(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS"

Transcripción

1 (Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS En integración se pide que la función sea continua en el intervalo considerado que además éste sea finito. En este tema se pretende estudiar un cierto tipo de integrales en las cuales uno o los dos límites de integración son el infinito o bien, cuando el integrando considera una función con un número finito de discontinuidades en el intervalo de integración en estudio. A estas integrales se les llamará integrales impropias. Supóngase que se tiene una determinada función " f " que es continua en un intervalo semiabierto a, ) que es siempre positiva, considérese además que: ( ) limf La gráfica de esta función se muestra a continuación: Si como se observa en la figura, t > a, entonces el área At bajo la curva, entre las rectas de ecuaciones () a t está dada por la epresión: t At () ( ) a Si en esta epresión el límite limat ( ) t f d eiste, entonces puede ser interpretado como el área de la región limitada bajo la hacia la derecha del valor curva ( ) a ( ) At f, sobre el eje " " t f

2 a. El símbolo f ( ) d a es usado para denotar este valor. Así, es posible resolver esta área de la manera siguiente: () ( ) lim t ( ) a a A t f d f d t También podría presentarse el siguiente caso en el que una función presenta una discontinuidad en el intervalo en estudio. Así, sea la función " f " el intervalo ab, gráfica dada por: f, con su a c b Como se observa, esta función presenta una discontinuidad en c por lo que para calcular la integral entre los valores a b, esto es, el área bajo la curva señalada en la figura, se podría hacer mediante las siguientes integrales: b c b ( ) ( ) ( ) a a c p b lim f( ) d+ lim f( ) d a q f d f d + f d p c q c Otro caso que se podría presentar es el que se muestra en la figura:

3 f Aquí la integral ( ) f d o bien, el área bajo la curva, se podría resolver de la manera siguiente, partiendo en dos al área requerida: ( ) ( ) ( ) lim f( ) d+ lim q f( ) d p f d f d + f d p q Ahora se presenta una definición para estas integrales donde uno o los dos límites son el infinito o cuando eisten puntos de discontinuidad en el intervalo en estudio. DEFINICIÓN. ) i Sea la función f continua en el intervalo a, ). Entonces el área bajo la curva, limitada arriba por la gráfica de la curva hacia la derecha de a de manera indefinida, se obtiene a partir de la siguiente integral conocida definida como integral impropia: si el límite eiste. f( ) d lim t ( ) a a t f d ii) Sea la función f continua en el intervalo (, b). Entonces, el área bajo la curva, limitada arriba por la gráfica de la curva hacia la izquierda de b de manera indefinida, se obtiene a partir de la siguiente integral conocida como integral impropia:

4 si el límite eiste. b b f ( ) d lim ( ) t t f d iii ) Sea la función f continua en el intervalo (, ). Entonces, el área bajo la curva, limitada arriba por la gráfica de la curva que se abre indefinidamente hacia la izquierda derecha en el eje de las abscisas, se obtiene a partir de las siguientes integrales conocidas como integrales impropias: a ( ) ( ) ( ) f d f d + f d a lim f d+ p p si los límites eisten. El valor a ( ) lim ( ) q a f d a pertenece al intervalo. iv) Sea la función f continua en el intervalo ac, ) ( cb,. Entonces, el área bajo la curva, limitada por los valores etremos del intervalo considerando el punto de discontinuidad en c se obtiene a partir de las siguientes integrales conocidas como integrales impropias: Si los límites eisten. b c b ( ) ( ) ( ) a a c p b lim f( ) d+ lim ( ) a q f d f d + f d p c q c f d En cada caso, si el límite es finito, se dice que la integral impropia es convergente que el valor del límite es el valor de la integral impropia. Si el límite no eiste, la integral impropia es divergente. Cuando la integral original se divide en dos integrales, ambas deben ser convergentes para que la integral original sea convergente. Si una es divergente o las dos lo son, la integral original es divergente. 4

5 5 Ejemplo. Determinar si las siguientes integrales impropias convergen o divergen. Asimismo, realizar una gráfica de ambas analizar si eiste una relación entre ellas. i ) d ; ii ) d ( ) Solución. Primero se resolverán las correspondientes integrales impropias, después sus respectivas gráficas al final se harán algunos comentarios sobre la relación eistente entre ambas. i) ( ) d Primero se resuelve la integral indefinida. Así, se tiene que: d ( ) Con un cambio de variable se llega a: u du d u du + C d + C ( ) du u Ahora se resuelve la integral impropia t d d lim t ( ) ( ) t lim lim t + t t d la integral impropia es convergente. ( ) u

6 ii) d Primero se resuelve la integral indefinida. Así, se resuelve d Con un cambio de variable se llega a: du u du d lnu + C u d ln + C ( ) Ahora se resuelve la integral impropia t d lim d t t lim ln lim ln t ln t t d la integral impropia es divergente. Las gráficas de ambas funciones se muestran a continuación: 4 Asíntota: 6 ( ) 4

7 7 4 Asíntota: 4 5 Las gráficas de ambas funciones son semejantes a que las dos tienen como asíntotas a las rectas, son D, positivas continuas en el dominio ( ) decrecientes en este dominio. Sin embargo, la primera es convergente la segunda divergente, lo que se podría epresar, por la definición de integral impropia, diciendo que la primera corresponde a un área finita la segunda a un área infinita. Más adelante, al estudiar volúmenes de sólidos de revolución, en aplicaciones de la integral, se podría ver cómo la segunda área que es infinita, genera un volumen finito que corresponde a la primera integral considerada. Ejemplo. Asignar un área a la región que queda comprendida bajo la curva izquierda de. e, sobre el eje " " f a la Solución. Se puede considerar a esta región como limitada por e,, t. Se grafica se obtiene:

8 8 e t De acuerdo con la gráfica, el área requerida está dada por la integral impropia siguiente que se resuelve como a se vio: e e e d lim d lim t t t t e e e e e lim t e t Por lo tanto la integral impropia es convergente, luego el área es finita su valor es: e A.6945 u Ejemplo. Calcular la integral impropia + d. Para ello, trazar la gráfica de la función del integrando e interpretar la integral como un área. Solución. Se grafica la función del integrando se obtiene:

9 9 + Se divide en dos partes la región, se utiliza la integral impropia se obtiene: + d d d q lim d lim d p + p + q + La resolución de la integral indefinida está dada por: d d angtan + C + + Luego, dada la simetría de la figura, bastará con calcular una de las integrales si es convergente, su valor finito, multiplicado por dos, equivaldrá al área de la región, esto es, al valor de la integral impropia. Así, q q lim d lim angtan q + q π lim angtanq angtan π q d π + Por lo tanto convergente. la integral impropia es Ejemplo. Analizar la convergencia o divergencia de la siguiente integral impropia graficar la función del integrando.

10 d 4 Solución. La gráfica de la función del integrando se muestra en la siguiente figura: asíntotas 4 Como se observa, se pide calcular la integral entre los valores correspondientes a las asíntotas verticales de ecuaciones es por ello que al no ser continua la función en estos valores, se trata de una integral impropia. Para resolverla se parte el intervalo en dos, tomando el valor intermedio de. Así, d d d d q d lim lim p + p q 4 4 Ahora se resuelve la integral indefinida como sigue:

11 d d + ( ) 4 4 d d + + ( ) ( ) Se utiliza un cambio de variable : ( ) u u du d a De donde, a du angsenu + C a u d angsen( ) + C 4 Finalmente se tiene que: d lim angsen( ) lim angsen( ) p + p q 4 p q ( ) angsen( p ) ( ) angsen( ) ( ) ( ) ( ) ( ) lim angsen + lim angsen q angsen angsen + angsen angsen π π + π Por lo tanto la integral impropia es convergente su valor es π, que corresponde al área finita de la región señalada en la figura. Ejemplo. Investigar la convergencia o divergencia de la siguiente integral impropia. Graficar la función el área que q

12 se obtendría con el cálculo de la integral impropia si es que es convergente. 8 d ( 4 ) Solución. La función contenida en el integrando está definida en los etremos del intervalo de integración dado. Sin embargo, cuando 4, la función presenta una discontinuidad, dado que ahí se encuentra una asíntota vertical. Si se grafica se llega a: asíntota 4 ( ) 4 Por ello, la integral impropia se epresa como: d d d ( 4 ) ( 4 ) ( 4 ) p d lim + lim q q ( 4 ) ( 4 ) p 4 4 Por simetría se resolverá sólo una de ellas (la segunda). Pero 8 d primero ha que calcular la integral definida. Así, d ( ) 4

13 Mediante un cambio de variable se tiene: Luego, u 4 du d du u u du C u C + + u d ( 4 ) d + C 4 d lim lim 4 4 q 4 q 4 q q ( 4 ) ( 4 ) + q lim q 4 Por lo tanto la integral impropia es convergente le asigna al área considerada un valor finito de: 8 d ( 4 ) ( ) Ejemplo. Investigar la naturaleza de la integral impropia siguiente ver si es factible calcular con ella un valor finito para el área en ella considerada. d 4 Solución. Se grafica la función del integrando,

14 4 asíntotas 4 Como se ve, la función en el intervalo considerado tiene asíntotas en las rectas de ecuaciones lo que se podría confirmar mediante los siguientes límites: lim lim 4 4 Luego, la integral impropia se debe partir en dos, tomando de manera arbitraria un valor intermedio en 4. Así, d 4 d d d q d lim lim p + p q Primero se resolverá la integral indefinida, de donde: d Se realiza un cambio de variable se llega a: u 4 du d 4 u du u du u + C u + C

15 Por lo que: d d q lim 4 + lim 4 p p q 4 4 lim 4 4 p 4 + lim q p q + Se conclue entonces que la integral impropia es divergente, por lo que el área considerada es infinita. Ejemplo. Determinar si la siguiente integral impropia converge o diverge graficar el área que de ser convergente determinaría con su valor: d C 5 Solución. Se grafica la función del integrando se obtiene: asíntota Como se observa en la figura de manera analítica, es sencillo de ver que la función del integrando tiene dos asíntotas en las rectas de ecuaciones,

16 6 dados los límites de integración propuestos, la integral impropia se resuelve como: d p d lim p Al resolver la integral indefinida se obtiene: d Se efectúa un cambio de variable, u du d du u u u du + C u + C d + C Luego la integral impropia es igual a: d p lim p lim p + + lim p p p Por lo que la integral impropia es convergente, de acuerdo con su definición, el área de la región dada es de cuatro unidades cuadradas. Ejemplo. Calcular la integral impropia siguiente: e Solución. La función del integrando, que también se puede escribir como es continua para todo valor real de d e " " si se toma el valor intermedio integral impropia se resuelve como:, entonces la

17 + q lim e d lim e d p p q e d e d e d + La resolución de la integral indefinida es como sigue: e d Se hace el siguiente cambio de variable: u u e u du d e du C + e e d + C Luego la integral impropia es igual a: e e e d lim + lim p q p lim lim p + + q e e Por lo tanto la integra impropia es convergente su valor es cero. Nota. Si se hubiera pedido calcular el área bajo la curva, se tendría que haber hecho lo siguiente: se grafica la función se tiene: q e 7

18 8 Como se observa, eiste simetría con respecto al origen, por lo que se entiende que el resultado de la integral impropia haa sido cero a que se trata de dos áreas de igual valor absoluto pero diferente signo. Para calcular el área habría que calcular una sola parte después multiplicar por dos el resultado, lo que equivale, si se toma la parte de la derecha del eje de las ordenadas, a: q A e d lim e d A u q Ejemplo. Evaluar la integral impropia siguiente asignar si es posible un valor al área que la integral considera: d ( + ) Solución. La gráfica, donde se puede observar cómo la función presenta una discontinuidad en (la correspondiente a no se considera a que se sale del intervalo de estudio) es asintótica a las rectas, es la siguiente d ( + )

19 Para resolver la integral impropia, se divide en dos tomando a como punto intermedio. Así, d d d ( ) ( ) + + ( + ) lim p p d + + lim q ( ) + ( + ) Se resuelve la integral indefinida : q d + ( ) d Se realiza el cambio de variable siguiente: De donde, Luego, u u du a a d du angtanu + C angtan + C u + d p ( p q + ) () ( ) ( ) () lim angtan + lim angtan angtan angtan + angtan angtan π π Por lo tanto, la integral impropia es convergente su valor es π, valor que se asigna al área de la figura. Ejemplo. Evaluar la integral definida siguiente, trazar el área que considera resolverla: q 9

20 d Solución. Primero se hace una gráfica aproimada del problema planteado : La integral impropia, para resolverse, se epresa como: d d d d d + lim + lim p p q q La resolución de la integral indefinida es mu sencilla: Luego, d d + C + C d lim lim + p q p lim + lim + + p p q () 4 ( ) q Luego la integral impropia es divergente no asigna área a la región señalada. q

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante.

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante. Línea Recta I. Línea recta. Apoo. Dominio rango de una recta horizontal, recta vertical que no es una función. Forma estándar de la ecuación de una recta m b Donde: Variable dependiente (eje de las ordenadas)

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

V = volumen del cilindro exterior menos volumen del hueco

V = volumen del cilindro exterior menos volumen del hueco 1 (Apuntes en revisión para orientar el aprendizaje) CÁLCULO DE VOLÚMENES MEDIANTE CORTEZAS CILÍNDRICAS Este método se asa en utilizar anillos cilíndricos de poco grosor llamados cortezas que se ilustra

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL

PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL 2016 Coordinadores: Licda. Elizabeth Díaz G. (U.C.R) y Mag. Randall Blanco B. (TEC) Parcial I II

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 www.mathspace.jimdo.com Tabla de contenido Capítulo 1...1 LÍMITES Y CONTINUIDAD...1 1.1. LÍMITES...2 1.1.1 Definición formal...2 1.1.2. Cálculo de límites...2

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del tercer eamen parcial del curso Cálculo una variable Grupo: Uno Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. a. Después

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 Si intentamos sumar los términos de una sucesión infinita {a n } obtenemos

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

4º ESO ACADÉMICAS INECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa INECUACIONES

4º ESO ACADÉMICAS INECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa INECUACIONES INECUACIONES.- DESIGUALDADES E INECUACIONES Mientras que en una ecuación se trata de buscar el valor que hace que sean iguales dos epresiones algebraicas, en las inecuaciones intentamos localizar los valores

Más detalles

Unidad 8 Representación gráfica de funciones

Unidad 8 Representación gráfica de funciones Unidad 8 Representación gráfica de funciones PÁGINA 187 SOLUCIONES 1. Las funciones quedan: a) f( ) = 8 Dominio: Dom f =R Puntos de corte con el eje OX: Puntos de corte con el eje OY Simetrías: f( ) =

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Definición de ites Demuestra, aplicando la definición, que ( ) Demuestra, aplicando la definición, que + + 8 Cálculo de ites

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) =

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) = . Hallar el dominio de la función:. f() = +. f() = - + +. f() = -- + 4. f() = 4 +8 +- 5. f() = + 6. f() = - 7. f() = ++ 8. f() = -- 9. f() = +4 0. f() = + - -. f() = +4+. f() = - -4. f() = - + 6. f() =

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Funciones racionales

Funciones racionales Funciones racionales Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( 1 3 5 3 ) ( 4 3 4 ) ( 3 4 4 )

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

FUNCIONES RACIONALES. Sec. 3.5

FUNCIONES RACIONALES. Sec. 3.5 FUNCIONES RACIONALES Sec..5 DOMINIO DE FUNCIONES RACIONALES Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son polinomios. Ejemplos: g f y 9 4 )

Más detalles

Límites a base de tablas y gráficas

Límites a base de tablas y gráficas MECU Límites a base de tablas y gráficas I. Complete las siguientes tablas y use los resultados para estimar los límites indicados. Si no eiste alguno eplique la razón.. f ; lim f f f.9..99..999..9999..

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031

Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031 Funciones racionales Profa. Caroline Rodríguez UPRA MECU 01 Una función racional es una función que se puede epresar de la forma ( ( ( g f p donde f( y g( son funciones polinómicas. Ejemplos: g f y 9 (

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resolución Nº 88 de noviembre.8/ Secretaria De Educación Distrital REGISTRO DANE Nº-99 Teléfono 6 Barrio Bastidas Santa Marta DEPARTAMENTO DE MATEMATICAS

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

ANALISIS MATEMATICO I (2012)

ANALISIS MATEMATICO I (2012) ANALISIS MATEMATICO I (0) TRABAJO PRÁCTICO Funciones cuadráticas Ejercicio. Hacer una representación gráfica aproimada de las siguientes funciones cuadráticas:. f() =. f() = + 4 3. f() = +, Ejercicio.

Más detalles

Manual de Ejercicios MECU Pro. Alvilda Vega

Manual de Ejercicios MECU Pro. Alvilda Vega Manual de Ejercicios MECU 0 Pro. Alvilda Vega Tabla de contenido Tema Página Unidad I Límites a base de tablas y gráficas. 6 Límites a base de gráficas.. 7 Propiedades de los límites. Límites al infinito

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

Cálculo Diferencial e Integral - L Hospital e impropias. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - L Hospital e impropias. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - L Hospital e impropias. Prof. Farith J. Briceño N. Ojetivos a curir Regla de L Hospital para formas indeterminadas de la forma e. Integrales impropias: Límites de integración

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

UNIDAD Nº 1: DERIVACION E INTEGRACIÓN. APLICACIONES

UNIDAD Nº 1: DERIVACION E INTEGRACIÓN. APLICACIONES Complemento de Matemática UNIDAD Nº : DERIVACION E INTEGRACIÓN. APLICACIONES La derivada Vamos a recordar esta noción que se empezó a estudiar en Matemática de primer año. Definición Sean f una función

Más detalles

3º ESO FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

3º ESO FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES º ESO FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,,

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,, . Sea F( ) arcsen. Repaso general de matemáticas I π π a) Obtén la gráfica de h ( ) = F ( ) - e indica el dominio e imagen de h. D, ; I, π π b) Obtén la gráfica de g( ) F( ) e indica el dominio e imagen

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles