Teoría clásica del electromagnetismo. (James Clerk Maxwell 1860) Campo eléctrico y campo magnético en fase y perpendiculares.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría clásica del electromagnetismo. (James Clerk Maxwell 1860) Campo eléctrico y campo magnético en fase y perpendiculares."

Transcripción

1 4 Oct 5 Introd1 La Espectroscopia es básicamente una ciencia experimental que estudia la absorción, emisión y dispersión de la radiación electromagnética por la materia (átomos, moléculas e iones) Teoría clásica del electromagnetismo (James Clerk Maxwell 186) Campo eléctrico y campo magnético en fase y perpendiculares. Onda transversal E( r, t) = E cos(ωt k r) B( r, t) = B cos(ωt k r) ω(frec. ang.) = 2πν k(vect. de ond.) = 2π ν = 2π λ v(vel. rad.) = c(vacio) = λ ν n(índ. refrac.) = c v E = h ν W (J m 3 ) = 1 2 ɛ E B 2µ 2 (S.I.) I(J s m 2 ) = 1 2 ɛ ce 2 = 1 2µ c B2 (S.I.)

2 Interacción radiación-materia ( Aproximaciones: 1.- Tratamiento semiclásico. 2.- La acción o perturbación externa es débil y actúa durante un periodo de tiempo corto. Conclusiones: 1.- La absorción y la emisión estimulada son procesos resonantes. 2.- Reglas de selección. 3.- Velocidad de la transición espectroscópica (coeficientes de Einstein). Modelo usado: Ec. de Schrödinger dependiente del tiempo «δψ ĤΨ = iħ δt Teoría de perturbaciones dependiente del tiempo: Ĥ = Ĥ + Ĥ1 (t) 5 Oct 4 Introd2 Sistema sin perturbar (Estados estacionarios y ortonormales): Ĥ ψn = Enψ n Ψ n = ψne ie n t/ħ n = 1,..., i,..., f,... Ĥ Ψ n = iħ(δψ n/δt)

3 Sistema perturbado (Principio de Superposición): 5 Oct 4 Introd3 Ψ = n a n (t)ψ n = P n a n(t)ψ n e ie n t/ħ ĤΨ = n a n (t)ĥ Ψ n + n a n (t)ĥ1 (t)ψ n iħ(δψ/δt) = n a n (t) iħ (δψ n/δt) + n i ħ ȧ n (t)ψ n iħ n ȧ n (t)ψ n = n a n (t)ĥ1 (t)ψ n Como Ψ n = ψ ne ie n t/ħ : iħ n ȧ n (t)ψ ne ie n t/ħ = n a n (t)ĥ1 (t)ψ ne ie n t/ħ Proyectamos sobre ψ f (multiplicar e integrar), iħ P n ȧn(t)e ie n t/ħ ψ f ψ n = P n a n(t) ψ f Ĥ1 (t) ψ n e ie n t/ħ Utilizamos la ortonormalidad: ψ f ψ n = δ fn iħ ȧ f (t)e ie f t/ħ = n a n (t)h 1 fne ie n t/ħ H 1 fn = ψ f Ĥ1 (t) ψ n ȧ f (t) = 1 iħ a n (t)hfne 1 iω fnt Donde ω fn = (E f E n)/ħ (rad/s) n

4 Integramos entre y t: a f (t) = a f () + 1 iħ n t 4 Oct 4 Introd4 a n (t)h 1 fn(t)e iω fnt dt Aproximaciones: a) a n (t) a n () Ĥ 1 (t) débil y tiempo actuación breve 1 si n = i b) a n () = δ ni = si n i a f (t) = 1 iħ t H 1 fi(t)e iω fit dt = 1 iħ t Implicaciones de las aproximaciones Estado inicial definido ψ f Ĥ1 (t) ψ i e iω fit dt Trat. de perturbaciones de 1 er orden Mecanismos directos Función de onda del sistema: ψi e ie it/ħ t Ψ = n a n(t)ψn e ie nt/ħ t t f n a n(t f )ψn e ie nt/ħ t t f Probabilidad encontrar el estado estacionario n (t t f ): P n (t t f ) = a n (t f ) 2 = 1 ħ 2 tf Hnf 1 (t)e iwnit dt 2 ; n i H 1 nf (t) =< ψ f Ĥ1 (t) ψ i >; Regla de Selección

5 Perturbación Ĥ1 (t). Efecto de E sobre un sistema de cargas 4 Oct 4 Introd5 1.- Tratamiento semiclásico 2.- Despreciamos la interacción del B. F = q E + q c v B v c Perturbación pequeña. E atómico E radiación 1 8 Interacción clásica: V = d E donde d = j q j r j Ĥ 1 (t) = d E = d x E x d y E y d z E z Supongamos E polarizada en el plano xz. Ĥ 1 (t) = d x E x = d x E x cos(ωt 2π z j λ ) 4.- Variación espacial de E despreciable: z j /λ. Ĥ 1 (t) = d x E x cos(ωt) = d xe x 2 ( e iωt + e iωt) donde hemos usado: cos θ = 1 2 (eiθ + e iθ ) Resultado: [ a f (t) = ie x 2ħ f ˆd e i(ω fi +ω)t 1 x i i(ω fi + ω) + ei(ω fi ω)t 1 i(ω fi ω) ]

6 Regla de oro de Fermi. 6 Oct 4 Introd6 Densidad de radiación: ρ x = ɛ 2 (E x) 2. Radiación policromática u x (ν) = Energía de radiación por unidad de volumen y por unidad de frecuencia ; ρ x u x (ν)dν Radiación isótropa u(ν) = u x (ν) + u y (ν) + u z (ν) donde a f (t) 2 = t 6ɛ ħ 2 ψ f ˆd ψ i 2 u(ν fi ) (S.I.) a ψ f ˆd ψ i 2 = ψ f ˆd x ψ i 2 + ψ f ˆd y ψ i 2 + ψ f ˆd z ψ i 2 es el Momento dipolar de transición entre los estados i y f. La velocidad de transición se define como W i j = d a f (t) 2 dt W i j = 1 6ɛ ħ 2 ψ f ˆd ψ i 2 u(ν fi ) a En el sistema C.G.S. ɛ = 1 4π a f (t) 2 = 2πt 3ħ 2 ψ f ˆd ψ i 2 u(ν fi )

7 Coeficientes de Einstein 6 Oct 4 Introd7 Procesos de absorción y emisión (sistema de dos niveles) Absorción estimulada o inducida (i f): v i f = N f dt = N iw i f = N i 1 6ɛ ħ 2 ψ f ˆd ψ i 2 u(ν fi ) = N i B if u(ν fi ) donde B if = 1 6ɛ ħ 2 ψ f ˆd ψ i 2 Coef.Einstein Absorción Inducida u(ν fi ) : densidad de radiación espectral. Emisión inducida (f i) v f i = N f dt = N f B fi u(ν fi ) donde B fi = B if es el coeficiente de Einstein para la emisión inducida.

8 Emisión espontánea (indep. de u(ν fi )) 6 Oct 4 Introd8 Equilibrio, v fi = v if : v f i = N f dt = N f A fi v if = N i B if u(ν fi ) v fi = N f B fi u(ν fi ) + A fi N f N f N i = B if u(ν fi ) B fi u(ν fi ) + A fi Equilibrio termodinámico (ley de distribución de Boltzmann): N f N i u(ν fi ) = = exp B if [e [ E f E i k B T A fi hνfi k B T ] 1] = exp [ hν fi k B T ] ; con B fi = B if Equilibrio térmico de la radiación ley del cuerpo negro de Planck: u(ν fi ) = 8πν3 fi 1 [ c 3 hνfi k e B T ] 1 A fi = 8πhν3 fi c 3 B if = 16π3 ν 3 fi 3ɛ hc 3 ψ f ˆd ψ i 2 A ji duración de la vida del estado f. N f (t) = N f ()e A fit Vida media del estado excitado f : τ = 1/A ji Diferencias entre emisión espontánea e inducida.

9 Anchura e intensidad de las líneas 6 Oct 4 Introd9 Anchura media ν 1. Anchura natural de la línea E τ /2 ν 1 4πτ f = A fi 4π = 4π2 ν 3 fi 3ɛ hc 3 ψ f ˆd ψ i 2 2. Ensanchamiento Doppler ( ν = ν 1 ± v ) ; c +si se acercan si se alejan ν Doppler = ν c ν ν = ν ν ν = ±v c ( ) 1/2 2kT ln 2 (gas) m 3. Ensanchamiento por colisión i) Deformaciones en las partículas = variaciones en los niveles de energía ii) Acortamiento las vidas de los estados excitados. 4. Ensanchamiento de saturación Reducción de la población del nivel más bajo y Tratamiento de perturbaciones más exacto = ensanchamiento.

10 6 Oct 4 Introd1 Cuadro 1: Ordenes de magnitud para tiempos asociados con algunas técnicas espectrales a. Energía Tiempo Ancho de Técnica (Hz) relaj. (s) línea (Hz) NMR (liq.) EPR (liq.) Rotacion (gas) Vibración (gas) Electrónica (gas) Electrónica (liq.) Mössbauer (sol.) a E.A.V. Ebsworth, D.W.H. Rankin y S. Cradock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publications, Conclusiones Anchura natural: inevitable, en la práctica pequeño. Est. gaseoso : ensanchamiento Doppler, f(t), haz. ensanchamiento por colisiones, f(p). Est. líquido: ensanchamiento por colisiones. Ensanchamiento de saturación: menor potencia

11 Intensidad de las líneas espectrales 4 Oct 5 Introd11 a) Probabilidad de transición: ψ f ˆd ψ i 2 b) Poblac. de los estados. Ley distrib. Boltzmann: N f = g ( f exp E ) N i g i kt c) La muestra, recurrido de la radiación y concent. Ley de Lambert-Beer: T (transmitancia) = I I = 1 ɛcl ɛcl = log T ; A = log 1 T 1 A(absorbancia) = ɛcl A = log T = log = log T ( %) 1 ( I I ) = 2 log T ( %) 1 T (%) A Figura 2: Transmitancia frente a la absorbancia

Interacción de la radiación con la materia

Interacción de la radiación con la materia C A P Í T U L O 3 Interacción de la radiación con la materia 3.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. Determine la probabilidad de transición para una perturbación H (x) independiente del tiempo

Más detalles

Química Cuántica I: Reglas de selección

Química Cuántica I: Reglas de selección Química Cuántica I: Jesús Hernández Trujillo, FQ-UNAM /JHT 1 / 25 Introducción Espectroscopia: Estudio de las transiciones que se producen entre los estados cuánticos de un sistema material debido a sus

Más detalles

EXAMEN (fecha: 12/05/2004)

EXAMEN (fecha: 12/05/2004) ESPECTROSCOPÍA EXAMEN (fecha: /05/004) Enunciados, resolución y soluciones: () La serie del espectro del catión He +, que corresponde al conjunto de transiciones en las que el electrón salta desde un nivel

Más detalles

Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción

Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción 1 Tema 7. Espectroscopia para el estudio de la materia 1801: Thomas Young. Naturaleza dual de la radiación y la materia. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojos

Más detalles

Tema 3.-Espectroscopía de biomoléculas

Tema 3.-Espectroscopía de biomoléculas Tema 3.-Espectroscopía de biomoléculas Tema 3.-Espectroscopía de biomoléculas 3.1.-El espectro electromagnético 3.2.-Espectros de absorción y de emisión (espontánea y estimulada) 3.2.1.-Momento dipolar

Más detalles

U N I V E R S I D A D N A C I O N A L D E L S U R 1/4

U N I V E R S I D A D N A C I O N A L D E L S U R 1/4 U N I V E R S I D A D N A C I O N A L D E L S U R 1/4 DEPARTAMENTO DE: FISICA PROGRAMA DE: MECANICA CUANTICA II Carreras: Licenciatura en Física CODIGO: 3282 HORAS DE CLASE TEORICAS PRACTICAS Por semana

Más detalles

Equilibrio cinético EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS. Equilibrio Termodinámico En las estrellas tenemos TE porque: Equilibrio Termodinámico

Equilibrio cinético EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS. Equilibrio Termodinámico En las estrellas tenemos TE porque: Equilibrio Termodinámico EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS El MI está fuera del equilibrio termodinámico (TE). La densidad de energía media de la radiación estelar corresponde a un TE de T=3K. La energía media de estos

Más detalles

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS El MI está fuera del equilibrio termodinámico (TE). La densidad de energía media de la radiación estelar corresponde a un TE de T=3K. La energía media de estos

Más detalles

Tema 3.-Espectroscopía de biomoléculas

Tema 3.-Espectroscopía de biomoléculas Tema 3.Espectroscopía de biomoléculas Tema 3.Espectroscopía de biomoléculas 3..El espectro electromagnético 3.2.Espectros de absorción y de emisión (espontánea y estimulada) 3.2..Momento dipolar de transición:

Más detalles

Fundamentos de espectroscopia de Fourier. Clase miércoles 25 de octubre de 2006

Fundamentos de espectroscopia de Fourier. Clase miércoles 25 de octubre de 2006 Fundamentos de espectroscopia de Fourier Clase miércoles 25 de octubre de 26 Esquema del interferómetro de Michelson La espectroscopia de Fourier está fundamentada en la capacidad de obtener datos del

Más detalles

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini ONDAS MECANICAS Docente Turno 4: MOVIMIENTO ONDULATORIO: CONSTRUCCION DEL MODELO: MATERIA DEFORMABLE O ELASTICA POR DONDE SE PROPAGAN LAS ONDAS MECANICAS Las ondas de agua las ondas sonoras son ejemplos

Más detalles

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico

Más detalles

N i,m e ( χ i,m. kt ) (4.1)

N i,m e ( χ i,m. kt ) (4.1) 4.3. Excitación térmica. Formula de Boltzmann # Intensidad de una línea depende de ( al menos en sentido cualitativo): Número de átomos del elemento en el estado de ionización correspondiente Número de

Más detalles

Fundamentos de espectroscopia de Fourier. Clase miércoles 13 de octubre de 2010 y clase jueves 14 de octubre

Fundamentos de espectroscopia de Fourier. Clase miércoles 13 de octubre de 2010 y clase jueves 14 de octubre Fundamentos de espectroscopia de Fourier Clase miércoles 13 de octubre de 1 y clase jueves 14 de octubre Esquema del interferómetro de Michelson La espectroscopia de Fourier está fundamentada en la capacidad

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

Espectroscopía óptica

Espectroscopía óptica El color del mundo CNyN-UNAM En esta práctica estudiaremos la razón de los colores que vemos. Esto tiene diferentes ángulos, fuente de luz, interacción luz materia, separación de los colores para mejor

Más detalles

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS El MI está fuera del equilibrio termodinámico (TE). La densidad de energía media de la radiación estelar corresponde a un TE de T=3K. La energía media de estos

Más detalles

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio Tema 5: Técnicas espectroscópicas: Espectrofotometría 0 22 Hz Frecuencia 0 4 Hz 0 3 Hz γ X UV IR micro radio Rayos γ (gamma) λ < pm Rayos X pm-0nm Visible 400-800nm Ultravioleta 0-400 nm Longitud de onda

Más detalles

UCM - Mec. Cuan. Avan. 13/14

UCM - Mec. Cuan. Avan. 13/14 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FISICA TEORICA I Mecánica cuántica avanzada - Curso 013/14 - Problemas Perturbaciones dependientes del tiempo Problema 1. Un campo eléctrico PROBABILIDAD

Más detalles

Quiebra de la Fisica Clásica

Quiebra de la Fisica Clásica Quiebra de la Fisica Clásica Fernando Barreiro Universidad Autónoma de Madrid Fundamentos Fisica III Fernando Barreiro Fundamentos Fisica III: Quiebra de la Fisica Clásica 1 / 17 Introducción Fisica a

Más detalles

El cuerpo negro. Figura 3.1: Cuerpo negro

El cuerpo negro. Figura 3.1: Cuerpo negro Capítulo 3 El cuerpo negro. Cuerpo negro: Distribución de fotones dentro de un recinto cuyas paredes se mantienen en equilibrio termodinámico (T = cte.): radiación del cuerpo negro (BB). Figura 3.1: Cuerpo

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Fotones, electrones, y. Dualidad onda partícula. Dualidad onda partícula. Ventaja de los electrones. Fotos enviadas por Sebastián Gómez (curso 2007)

Fotones, electrones, y. Dualidad onda partícula. Dualidad onda partícula. Ventaja de los electrones. Fotos enviadas por Sebastián Gómez (curso 2007) Fotones, electrones, y. Dualidad onda partícula partículas cuánticas ó paquetes de onda Se difractan si interactúan con objetos de tamaño comparable con su λ. Es decir en ese caso se comportan como ondas.

Más detalles

Tema 6. Espectroscopia para el estudio de la materia

Tema 6. Espectroscopia para el estudio de la materia Tema 6. Espectroscopia para el estudio de la materia 1. Introducción. Naturaleza dual de la radiación y la materia 2. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojo 4. Espectroscopía

Más detalles

Aplicaciones de la Química Cuántica. Examen de problemas. 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso:

Aplicaciones de la Química Cuántica. Examen de problemas. 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso: Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso: 2005-06 Examen de problemas 1. [3.0 puntos]el espectro de rotación del 1 H 35 Cl en fase gas muestra bandas

Más detalles

Programa Química Cuántica (09534) Facultad de Ciencias Químicas. M. Dolores Troitiño Lorna Bailey

Programa Química Cuántica (09534) Facultad de Ciencias Químicas. M. Dolores Troitiño Lorna Bailey Programa 2004-2005 Química Cuántica (09534) M. Dolores Troitiño Lorna Bailey Facultad de Ciencias Químicas Química Cuántica (09534) Tema 1. Tema 2. Tema 3. Tema 4. Tema 5. Tema 6. Tema 7. Tema 8. Tema

Más detalles

2014_2C. Módulo IV. La interacción de la luz con la materia. lo que vemos y lo que nos permite ver Hewitt, Física conceptual. Actividades prácticas

2014_2C. Módulo IV. La interacción de la luz con la materia. lo que vemos y lo que nos permite ver Hewitt, Física conceptual. Actividades prácticas Módulo IV La interacción de la luz con la materia lo que vemos y lo que nos permite ver Hewitt, Física conceptual Arquitectura del Módulo IV Teóricos Polarización de la luz Interferencia y difracción Espectroscopias

Más detalles

Examen de problemas (SOLUCIONADO)

Examen de problemas (SOLUCIONADO) 1. [3.0 puntos] Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre Curso: 2004-05 Examen de problemas SOLUCIONADO a Determinar las frecuencias rotacionales en Hz de la molécula

Más detalles

Clase VII Termodinámica de energía solar fototérmica

Clase VII Termodinámica de energía solar fototérmica Clase VII Termodinámica de energía solar fototérmica Alejandro Medina Septiembre 2015 http://campus.usal.es/gtfe Espectro electromagnético y radiación térmica La radiación térmica es energía electromagnética

Más detalles

21. Efecto fotoeléctrico.

21. Efecto fotoeléctrico. Mecánica Cuántica Avanzada Carlos Pena 21-1 21. Efecto fotoeléctrico. [Ynd 22.6; premio Nobel 1921 (Einstein)] Concepto. Ionización del hidrógeno. Se llama efecto fotoeléctrico a la emisión de electrones

Más detalles

Características generales de la Espectroscopía

Características generales de la Espectroscopía Características generales de la Espectroscopía (Descifrando las claves de la interacción materia-radiación) J. C. Sancho-García Grupo de Química Cuántica Depto. Química-Física (jc.sancho@ua.es) Alicante;

Más detalles

Rotación de moléculas diatómicas

Rotación de moléculas diatómicas Rotación de moléculas diatómicas Química Física Aplicada, UAM 23 de enero de 2011 (Química Física Aplicada, UAM) Rotación de moléculas diatómicas 23 de enero de 2011 1 / 29 Movimiento nuclear en moléculas

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I termodinámicas a partir de Gases Ideales

Más detalles

Espectroscopía atómica

Espectroscopía atómica C A P Í T U L O 6 Espectroscopía atómica 6.. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 6. Demuestre la regla de selección angular del átomo hidrogenoide m = 0, ±. Para m m 2π 0 e im Φ e imφ dφ

Más detalles

ÍNDICE

ÍNDICE ÍNDICE 1 Radiación térmica y el postulado de Planck... 17 1-1 Introducción... 19 1-2 Radiación térmica... 19 1-3 Teoría clásica de la cavidad radiante... 24 1-4 Teoría de Planck de la cavidad radiante...

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Propiedades características de un metal o donde. estábamos en 1900

Propiedades características de un metal o donde. estábamos en 1900 Propiedades características de un metal o donde ρ estábamos en 1900 Los metales son buenos conductores de la electricidad. Podemos caracterizar esta propiedad introduciendo la resistividad eléctrica ρ

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

Leyes básicas de la teoría electromagética

Leyes básicas de la teoría electromagética Divergencia = xî + y ĵ + z k Rotacional î ĵ k = x y z F x F y F z Leyes básicas de la teoría electromagética Ley de inducción de Faraday C d l =- d S Ley de Gauss d S = 1 ɛ V ρdv Ley de Gauss magnética

Más detalles

Radiación del cuerpo negro

Radiación del cuerpo negro Estructura de la Materia Radiación del cuerpo negro Martha M. Flores Leonar FQ UNAM 13 de febrero de 2018 FENÓMENO DE LA RADIACIÓN TÉRMICA Consiste en la transferencia de energía por medio de radiación.

Más detalles

Radiación térmica y el postulado de Planck

Radiación térmica y el postulado de Planck Contenido Radiación térmica y el postulado de Planck 17 1-1 1-2 1-3 1.4 1.5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de Planck de 1a cavidad radiante

Más detalles

Espectroscopía vibracional y rotacional

Espectroscopía vibracional y rotacional Espectroscopía vibracional y rotacional Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 19 de marzo de 2015 Índice 1. Interacción de la radiación con la materia

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein.

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. Mecánica Cuántica Avanzada Carlos Pena 20-1 20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. [Gre 2.1,2.3; passim] Absorción de fotones en un átomo El proceso

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Análisis Instrumental FCEyN

Análisis Instrumental FCEyN Análisis Instrumental FCEyN Espectrometría de Absorción Atómica Espectrometrías de Emisión Alejandro Leciñana 2017 Métodos espectroscópicos atómicos Absorción y Emisión Atómica en llama La espectrometría

Más detalles

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP Ondas de Materia Ecuación de Schrödinger Física 3 2012 Facultad de Ingeniería UNMDP Problemas abiertos de la física clásica a fines del siglo XIX Antecedentes de la mecánica cuántica Radiación de cuerpo

Más detalles

CAPITULO 1. Introducción a la Mecánica Cuántica. 1) Naturaleza de la luz. Dualidad onda-corpúsculo

CAPITULO 1. Introducción a la Mecánica Cuántica. 1) Naturaleza de la luz. Dualidad onda-corpúsculo CAPITULO. Introducción a la Mecánica Cuántica ) Naturaleza de la luz. Dualidad onda-corpúsculo Naturaleza ondulatoria: Eistencia de difracción e interferencias. La luz puede ser polarizada. La luz no tiene

Más detalles

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones.

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. Nombre... TEORÍA 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. 1 A.- Qué carga oculta la interrogación de la figura 1 A, si la carga visible es +2 C? (0.5

Más detalles

Principios de Estructura de la Materia (2017-2) Lina Marcela Bolívar Pineda Silvia Juliana Becerra Anaya Damián Alexander Contreras Cadena

Principios de Estructura de la Materia (2017-2) Lina Marcela Bolívar Pineda Silvia Juliana Becerra Anaya Damián Alexander Contreras Cadena Principios de Estructura de la Materia (2017-2) Lina Marcela Bolívar Pineda Silvia Juliana Becerra Anaya Damián Alexander Contreras Cadena Es un sistema cualquiera que al ser perturbado o alejado de su

Más detalles

ONDAS. José Luis Rodríguez Blanco

ONDAS. José Luis Rodríguez Blanco ONDAS José Luis Rodríguez Blanco MOVIMIENTO ONDULATORIO Propagación de una perturbación con transferencia de energía y momento lineal, pero sin transporte de materia Los puntos alcanzados por la perturbación

Más detalles

LICENCIATURA DE QUÍMICO EN ALIMENTOS. Química Analítica III. Tipo de Asignatura: Teórico-Práctico Área de Conocimiento: Básica Propedéutica

LICENCIATURA DE QUÍMICO EN ALIMENTOS. Química Analítica III. Tipo de Asignatura: Teórico-Práctico Área de Conocimiento: Básica Propedéutica LICENCIATURA DE QUÍMICO EN ALIMENTOS Química Analítica III Tipo de Asignatura: Teórico-Práctico Área de Conocimiento: Básica Propedéutica 106 1. DATOS GENERALES DE IDENTIFICACIÓN Nombre de la asignatura

Más detalles

Cuestiones de Autoevaluación

Cuestiones de Autoevaluación Cuestiones de Autoevaluación Temas 1-5 Razone cuál de las respuestas es correcta en cada caso 1. En un experimento fotoeléctrico que se realiza con fotones de energías superiores a la función trabajo del

Más detalles

MECANICA CUANTICA AVANZADA FIM 8540 Ejercicios

MECANICA CUANTICA AVANZADA FIM 8540 Ejercicios MECANICA CUANTICA AVANZADA FIM 8540 Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2009 EJERCICIOS 1.- Para el operador S ± : S ± i 1, i 2,..., i α,..., i N =

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

Espectroscopía de vibración rotación de moléculas diatómicas

Espectroscopía de vibración rotación de moléculas diatómicas C A P Í T U L O 7 Espectroscopía de vibración rotación de moléculas diatómicas 7.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 7.1 Deduzca la ecuación de Schrödinger nuclear de una molécula poliatómica

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (13)

TEORIA ELECTROMAGNETICA FIZ 0321 (13) TEORIA ELECTROMAGNETICA FIZ 0321 (13) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 PROBLEMAS Y EJERCICIOS Ejercicio No. 1 Tenemos un circuito no rígido

Más detalles

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 5.- DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades Ópticas de los Materiales Absorción y emisión de luz. Color de los materiales. Interacción de luz con los materiales. Efectos ópticos no

Más detalles

Fotones-Propiedades corpusculares de la radiación 45

Fotones-Propiedades corpusculares de la radiación 45 &C.A:tQ -~ 2 E. 'S 2ol~ c-t Contenido Radiación térmica y el postulado de Planck l 7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de

Más detalles

Tema 7.- Principios de fotoquímica

Tema 7.- Principios de fotoquímica Tema 7.- Principios de fotoquímica Introducción La rama de la química que estudia las transformaciones de las moléculas producidas por la absorción de energía electromagnética Muchas especies en la atmósfera

Más detalles

Ondas Electromagnéticas

Ondas Electromagnéticas Física IV Ondas Electromagnéticas http://mjfisica.net Versión 8.2015 Contenido Concepto de onda Elementos de una onda Ecuaciones de Maxwell Ondas electromagnéticas Ecuación de ondas electromagnéticas senoidales

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

Física Teórica 2. Primer cuatrimestre de Guía 4: Dinámica cuántica

Física Teórica 2. Primer cuatrimestre de Guía 4: Dinámica cuántica Física Teórica Primer cuatrimestre de 018 Guía 4: Dinámica cuántica 1. La representación matricial del Hamiltoniano correspondiente a un fotón propagándose en dirección del eje óptico de un cristal de

Más detalles

Tema 1: Resumen y (algunos) problemas

Tema 1: Resumen y (algunos) problemas Tema 1: Resumen y (algunos) problemas Radiación emitida por un cuerpo negro. En general los cuerpos emiten, absorben y reflejan radiación. Se llama cuerpo negro a aquel que no refleja radiación. Un ejemplo

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Cuantización del campo electromagnético

Cuantización del campo electromagnético Cuantización del campo electromagnético Física Contemporanea 1. Descomposición espectral del campo electromagnético Consideremos el campo electromagnético dentro una cavidad cubica de lado L y volumen

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I equilibrio Densidad de La radiación

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO UNAM, Facultad de Química Principios de estructura de la materia Dr. Luis Vicente Hinestroza 25 de septiembre de 2018 SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO Integrantes del equipo:

Más detalles

Qué es espectrofotometría?

Qué es espectrofotometría? espectrofotometría Qué es espectrofotometría? Método de ánalisis físico-químico, que permite determinar la concentración de un analito, en función a la cantidad de energía radiante absorbida o emitida.

Más detalles

Nociones básicas de la teoría cuántica de la luz

Nociones básicas de la teoría cuántica de la luz Nociones básicas de la teoría cuántica de la luz Fotones etc... Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

Clase del 6 de octubre de Prof. M.L. Calvo

Clase del 6 de octubre de Prof. M.L. Calvo Señales ópticas Intensidad óptica Clase del 6 de octubre de 2010 Prof. M.L. Calvo Señal espacio-temporal Definimos: U = U P, t ( ) Supondremos que el comportamiento espacio-temporal de la señal puede representarse

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Propiedades de la ondas Largo de onda (λ)

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega.

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega. El cuerpo negro Imaginemos un cuerpo que absorbe toda la radiación que le llega. Típicamente la eficiencia no es tan grande (a~.99), pero se puede encontrar algo que se comporta casi igual: Un agujero

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

MOVIMIENTO ONDULATORIO EL SONIDO

MOVIMIENTO ONDULATORIO EL SONIDO transparent www.profesorjrc.es MOVIMIENTO ONDULATORIO EL SONIDO 15 de enero de 2017 TIPOS DE ONDAS { MECÁNICAS ENERGÍA PROPAGACIÓN ELECTROMAGNÉTICAS { LONGITUDINALES DIRECCIÓN PROPAGACIÓN y VIBRACIÓN TRANSVERSALES

Más detalles

Tema 7: Espectroscopia Vibracional (IR)

Tema 7: Espectroscopia Vibracional (IR) Tabla 1. El espectro electromagnético Región Longitud de onda Energía de excitación Tipo de excitación Rayos x, rayos cósmicos 286 (Kcal/mol) Ultravioleta Visible Infrarrojo próximo Infrarrojo

Más detalles

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015 Introducción a la Física Cuántica Tarea 7 A entregar: Lunes 16 de noviembre de 2015 Spin y sistemas de dos estados Prob. 30. Matrices de momento angular j = 1. En clase discutimos que para cada valor de

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS Física º Bachillerato Movimiento Ondulatorio - FÍSICA - º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS. Una onda es una perturbación que se propaga de un punto a otro

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

Solución de la ecuación de Schrödinger para el oscilador armónico

Solución de la ecuación de Schrödinger para el oscilador armónico Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión

Más detalles

LASER Conceptos Básicos

LASER Conceptos Básicos LASER Conceptos Básicos Laser - Light Amplification by Stimulate Emission of Radiation Amplificación de Luz por Emisión Estimulada de Radiación Como Funciona? Usa a emisión estimulada para desencadenar

Más detalles

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré

Más detalles

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014 Interacción de la radiación electromagnética con la materia L.C.Damonte 014 Interacción de la radiación electromagnética con la materia o Los fotones se clasifican de acuerdo a su origen: Rayos (0.1MeV-5MeV)

Más detalles

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS Jiménez Bárcenas Nadia Rosalina López Salazar Fátima Mendoza Pérez Bernardo Monzón González César Raúl Equipo 3: Principios de estructura de la materia

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I Formas de energía en un sólido cristalino

Más detalles

Fundamentos de Mecánica Cuántica

Fundamentos de Mecánica Cuántica Fundamentos de Mecánica Cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 207/208 Índice. Orígenes de la Mecánica Cuántica 2. La ecuación de Schrödinger independiente

Más detalles

Estructura electrónica de los átomos

Estructura electrónica de los átomos Estructura electrónica de los átomos Partículas subatómicas Protón (p) 1,673 10-27 Kg + 1,602 10-19 C Goldstein (1886) Electrón (e) 9,109 10-31 Kg - 1,602 10-19 C Thomson (1897) Neutrón (n) 1,673 10-27

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

Gas ideal de Fermi-Dirac

Gas ideal de Fermi-Dirac Capítulo 9 Gas ideal de Fermi-Dirac Los fermiones son partículas de spin semi-entero. Supongamos el caso mas simple de spin 1/2, esto es, partículas para las cuales S z ± h/2, estados que vamos a denotar

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

FISICA IV. Física Cuántica Marco A. Merma Jara Versión

FISICA IV. Física Cuántica Marco A. Merma Jara   Versión FISICA IV Física Cuántica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Inicios de la física moderna Constante de Planck El efecto fotoeléctrico Energía relativista Teoría cuántica de

Más detalles

Continuación. Interacción Fotón-Sólido

Continuación. Interacción Fotón-Sólido Continuación Interacción Fotón-Sólido Radiación Electromagnética ESPECTRO ELECTROMAGNÉTICO RADIO- FRECUENCIA MICRO- ONDAS IR UV RAYOS X RAYOS GAMMA ENERGÍA (ev) -5-3 3 5 10 10 1 10 10 LONGITUD DE ONDA

Más detalles

67.31 Transferencia de Calor y Masa

67.31 Transferencia de Calor y Masa Índice general 6. Radiación 3 6.1. Introducción........................................... 3 6.1.1. El mecanismo físico de la radiación.......................... 3 6.1.2. Cuerpo Negro, Leyes de Radiación..........................

Más detalles