuestos. Tarea No.. f z 1. Encontrar las derivadas parciales,, x x f z, z de los siguientes ejercicios: x a. z = x 5 4 + e x b. c. d. e. f. g. f(x,, z) = xsen(z) xzsen() h. i. f(x,, z) =

Más detalles

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución

Más detalles