Anexo a las guías 1 y 2 Notación y convenciones para tensores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Anexo a las guías 1 y 2 Notación y convenciones para tensores"

Transcripción

1 Anexo a as guías 1 y 2 Notación y convenciones para tensores Sergio Dain 25 de mayo de Notación abstracta E espacio vectoria o denotamos por V, sus eementos son amados vectores. Para denotar un vector usaremos en genera as etras v, w,. E espacio dua V está formado por todos os funcionaes ineaes de V en os reaes R. Un eemento de dua V o denotaremos en genera por etras griegas minúscuas α, β,. Es decir que ω V es un mapa inea Dado v V y ω V denotamos con ω : V R, (1 ω(v (2 e número rea que da e mapa ω apicado a vector v. Esta convención de diferenciar con distintos tipos de etras os vectores y covectores es sóo una guía, pero no es necesario seguira estrictamente, dado que no se puede generaizar a tensores de rango más ato. En rigor, una de as desventajas de a notación abstracta (es decir, sin hacer referencias a as componentes es que no permite distinguir entre un vector y un covector a menos que o digamos expícitamente. Siempre identificaremos e dobe dua V con V, por o tanto usamos como notación que v(ω = ω(v (3 Esta ecuación debe ser interpretada como una definición de ado izquierdo. 1

2 Un tensor de tipo ( k es un mapa mutiinea que toma k eementos de dua V y eementos de espacio vectoria V y nos da un número rea. Es decir, si T es un tensor de tipo ( k entonces T : V V V V R. (4 k De manera anáoga a (2 y (3, e número rea que resuta de apicar e tensor T a k covectores α, β, y vectores v, w o denotamos como sigue T (α,, β ; v,, w. (5 k covectores vectores Como convención ordenamos todas as entradas covectoriaes a a izquierda y as vectoriaes a a derecha. Esto es sóo una convención, o único reevante es, por supuesto, saber cuantas entradas covectoriaes y cuántas vectoriaes tiene un tensor. 2. Componentes Una base para e espacio vectoria V, de dimensión n, a denotamos como e i en donde i es un índice que va de 1 a n. Es decir, e i es un conjunto de n vectores. Las componentes de un vector v as denotamos como v i. Esta convención sí es estricta, siempre denotaremos as componentes vectoriaes con índices arriba. E vector v se escribe en componentes como v = n v i e i = v 1 e v n e n. (6 i=1 Notar que esta notación es consistente: as componentes v i son números reaes, os e i son vectores y por o tanto v i e i es un vector. Estamos escribiendo a vector v como a suma de vectores. Para simpificar a notación, suprimiremos e símboo de suma en (6, es decir que v = v i e i. (7 Esta es una convención importante (de a que nunca nos apartaremos y que tiene varios aspectos. E primero, que es e que acabamos de mencionar, es a siguiente: para un índice que aparezca arriba y que tenga e mismo nombre que otro que aparezca abajo se entiende que hay una suma de 1 a n. 2

3 La base covectoria a denotaremos con θ i y as componentes de covector ω as denotamos con ω i, siempre as componentes covectoriaes tendrán os índices abajo. De manera anáoga a caso de vectores tenemos ω = ω i θ i. (8 Dados dos vectores v y w definimos e productor tensoria v w como e tensor de tipo ( 2 0 definido como v w(α, β = v(αw(β, (9 donde α, β V. Notar que en e ado derecho de a ecuación (9 tenemos e producto de dos números reaes. Es trivia ver que esa definición cumpe con os requisitos de ser un mapa mutiinea de V V en os reaes. De manera anáoga podemos definir productos tensoriaes entre cuaquier número de vectores y covectores. En particuar, entre os vectores de a base e i y de os covectores de a cobase θ i. Por ejempo e siguiente productor tensoria e i e j θ m θ s, (10 k define un tensor de tipo ( k. Esos tensores forman una base para e espacio de todos os tensores de tipo ( k. Dado un tensor T de tipo ( k, denotamos a sus componentes en esa base como T i j m s, es decir que T = T i j m s e i e j θ m θ s. (11 Es importante recordar que os T i j m s son números reaes. Podríamos denotar as componentes como Tm s, i j pero preferimos hacero dejando os índices vectoriaes a a izquierda y os covectoriaes a a derecha porque cuando estudiemos geometría vamos a subir y bajar índices y será úti mantener esta notación. Veamos ejempos de como se reacionan as notaciones abstractas y de componentes. Para fijar ideas, consideremos un vector v, un covector ω, un tensor g de tipo ( ( 0 2, un tensor T de tipo 20 ( y un tensor F de tipo 11. En componentes tenemos v = v i e i, ω = ω i θ i, g = g ij θ i θ j, (12 y T = T ij e i e j, F = F i je i θ j. (13 3

4 Veamos agunos ejempos de acciones de estos mapas sobre vectores y covectores. Comencemos con e caso más simpe, apicar e covector ω a vector v De manera anáoga, es simpe verificar que ω(v = ω(v i e i (14 = v i ω(e i (15 = v i ω j θ j (e i (16 = v i ω j δ j i (17 = v i ω i. (18 g(v, v = g ij v i v j, T (ω, ω = T ij ω i ω j, F (ω, v = F i jω i v j. (19 Un poco más suti es e caso en donde no enamos todas as entradas de tensor, por ejempo g(, v = g ij θ i θ j (v, (20 = g ij θ i θ j (v k e k, (21 = g ij θ i v k θ j (e k, (22 = g ij v j θ i. (23 Notar que en esta ecuación v i son números reaes y θ i son covectores. (24 3. Notación de índices abstractos Una desventaja importante de a notación abstracta es que no distingue entre distintos tipos tensoriaes. Sin embargo, as componentes de un tensor sí distinguen entre os tipos tensoriaes. En e ejempo anterior, si digo que tengo as componentes g ij entonces sé que corresponden a un tensor g de tipo ( 02, E inconvenientes es que esas componentes dependen de a base eegida. Pero si asumimos que esa base es arbitraria, podemos denotar directamente a tensor g por as componentes g ij. A esta notación se a denomina de índices abstractos porque se trabaja siempre en una base arbitraria. Esenciamente 4

5 esta notación es simiar que a de componentes pero se suprimen os eementos de as bases. Por ejempo, g(, v se denota así g ij v j, (25 e producto tensoria v w de dos vectores estudiado en (9 se denota como v i w j (26 y a apicación de un covector ω a un vector v se denota como (es decir ω(v ω j v j. (27 E producto tensoria entre un vector v y un covector ω (es decir v ω se denota como ω j v j. (28 Notar a diferencia entre as expresiones (27 y (28. En (28 no hay índices ibres, es un escaar. En cambio en (27 hay dos índices ibres, es un tensor ( 11. 5

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Consideremos un mercado normal con una oferta y una demanda normales (Gráfico 1).

Consideremos un mercado normal con una oferta y una demanda normales (Gráfico 1). NOTA SOBRE INCIDENCIA (nota técnica apta para economistas y gente que quiera aprender teoría económica): Cuando hice la propuesta de reducir el IVA en Chile, algunos de los miembros de este foro recordaron

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Vibración y rotación en mecánica cuántica

Vibración y rotación en mecánica cuántica Vibración y rotación en mecánica cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevia Curso 14-15 Probema 1 Una moécua de 1 H 17 I en fase gaseosa, cuya ongitud de enace es 16.9

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Física Contemporánea, Grupo: 8104 Tarea # 4, Fecha de entrega: viernes 18 de septiembre de 2015 Nombre:

Física Contemporánea, Grupo: 8104 Tarea # 4, Fecha de entrega: viernes 18 de septiembre de 2015 Nombre: Física Contemporánea, Grupo: 8104 Tarea # 4, Fecha de entrega: viernes 18 de septiembre de 015 Nombre: Lee con atención as siguientes notas sobre e movimiento en un campo centra y reaiza os ejercicios

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

PRIMEROS 16 C OMPA P SES E

PRIMEROS 16 C OMPA P SES E ARMONIZACION A TRES VOCES TAKE THE A TRAIN PRIMEROS 16 COMPASES 1.- Caso restringido. La tónica esta en el soprano y las únicas posibilidades son la quinta o la tercera descendentes. La mejor de las dos

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012 ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Recomendaciones para elaborar bases de datos

Recomendaciones para elaborar bases de datos Recomendaciones para elaborar bases de datos Independientemente de si son tablas de datos construidas desde cero por el periodista o si se trata de información que él solicitó y obtuvo de la entidad o

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Aplicaciones lineales continuas

Aplicaciones lineales continuas Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas

Más detalles

Funciones Condicionales

Funciones Condicionales Funciones Condicionales Función SI y SI anidada PLANILLA ELECTRÓNICA Excel Funciones Condicionales En muchas ocasiones, nos ocurrirá que debamos presentar un resultado, según se cumpla o no, una determinada

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

JORNADA DE TRABAJO LIQUIDACION

JORNADA DE TRABAJO LIQUIDACION JORNADA DE TRABAJO LIQUIDACION Este concepto se encuentra en la legislación, a partir del artículo 158 al 167 del Código Sustantivo del Trabajo. Debemos entender la jornada de trabajo como aquel tiempo

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo

Más detalles

Introducción a la Informática

Introducción a la Informática Introducción a a Informática Lic. Wendy Navia Ch. ADSIB Agencia para e Desarroo de a Sociedad de a Información en Boivia Emai: ncwi0509@gmai.com http://www.adsib.gob.bo Conceptos Generaes Informática :

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Procesos Críticos en el Desarrollo de Software

Procesos Críticos en el Desarrollo de Software Metodología Procesos Críticos en el Desarrollo de Software Pablo Straub AgileShift Imagine una organización de desarrollo de software que consistentemente cumple los compromisos con sus clientes. Imagine

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

INTRODUCCIÓN-CONCEPTOS BÁSICOS

INTRODUCCIÓN-CONCEPTOS BÁSICOS INTRODUCCIÓN-CONCEPTOS BÁSICOS Cuando se dispone de una cantidad de dinero (capital) se puede destinar o bien a gastarlo, o bien a invertirlo para recuperarlo en un futuro más o menos próximo. De la misma

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada

Más detalles

7. VLSM. IST La Recoleta

7. VLSM. IST La Recoleta 7. VLSM El subneteo con VLSM (Variable Length Subnet Mask), máscara variable ó máscara de subred de longitud variable, es uno de los métodos que se implementó para evitar el agotamiento de direcciones

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Capítulo 0. Introducción.

Capítulo 0. Introducción. Capítulo 0. Introducción. Bueno, por fin está aquí el esperado (espero!!) Capítulo Cero del Tutorial de Assembler. En él estableceremos algunos conceptos que nos serán de utilidad a lo largo del Tutorial.

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Raíces cuadradas y radicales

Raíces cuadradas y radicales Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama

Más detalles

Inversión C D= -400 F1= 200 F2= 600

Inversión C D= -400 F1= 200 F2= 600 EJEMPLO PAYBACK VAN TIR Para realizar este ejercicio me baso en los datos que se dan para el mismo en la página 358 nº 1 pero incluyo el tercer flujo de caja en el segundo para tener un ejemplo que me

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S

Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S Significado de tasa de interés real Medición de una operación financiera en términos reales (en bienes) Relación entre tasa

Más detalles

Añadir el texto de la LOPD a los documentos

Añadir el texto de la LOPD a los documentos Añadir el texto de la LOPD a los documentos Para añadir el texto de la LOPD a los documentos (facturas, presupuestos, albaranes y contratos) hemos de utilizar el diseñador de documentos del programa. Vamos

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS.

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. 1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. El sumatorio o sumatoria) es un operador matemático, representado por la letra griega sigma mayúscula Σ) que permite representar de manera abreviada sumas

Más detalles

Euclides extendido y Test de primalidad probabiĺıstico

Euclides extendido y Test de primalidad probabiĺıstico Euclides extendido y Test de primalidad probabiĺıstico Taller de Álgebra I Verano de 2014 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

Configuración de DNS seguros

Configuración de DNS seguros Configuración de DNS seguros para la navegación de niños por Internet El otro día os contaba del secuestro de los DNS de Google, y qué son los DNS. Para hacer un resumen rápido: son como las páginas amarillas

Más detalles

1ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 1 2ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 7

1ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 1 2ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 7 ÍNDICE PÁGINA 1ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 1 2ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB 7 1ª PARTE MANUAL BÁSICO DE POSICIONAMIENTO WEB Este pequeño manual sobre posicionamiento web

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles