MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 17

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 17"

Transcripción

1 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 17

2 P. Vásquez (UPRM) Conferencia 2 / 17 Ecuaciones lineales MATE 4009 Introducción En esta sección se hará una introducción a un problema de valor inicial, ED homogéneas y no homogéneas. Además funciones linealmente independientes,y las soluciones de EDH y EDNH. Problema de valor inicial Una ED de orden n de valor inicial es de la forma: Resolver: (1) Sujeto a: Ejemplos 1 Halle un miembro de la familia que es solución al PVI y = c 1 x + 2 ln x, (0, ), x 2 y xy + y = 0, y (1) = 3, y (1) = 1

3 P. Vásquez (UPRM) Conferencia 3 / 17 Theorem Existencia y unicidad Sean a n (x), a n 1 (x), + + a 1 (x), a 0 (x) y g (x) funciones continuas en un intervalo I y sea a n (x) = 0 para todo x en I. Si x = x 0 es cualquier punto en el intervalo I, entonces una solución al PVI (1) existe en el intervalo y es única. 2 Halle un intervalo con centro en x = 0 para el cual el PVI tiene solución única y + (tan x) y = e x, y (0) = 1, y (0) = 0

4 P. Vásquez (UPRM) Conferencia 4 / 17 MATE 4009 Problema de valor inicial Es una ED de orden dos o mayor en el cual la variable dependiente o sus derivadas pueden estar evaluadas en diferentes puntos y es de la forma: Resolver: a 2 (x) y + a 1 (x) y + a 0 (x) y = g (x) (2) Sujeto a: y (a) = y 0, y (b) = y 1 Nota y (a) = y 0, y (b) = y 1 son llamadas las condiciones de frontera. 3 Determine si un miembro de la familia de soluciones satisface las condiciones de frontera. y = c 1 x 2 + c 2 x 4 + 3, x 2 y 5xy + 8y = 24, 1 y ( 1) = 0, y (1) = 4 2 y (1) = 3, y (2) = 15

5 Ecuaciones homogéneas Una EDL de orden n homogénea es de la forma: 4 La siguiente es una EDLH Notaciones En cálculo se consideran las siguientes notaciones: Operador diferencial El símbolo D es llamado el operador diferencial y transforma una función ( ) diferenciable en otra ( función. ) Si y = f (x) f (x) = Df, d dy dx dx = D 2 d f, en general d n 1 y dx = D n f, donde f es dx n 1 una función lo suficientemente diferenciable. 5 D ( tan 1 x ) = En general una ED de orden n, se define: L = Por ejemplo: L (af (x) + bg (x)) = al (f (x)) + bl (g (x)), donde a y b son constantes. En general una EDLH se representa por: L (y) = 0 P. Vásquez (UPRM) Conferencia 5 / 17 (3)

6 P. Vásquez (UPRM) Conferencia 6 / 17 Theorem Principio superposición EH Sean y 1, y 2,, y k soluciones de la ED (6) en un intervalo I. Entonces la combinación lineal y = c 1 y 1 + c 2 y 2, + + c k y k donde c 1, c 2,, c k son constantes arbitrarias, es también una solución en I. Nota La constante y = c 1 y 1 (x) de una solución y 1 (x) de una EDLH también es solución. Además, toda EDLH tiene como solución trivial a y = 0 6 Verifique que las funciones dadas son soluciones de la ED dada x 2 y + xy + y = 0; cos (ln x), sin (ln x), (0, )

7 P. Vásquez (UPRM) Conferencia 7 / 17 Definición Un conjunto de funciones f 1 (x), f 2 (x),, f n (x) se dice que es linealmente independiente en un intervalo I si existen contantes c 1, c 2,, c n no nulas, tal que: para todo x en el intervalo I. Si el conjunto de soluciones no es LI, se dice que es linealmente dependiente. Wroskiano Suponga que cada una de las funciones f 1 (x), f 2 (x),, f n (x) posee al menos n 1 derivadas. El determinante: f 1 f 2 f n f 1 f 2 f n W (f 1, f 2,, f n ) =... f (n 1) 1 f (n 1) 2 f n (n 1) donde las primas denotan derivadas es llamado el Wroskiano de las funciones.

8 Theorem Sean y 1, y 2,, y n n soluciones de la ED (3) de orden n en el intervalo I. Entonces el conjunto de soluciones es linealmente independiente en I si y sólo si W (y 1, y 2,, y n ) = 0 para todo x en el intervalo. Conjunto fundamental de soluciones Cualquier conjunto y 1, y 2,, y n de n soluciones linealmente independiente de la EDLH (3) de orden n en el intervalo I se dice que es un conjunto fundamenta de soluciones en el intervalo. Theorem Existe un conjunto fundamental de soluciones para la EDLH (2) de orden n en un intervalo I. Theorem Sea y 1, y 2,, y n un conjunto fundamental de soluciones de la EDLH (2) en el intervalo I. Entonces la solución general de la ecuación en el intervalo I es: y = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) P. Vásquez (UPRM) Conferencia 8 / 17

9 P. Vásquez (UPRM) Conferencia 9 / 17 7 Determine si las funciones f 1 (x) = cos 2x, f 2 (x) = 1, f 3 (x) = cos 2 x son LI en el intervalo (, )

10 P. Vásquez (UPRM) Conferencia 10 / 17 8 Verifique que las funciones y 1 (x) = e x cos 2x, y 2 (x) = e x sin 2x son soluciones de la ED y 2y + 5y = 0 en el intervalo (, ) y luego forme la solución general.

11 P. Vásquez (UPRM) Conferencia 11 / 17 Ecuaciones no homogéneas Una EDL no homogénea es de la forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 1 (x) y + a 0 (x) y = g (x) (4) 9 La siguiente es una EDLNH Nota Cualquier función y p sin parametros se dice que es una solución particular o integral de la ecuación. Si y 1, y 2,, y n son soluciones de (3) en el intervalo I y y p es cualquier solución particular de (4), entonces la combinación lineal: y = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) + y p es también solución de la EDLNH (4).

12 P. Vásquez (UPRM) Conferencia 12 / 17 Theorem Sea y p cualquier solución particular de la EDLNH (4) de orden n en el intervalo I y sean y 1, y 2,, y n soluciones de (3) en I. Entonces la solución general en el intervalo es: y = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) + y p Función complementaria La solución que se presenta en el teorema anterior se puede escribir como la suma de dos funciones: y = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) + y p = y c (x) + y p (x). La combinación lineal y c (x) = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) es llamada la función complementaria de (4). En otras palabras para resolver una EDLNH, primero se halla la función complementaria y luego la solución particular.

13 P. Vásquez (UPRM) Conferencia 13 / 17 Theorem Sean y p1, y p2,, y pk k soluciones particulares de la EDLNH (4) de orden n sobre un intervalo I, que corresponden a k funciones distintas g 1, g 2,, g k. Esto es, suponga y pi denota una solución particular de la ED: a n (x) y (n) + a n 1 (x) y (n 1) + + a 1 (x) y + a 0 (x) y = g i (x), donde i = 1, 2,, k. Entonces: y p = y p1 (x) + y p2 (x) + + y pk (x) es una solución particular de: a n (x) y (n) + a n 1 (x) y (n 1) + + a 1 (x) y + a 0 (x) y = g 1 (x) + g 2 (x) + + g p (x)

14 P. Vásquez (UPRM) Conferencia 14 / Verifique que la función y = c 1 cos x + c 2 sin x + x sin x + (cos x) ln (cos x) en ( π/2, π/2) es solución de la ED y + y = sec x

15 P. Vásquez (UPRM) Conferencia 15 / Ex 35 pág 129

16 P. Vásquez (UPRM) Conferencia 16 / 17

17 P. Vásquez (UPRM) Conferencia 17 / 17

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 23 P. Vásquez (UPRM) Conferencia 2/ 23 Series de potencias MATE 4009 Introducción Recuerde que una serie de potencias en x a es una serie infinita

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Departamento De Ciencias Naturales y Exactas Universidad De La Costa 09 de Marzo del 2018 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 09 de Marzo del 2018 1 /

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 23 Series de potencias MATE 4009 IntroducciÛn Recuerde que una serie de potencias en x! a es una serie inönita de la forma: c n (x! a) n = (1) n=0

Más detalles

Ecuaciones diferenciales lineales

Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales de orden n Una ecuación diferencial lineal de orden n es una expresión del tipo a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones.

ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones. ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones. En cada caso obtenga la solución general de la ecuación diferencial dada, y luego la solución particular dada

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 24

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 24 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 24 P. Vásquez (UPRM) Conferencia 2/ 24 MATE 3031 Valores máximos y mínimos Las aplicaciones más importantes del cálculo diferencial se dan en los

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 25 P. Vásquez (UPRM) Conferencia 2/ 25 Integración Aproximada MATE 3032 Hay dos situaciones en las que es imposible encontrar el valor exacto de

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 23 P. Vásquez (UPRM) Conferencia 2/ 23 Areas y distancias MATE 3031 En esta sección se tratara de encontrar el área bajo una curva o la distancia

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

SERIE TEMA 2 ECUACIONES DIFERENCIALES

SERIE TEMA 2 ECUACIONES DIFERENCIALES SERIE TEMA ECUACIONES DIFERENCIALES 07- A) Antes de iniciar la parte operativa del proceso de resolución de ecuaciones diferenciales, se te solicita completar las siguientes afirmaciones: a) En el tema

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje:

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: Análisis Numérico y Ecuaciones Diferenciales Unidad 1.

Más detalles

Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes.

Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes. Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes. La ecuación de segundo orden con coeficientes constantes se escribe como: d y d dy p q y f p y q son constantes d Si f

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 4. Teoría preliminar: Ecuaciones lineales 4.. Problemas con valores iniciales y con valores en la frontera 4.. Ecuaciones homogéneas 4..3 Ecuaciones no homogéneas

Más detalles

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden 3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 18

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 18 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 18 P. Vásquez (UPRM) Conferencia 2 / 18 MATE 3031 Derivadas y razones de cambio En esta sección se discutirá como hallar la pendiente de una recta

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 13

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 13 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 13 P. Vásquez (UPRM) Conferencia 2/ 13 Ecuaciones Ejemplos 1 La suma de tres números enteros positivos consecutivos es 50, halle los números. En

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 26 Modelos lineales: PVI MATE 4009 Objetivo En esta secciûn se resolver n sistemas din micos lineales en el cual cada modelo matem tico es una EDL

Más detalles

X (t ) w t + sen w t.

X (t ) w t + sen w t. 1 2 8 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR En los problemas 11 y 12, un intervalo que abarque x = 0 para el cual el problema de valor inicial correspondiente tenga solución única. ll. (x =x, y(o)=

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 17

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 17 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 7 P. Vásquez (UPRM) Conferencia / 7 Continuidad Recuerde que en sección., en algunos casos se podía calcular el límite de una función f cuando se

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN * 40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar

Más detalles

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Guía de ejercicios N 6 parte Complementos Espacios Vectoriales En los ejercicios que siguen utilizamos la siguientes notaciones: R n [x es el espacio vectorial sobre

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1 Parte IV Ecuaciones Diferenciales Esta sección tiene como propósito dar algunos de los conceptos básicos relacionados con las ecuaciones diferenciales e ilustrar su importancia en la resolución de problemas

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 16

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 16 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 16 Curvas soluciones sin solución algebraica I. Campos direccionales Recuerde que dada la ED y 0 = f (x, y), si f y f satisfacen y ciertas condiciones,

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.1 Conceptos básicos En este capítulo trataremos sobre el procedimiento que debemos llevar a cabo para obtener la solución general de la ED lineal

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES INGENIERÍA (NIVEL LICENCIATURA) Curso Básico - Primavera 2017 Omar De la Peña-Seaman Instituto de Física (IFUAP) Benemérita Universidad Autónoma de Puebla (BUAP) 1 / Omar De la

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 26 Modelos lineales: PVI MATE 4009 Objetivo En esta secciûn se resolver n sistemas din micos lineales en el cual cada modelo matem tico es una EDL

Más detalles

Banco de preguntas para el primer examen departamental Ecuaciones Diferenciales Resp. Dr. José Eligio Moisés Gutiérrez Arias

Banco de preguntas para el primer examen departamental Ecuaciones Diferenciales Resp. Dr. José Eligio Moisés Gutiérrez Arias Banco de preguntas para el primer eamen departamental Ecuaciones Diferenciales Resp. Dr. José Eligio Moisés Gutiérrez Arias Ejercicio 1 Veri que que las ecuaciones siguientes sean homogéneas resuélvalas.

Más detalles

X (t ) w t + sen w t.

X (t ) w t + sen w t. 1 2 8 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR En los problemas 11 y 12, un intervalo que abarque x = 0 para el cual el problema de valor inicial correspondiente tenga solución única. ll. (x =x, y(o)=

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016 Examen de Admisión a la Maestría / Doctorado 4 de Junio de 6 Nombre: Instrucciones: En cada reactivo seleccione la respuesta correcta encerrando en un círculo la letra correspondiente. Puede hacer cálculos

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 23 Cómo la derivada afecta la forma de una grá ca? En muchas de las aplicaciones del cálculo depende de nuestras destrezas para deducir situaciones

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 24

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 24 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 4 Grá cas de ecuaciones en dos variables Una ecuación en dos variables expresa una relación entre dos cantidades. Un punto (x, y) satisface una ecuación

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones Universidad de Costa Rica MA005 Ecuaciones Diferenciales Escuela de Matemáticas 6 de Mao de 07. Examen Parcial # Instrucciones Cuenta con 3 horas para realizar el examen. El examen cuenta de 7 preguntas

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 24

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 24 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 24 Valores m ximos y mìnimos Las aplicaciones m s importantes del c lculo diferencial se dan en los problemas de optimizaciûn, en los cuales se desea

Más detalles

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D) Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A B) Encargado de responder a todas las preguntas de la asignatura de todas las tutorías. Bartolo Luque (grupos C D) Este no tiene ni idea. No

Más detalles

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26 Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia

Más detalles

Resp: Dr. José Eligio Moisés Gutiérrez Arias

Resp: Dr. José Eligio Moisés Gutiérrez Arias BANCO DE PREGUNTAS PARA EL SEGUNDO EXAMEN DEPARTAMENTAL Resp Dr. José Eligio Moisés Gutiérrez Arias ECUACIONES DIFERENCIALES 1. En cada uno de los problemas siguientes determinese la solución general de

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.3 Ecuaciones diferenciales lineales de orden n En esta sección presentaremos un método general para resolver ED lineales de orden n cuya forma es

Más detalles

Semana 05 EDOs Exactas - Aplicaciones

Semana 05 EDOs Exactas - Aplicaciones Matemáticas Aplicadas MA101 Semana 05 EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería EDOs de 1er orden (Semana 01) Ecuaciones no lineales

Más detalles

Contenido. 3. Ecuaciones diferenciales de orden superior. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53

Contenido. 3. Ecuaciones diferenciales de orden superior. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53 Contenido 3. Ecuaciones diferenciales de orden superior 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53 Contenido: Tema 03 3. Ecuaciones diferenciales de orden

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 13

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 13 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 13 P. Vásquez (UPRM) Conferencia 2 / 13 MATE 3171 Modelando con ecuaciones Guías para resolver problemas verbales 1 Identificar la(s) variable(s)

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Repaso de límites 4 4 3 NE 6 Aplicaciones de la derivada Encuentre la pendiente de la recta tangente en el punto (9,3) a la curva: f ( x) x La pendiente de la recta tangente

Más detalles

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 25 P. Vásquez (UPRM) Conferencia 2/ 25 MATE 3031 Cómo la derivada afecta la forma de una gráfica? En muchas de las aplicaciones del cálculo depende

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones de 2do Orden) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/20 Operadores

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden.

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. MATEMÁTICAS ESPECIALES II - 8 PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. Considere el sistema de ecuaciones diferenciales ordinarias (EDOs) de primer orden dx dt = f (t,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Capítulo 3: MODELOS CONTINUOS. ECUACIONES DIFERENCIALES ORDINARIAS

Capítulo 3: MODELOS CONTINUOS. ECUACIONES DIFERENCIALES ORDINARIAS Capítulo 3: MODELOS CONTINUOS. ECUACIONES DIFERENCIALES ORDINARIAS Dr. Ángel Ferrández Izquierdo Fundamentos matemáticos para el estudio del Medio Ambiente Departamento de Matemáticas Universidad de Murcia

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS TEMA 4- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS 41 - Introducción Denición: Un sistema de ecuaciones diferenciales de primer orden en el que sus derivadas estén dadas explícitamente se puede expresar

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Departamento de Matemáticas Facultad de Ciencias Naturales Recinto de Río Piedras MATE 3151 Segundo Examen 2 de abril de 2014 Nombre: No. de estudiante: Profesor: Sección: Instrucciones Las reglas para

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1 ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;

Más detalles

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Tema 5 Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Una ecuación diferencial ordinaria de orden n es de manera general una expresión del tipo: F (x, y, y, y,..., y (n) ) = 0 o bien,

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

ESPACIOS Y SUBESPACIOS VECTORIALES

ESPACIOS Y SUBESPACIOS VECTORIALES ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 0 Ceros complejos y el teorema fundamental del álgebra En las secciones anteriores se ha discutido que un polinomio de grado n puede tener a lo más

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE

ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE Departamento De Ciencias Naturales y Exactas Universidad De La Costa 20 de Abril del 2018 ECUACIONES DIFERENCIALES CON COEFICIENTES

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles