CÁLCULO INTEGRAL 1/er Parcial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO INTEGRAL 1/er Parcial"

Transcripción

1 CÁLCULO INTEGRAL /er Parcial sen cos. El integrando en la epresión: es: ( ) a) b) sen cos sen cos c) d). Se dice que una función F es una anti derivada de una función f si: ( ) a) F () = f() b) F() = f() c) F()= F () d) f () = F(). La notación f(), recibe el nombre de: ( ) a) Integral definida b) Anti derivada c)integral indefinida d) Primitiva. Una anti derivada de f() = es: ( ) a) F() = b) F () = c) F () = d) F() = 5. Para integrar cos sen, se deben identificar los elementos: ( ) a) u= sen ; du= cos c) u= cos ; du= - sen b) u = cos ; du= sen d) u= sen : du= cos 6. Relaciona las siguientes columnas y selecciona la opción correcta. A) sen. y = + 5 B). + y z + c sec C) y = cos D) cos + c. y = e E) y = e + c 5. sen F) + dy - dz 6. tan + c a) A,B6, C, D, E5, F b) A, B6, C, D5, E, F c) A, B6, C, D5, E, F d) A, B6, C, D, E, F *isg

2 CÁLCULO INTEGRAL /er Parcial e sene 6. + e sen cos sen cos cos + sen + 8 cot( + ) sen cos (sen + cos ) sen cos + sen cos. ( 5 ) 5. sen cos 65. sen cos. ( + Ln) 5. e sen cos Ln sen cos e cos sen 68. cos e 57. tan cos 69. cos sen e tan cos( e + 5) ( Ln) Ln arctan sen sen cos *isg

3 CÁLCULO INTEGRAL /er Parcial 7. sen cos 7. tan 7. cot 75. cot csc 76. csc 77. tan 5 sec 78. ( sen ) 79. cos sen *isg

4 Cálculo Integral parcial. Para resolver la integral dv= +9, se seleccionan los elementos u = y. En la integral ee, la selección de los elementos para realizar la integral du= y v =. La fórmula de integración por partes dice uuuuuu =. Para aplicar la fórmula de integración por partes a la integral, se debe elegir a u = y dv = 5. Los elementos para resolver la integral, considerando la figura son: 6 α 6. Considerando la integral (+ ), coloca los elementos que faltan: α 7. Para realizar la integral ( +8+5), los elementos a colocar en el triángulos son: 8. Si el grado de un polinomio p() es menor que el grado de q(), entonces f(= = p() /q() se llama función racional 9. Para integrar una función racional impropia f() = ( + ) / ( + ) primero debe reescribirse como f() = α

5 . ( +) (( ) ( `+ )) puede descomponerse en la forma:. Para resolver la integral + ( )(+), el integrando se puede epresar como: + ( )( + ) = ( ) + ( + ). Para resolver la integral 6, el integrando se puede epresar como: ( ) 6 ( ) = AA + BB + CC +. La transformación del integrando para resolver la integral epresa como: ( + )( + + ) = CCCC + DD ( + + ) ( +)( ++),se Resuelve las siguientes integrales.. 5. ee 5. LLnnnnnnnn 6. LLLL 6 7. ssssss 8. tttttt 9. ee cos. ssssss(llllll). +. ssssss. LLLLLL. tttttt (9 ) ( +6+)

6 . (9 ) ( ) (+)( +) 9. ln ππ 5. ee cccccccc ssssss ππ yy ( + ) 56. ( 8) 57. ( + + ) tan ππ 6. ssssss 6. ssssss 6. ln 6. cccccc llll

7 Cálculo Integral er parcial. Si y = f() es un función continua en el intervalo cerrado [aa, bb], entonces la integral definida de f() de a a b es:. Si y=f() es una función definida en el intervalo [aa, bb],entonces el área formada por la curva, el eje y las rectas = a y = b, está dada por: Selecciona la respuesta correcta en cada una de las siguientes integrales.. El valor de la integral definida, es: ( ) a) 8 ππ. La opción que muestra el valor de la integral ssssssss b) c) - d) 8 es: ( ) a) b) c) - d) - 5. El área formada por la recta y =, el eje X y las rectas = y = 5 es: ( ) a) 5 uu b) 5 uu c) 5 uu d) u 6. El valor de la integral ( ) a) b) 6 es: ( ) 7. El área limitada por la curva y =, el eje X y las rectas =, = es: ( ) a) 8 u b) 9 u c) 9 u d) -8 u 8. El área limitada por la curva y = -, el eje X, y las rectas =, = es: ( ) a) uu b) uu c) uu d) uu 9. El valor de la integral ( ), es: ( ) a) 5 b) 6 c) 6 d). El volumen del sólido que se forma al hacer girar la región limitadas por las gráficas c) d) yy =, y = y = alrededor del eje X es: ( ) a) 6πu b) 8π u c) π u d) π u. El volumen de un disco de radio r y espesor h es:. El volumen de una arandela de radio interior r, radio eterior R y espesor h es:

8 . Si la región R está acotada por yy =, yy = yy =, se gira alrededor del eje X, el disco en tendrá un volumen dv=. Si la región R de la pregunta anterior se gira alrededor de la rectas y = -, la arandela en tendrá un volumen dv= 5. Determina el área limitada por las gráficas de la función dada y el eje X en el intervalo indicado. a) yy = + ; [, ] b) yy = ; [, ] c) yy = 6; [, ] d) yy = ssssssss; [ ππ, ππ] e) yy = + cccccc; [, ππ] f) yy = ssssss ;, ππ g) yy =, yy =, = y = h) yy =, yy =, = -, = i) yy =, yy =, =, = 8 j) yy =, y =, = 8 k) yy = ( ), yy =, =, = l) yy = +, =, = 6. Encuentra el área de la región limitada por las gráficas de las funciones dadas. a) y =, y = -, = b) y =, y =, = c) y =,, y = d) = y, = 6 e) y =, y = - + f) = y, =, y = g) = y-, y = h) yy =, yy = 8, = i) yy = +, yy = j) yy = +, yy = k) yy =, yy = + l) yy =, yy = m) yy =, yy = + 7. Encuentra el volumen del sólido de revolución que se forma haciendo girar la región limitada por las gráficas de las ecuaciones dadas alrededor del eje indicado. a) y = 9 -, y = ; Eje X b) y = +, =, y = 5; Eje Y c) yy =, =, yy = ; Eje Y d) y =, Y = ; Eje Y e) y =, =, y = 5; Eje X f) y =, y = 9: Eje X g) y =, =, = 9 ; Eje X h) + y =, y =, = ; eje Y i) = yy, =, yy = ; eeeeee YY j) = 9 yy, = ; eeeeee YY k) = yy, yy =, = ; eeeeee YY l) yy =, =, yy = ; eeeeee XX m) yy =, =, =, yy = ; eeeeee XX n) yy =, =, y=; eje X

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS 1) Calcular las siguientes integrales: a) - - b) c) d) e) f) g) h) i) j) k) l) m) ) n) o) p) q) r) s) t) u) v) w) x) y) z) aa) bb) cc) dd) ee) ff) dz gg) hh) dt ii) jj) Nota: Las

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del tercer eamen parcial del curso Cálculo una variable Grupo: Uno Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. a. Después

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0 ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Respuestas a la evaluación de la competencia del capítulo 3

Respuestas a la evaluación de la competencia del capítulo 3 Respuestas Respuestas a la evaluación de la competencia del capítulo En los ejercicios del al 7, dibuja la región que queda comprendida bajo la gráfica de la función dada en el intervalo indicado calcula

Más detalles

Opción A. 1. Calcular el valor de los parámetros c y d sabiendo que la gráfica de la función ff: R R

Opción A. 1. Calcular el valor de los parámetros c y d sabiendo que la gráfica de la función ff: R R Nota sobre la puntuación de las preguntas: Los puntos asignados a las distintas preguntas son orientativos. En muchos casos, las preguntas pueden contestarse de varias formas distintas y el corrector debe

Más detalles

V = volumen del cilindro exterior menos volumen del hueco

V = volumen del cilindro exterior menos volumen del hueco 1 (Apuntes en revisión para orientar el aprendizaje) CÁLCULO DE VOLÚMENES MEDIANTE CORTEZAS CILÍNDRICAS Este método se asa en utilizar anillos cilíndricos de poco grosor llamados cortezas que se ilustra

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS (Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS En integración se pide que la función sea continua en el intervalo considerado que además éste sea finito. En este tema se pretende

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Costa Rica Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de setiembre de 04 INSTRUCCIONES Lea cuidadosamente, cada instrucción y pregunta, antes de contestar.

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Matemáticas 3 Enero 2016

Matemáticas 3 Enero 2016 Matemáticas Enero 6 Laboratorio # Antidiferenciación I I.- Resuelva las siguientes integrales indefinidas. ) (x 6x + 5) ) (x 5 ) x x z+ (z +z+) 5 + 5x 5 ) dz ) (5y (8 y ) )dy 5) dw w( w ) 7 6) (x 5 6x

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CLICK AQUÍ Pedro Pablo CORONEL PÉREZ / Pablo Josué CORONEL LÓPEZ 250 EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS

CLICK AQUÍ Pedro Pablo CORONEL PÉREZ / Pablo Josué CORONEL LÓPEZ 250 EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS CLICK AQUÍ SERIE CORONEL 03 (C) Serie Coronel, 07 (C) 07. Pedro Pablo Coronel Pérez / Pablo Josué Coronel López DEPÓSITO LEGAL: If07605370367 ISBN: 978-980--856-8 Diagramación interna: Editorial Infinito,

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

Integración en una variable

Integración en una variable Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 7 Práctica 8: Integración Integración en una variable. Calcular: xsen x. sen x cos x. xe x. e x sen x. (f) 3x x + x.

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de Primera parte Ejercicio. Se considera el recinto plano R := ½(x, y) R : x 3, y x3 3 Otener los volúmenes de los sólidos

Más detalles

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación.

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación. Universidad del Norte Facultad de Ciencias Básicas Departamento de Matemáticas Taller de Cálculo II Segundo Parcial Profesor Coordinador: Javier de la Cruz Periodo 0 de 08 Nombre: Fecha: Observación: Recuerde

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

TEMA 3: INTEGRACIÓN EN UNA VARIABLE, TÉCNICAS DE INTEGRACIÓN Y APLICACIONES DE LA INTEGRAL. FMIBII Biomedical engineering degree

TEMA 3: INTEGRACIÓN EN UNA VARIABLE, TÉCNICAS DE INTEGRACIÓN Y APLICACIONES DE LA INTEGRAL. FMIBII Biomedical engineering degree TEMA 3: INTEGRACIÓN EN UNA VARIABLE, TÉCNICAS DE INTEGRACIÓN Y APLICACIONES DE LA INTEGRAL (Cálculo integral en una variable) FMIBII Biomedical engineering degree Cristina Sánchez López de Pablo Universidad

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) INTEGRAL INDEFINIDA EJERCICIOS. Calcular las siguientes integrales potenciales: d b d c d d d e t t dt f d g t dt h d i t d j d m d n d o d p d k ( t dt l d (Soluc: / b / c i j d e t / f k t 7 /7 l m g

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.

Más detalles

OPCIÓN A. Determinar la ecuación de la recta tangente a la curva yy = llll (xx 11) que sea paralela a la. Solución:

OPCIÓN A. Determinar la ecuación de la recta tangente a la curva yy = llll (xx 11) que sea paralela a la. Solución: Nota sobre la puntuación de las preguntas: Los puntos asignados a las distintas preguntas son orientativos. En muchos casos, las preguntas pueden contestarse de varias formas distintas y el corrector debe

Más detalles

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600 ) I. RELACIONES Y FUNCIONES

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600 ) I. RELACIONES Y FUNCIONES INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (085) GUÍA DE MATEMÁTICAS VI (600 ) I. RELACIONES Y FUNCIONES Funciones y relaciones. Dominio y rango. Determinar si es función o relación

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x.

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x. CÁLCULO III (05) Tema. Integrales dobles y triples y sus aplicaciones eptiembre 06. Dibuje la región de integración y calcule las integrales dobles siguientes: d. e. f. g. yda, donde es la región limitada

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3

Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Análisis III: Integrales *. Integrales inmediatas (o casi inmediatas): a) 4 2 5 7 b) 3 3 5 2 +3 +4 c) 2 7 d) 5 e) sen f) sen +7cos g) tg 2 h)

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Soluciones de la relación de ejercicios del TEMA 4

Soluciones de la relación de ejercicios del TEMA 4 Soluciones de la relación de ejercicios del TEMA. Aplica el Teorema Fundamental del Cálculo Integral, para resolver: (a) d ( +t dt) d Sean f,g,h :, definidas por h() = +t dt, f(t) = +t y g() =. Como f

Más detalles

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x.

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x. APLICACIONES DE LA INTEGRAL Si R es la región limitada por las líneas y f() y y g(), con f() g(), entre a y b, el área de R viene dada por la integral A: b a ( ( ) ( )) A f g EJERCICIOS: ) Calcular el

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS RÚBRICA DE LA SEGUNDA EVALUACIÓN DE CÁLCULO DE UNA VARIABLE. (5 puntos) Bosquejar la región

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-4-M--00-07 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Eamen Final FECHA DE EXAMEN: 8

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución

Más detalles

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2 Eamen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.).- ( puntos) Calcular las integrales indefinidas siguientes: ln d arcsin (ii) d (iii) e d ln d ln C arcsin (ii) d u arcsin du

Más detalles

COLEGIO DE BACHILLERES PLANTEL 14 MILPA ALTA FIDENCIO VILLANUEVA ROJAS. Matemáticas V. Clave 504. Nombre del alumno: Matrícula

COLEGIO DE BACHILLERES PLANTEL 14 MILPA ALTA FIDENCIO VILLANUEVA ROJAS. Matemáticas V. Clave 504. Nombre del alumno: Matrícula COLEGIO DE BACHILLERES PLANTEL 14 MILPA ALTA FIDENCIO VILLANUEVA ROJAS Guía de estudio para presentar el examen de recuperación de: Matemáticas V Clave 504 Nombre del alumno: Matrícula C O L E G I O D

Más detalles

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera.

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. Wilson Herrera 1 Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. 1. Calcular las siguientes integrales: a) b) c) d) e) f ) g) h) 1 8 4 1 6 3 3 1 ( + 3) ( + 3 ) 1 + y dy y 5 + 3 1 + 3

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS CÁLCULO INTEGRAL PRIMER EXAMEN EXTRAORDINARIO Sinodales: M.I. Mayverena Jurado Pineda

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Programa 1 Cálculo de volúmenes a partir de secciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Jueves 29 de noviembre de 2017 Ejercicio 1. Problema de optimización.

Jueves 29 de noviembre de 2017 Ejercicio 1. Problema de optimización. Jueves 29 de noviembre de 2017 Ejercicio 1. Problema de optimización. Se considera una ventana rectangular en la que el lado de arriba se ha sustituido por un triángulo equilátero. Calcula la longitud

Más detalles

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013 MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 7// Código: Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio. Considera la región R del primer cuadrante que

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4.

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4. Practica. Determinar el volumen del solido que se genera al rotar la región acotada or las arabolas x = y y x = y y,alrededor de la recta x = 4. Encontremos los untos de interceccion de ambas curvas: y

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600) I. RELACIONES Y FUNCIONES

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600) I. RELACIONES Y FUNCIONES INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (085) GUÍA DE MATEMÁTICAS VI (600) I. RELACIONES Y FUNCIONES Funciones y relaciones. Dominio y rango. Determinar si es función o relación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

AREA MOJADA DE UN CONDUCTO CIRCULAR. La ecuación general de la circunferencia en el plano cartesiano es de la forma:

AREA MOJADA DE UN CONDUCTO CIRCULAR. La ecuación general de la circunferencia en el plano cartesiano es de la forma: AREA MOJADA DE UN CONDUCTO CIRCULAR La ecuación general de la circunferencia en el plano cartesiano es de la forma: (xx ) + (yy kk) = rr Ec 1 Ubicando el origen del plano cartesiano en un extremo de la

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f.

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f. FUNCIONES Y SUS GRÁFICAS Funciones y notación de funciones Una relación entre dos conjuntos X e Y es un conjunto de pares ordenados, cada uno de la forma (, y) donde es un elemento del conjunto X e y,

Más detalles

CUESTIONES RESUELTAS 3. INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 3. INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTAS INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS º GRADO GESTIÓN AERONAÚTICA INTEGRAL DEFINIDA REGLA DE BARROW Sea f() una función discontinua en = y continua en el resto de puntos del intervalo

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

Respuestas al desarrollo de la competencia del capítulo 3

Respuestas al desarrollo de la competencia del capítulo 3 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-2113) PREPARADURÍA N 2

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-2113) PREPARADURÍA N 2 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-113) PREPARADURÍA N Integrales de funciones vectoriales

Más detalles

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es:

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es: SERIE DE ÁLULO INTEGRAL PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) alcule la suma ) Determine n tal que ) Determine n tal que i i ( ) ( ) 0 i= i+ i n i = 9 n=6 i= n i = 78 n=7 i= ) Determine el valor del siguiente

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u Tema: Integrales definidas. Áreas Ejercicios PAU - JUNIO GENERAL Ejercicio.- Calcule d + Sea F() = d = + = + d d ln ln + = ln ln ln 5 + ln = A B + = + + = A( + ) + B = = A = = B A =, B = d = ln ln ln 5

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 0: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

Tema 10: Cálculo Integral

Tema 10: Cálculo Integral . Introducción Tema 0: Cálculo Integral El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del segundo examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x B7_9 //9 : Página EJERIIOS RESUELTOS alcula las funciones primitivas, que toman el valor b cuando a, de las funciones f definidas por: f() + 7; a ; b. 7 f() + ; a ; b. F ( ) ( + 7 ) d + 7 + c omo debe

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 6 PERÍODO: SEGUNDO TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo cuatrimestre 7 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g () = (ii) g () = (iii) g () = sen (iv)

Más detalles

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA CÁLCULO INTEGRAL INTEGRAL INDEFINIDA Función primitiva : Una función F( se dice que es primitiva de otra función f( cuando F'( f( Por ejemplo F( es primitiva de f( Otra primitiva de f( podría ser F( +

Más detalles

Cálculo integral. Parcial 3 - Guías 12 14

Cálculo integral. Parcial 3 - Guías 12 14 Cálculo integral Parcial - Guías 4 Farith Briceño - Cálculo integral - Guía Regla de L Hospital Ojetivos a curir Código : MAT-CI. Límites con indeterminaciones de la forma, e. Ejercicios resueltos Ejemplo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 7 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN: TERCERA

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

GUÍA DE EJERCICIOS. TEMA 1. Integrales de trayectoria, integrales de línea y longitud de arco.

GUÍA DE EJERCICIOS. TEMA 1. Integrales de trayectoria, integrales de línea y longitud de arco. Elaborado por: Br. Saúl Utrera Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-) GUÍA DE EJERCICIOS Segundo parcial de

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles