0. INTRODUCCIÓN. 9, su inclinación es -1. Diremos por tanto. que la derivada en el punto señalado es también -1.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "0. INTRODUCCIÓN. 9, su inclinación es -1. Diremos por tanto. que la derivada en el punto señalado es también -1."

Transcripción

1 BLOQUE : ANÁLISIS DE FUNCIONES 0. INTRODUCCIÓN Si vemos una carretera o un camino que asciende rápidamente hacia la parte alta de una montaña, con una pronunciada cuesta, tal vez digamos que es un camino con mucha pendiente. Al hacerlo, estamos refiriéndonos sin saberlo a un concepto fundamental en las matemáticas: la derivada de una función. La derivada es el valor de la pendiente (es decir, la inclinación) de la recta tangente en un punto determinado. Este valor nos permitirá conocer el crecimiento la inclinación de la función que estemos estudiando. Esto es mu útil en multitud de aplicaciones: desde la biología hasta la economía. Veremos que se aplica todos los días para hacer predicciones conocer fácilmente propiedades importantes de las funciones, como su concavidad o conveidad. Como la recta tangente al Roque Bentaga es 9, su inclinación es -. Diremos por tanto que la derivada en el punto señalado es también -.. TASA DE VARIACIÓN Se llama tasa de variación media de una función f() en el intervalo [a,b] a: f(b) f(a) T b a (b,f(b)) Por comodidad, muchas veces se epresa así: T También puede llamarse tasa de crecimiento o velocidad media del cambio de la función f. Geométricamente representa la pendiente de la recta que une los puntos A B. (a,f(a)) /0

2 BLOQUE : ANÁLISIS DE FUNCIONES Llamamos tasa de variación instantánea de una función en un punto = a, al resultado del límite siguiente: T f(b) f(a) b a b a La tasa de variación instantánea, se refiere siempre a un punto pude llamarse también razón de cambio representa la pendiente de la recta tangente de la función en dicho punto. Ejemplo : f() 5 Calcula la tasa de variación media entre 0 unidades. T f() f(0) , 7 Cuál sería la tasa de variación instantánea para =? T h 0 h 9h 0 h h0 0 h 5 h 5 h h0 h h 0 5h h 0 Este tipo de indeterminaciones a las aprendimos a resolver en el tema anterior, bastará con que simplifiquemos la fracción h 9h h h h 0 h0 h 9 h 9 Como puedes intuir, es un proceso mu largo si tenemos que hacerlo con la gran variedad de funciones que ha además bastante tedioso porque para valor de ha que hacerlo. Esto da pie a una función llamada función derivada (se representa f ) que se determina según se eplica en el apartado siguiente. /0

3 BLOQUE : ANÁLISIS DE FUNCIONES. TABLA DE DERIVADAS En general no es fácil determinar la función derivada de una función, si tuviéramos que hacerlo como anteriormente. Pero ha una tabla que resume las derivadas que nos debemos aprender de memoria. Veamos en primer lugar las derivadas básicas: F() F () n a n n a lna log a lna sen cos cos cos tg sec tg cos arcsen arccos arctg Para funciones más complejas, tenemos que añadir otras reglas f() g() ' f'() g'() a f() ' a f'() f() g() ' f'() g() f() g'() f() f'() g() f() g'() ' g() g () f(g()) ' f'(g()) g'() /0

4 BLOQUE : ANÁLISIS DE FUNCIONES. FUNCIONES A TROZOS Y LA DERIVADA En el caso de tener una función a trozos, procederemos por separado a obtener la derivada, teniendo en cuenta que las desigualdades pasan a ser estrictas, es decir, en general no se conserva el signo igual Ejemplo : Obtener la derivada de la función ' ln log () Pero ahora no se pone el signo de igualdad, salvo que la función derivada resultante sea continua ( decimos que la función es derivable). Comprobemos en este caso Es continua la función f()? Al ser una función a trozos, analizaremos la frontera ( = ) log () log () Es decir la función es continua Miremos ahora qué ocurre con la derivada ln ln 0.7 Como la derivada no es continua, decimos que la función no es derivable Ejemplo : Obtener la derivada de la siguiente función analizar si es derivable f() La derivada es f '() /0

5 BLOQUE : ANÁLISIS DE FUNCIONES La función es continua La derivada es continua La función es derivable f'() Dentro de que una función es no derivable podemos distinguir tipos: a) La función no es derivable porque es discontinua b) La función es no derivable porque los límites laterales son diferentes finitos. Este punto de no derivabilidad recibe el nombre de punto anguloso c) La función es no derivable porque al menos uno de los límites laterales vale infinito. Este punto de no derivabilidad se llama punto de tangente vertical Discontinua Punto Anguloso Punto de recta tangente vertical 5/0

6 BLOQUE : ANÁLISIS DE FUNCIONES.- LAS RECTAS TANGENTE Y NORMAL Ya hemos eplicado que la derivada representa a la pendiente de la recta tangente de la función en el punto de tangencia, es por lo que la ecuación de la recta tangente en el punto = a es: f(a) f'(a) ( a) (Está en la forma punto-pendiente, habrá que pasarla a la forma general) Como la recta normal es la recta perpendicular a la recta tangente que pasa por el punto de tangencia, su ecuación será: f(a) ( a) f'(a) 9 Recta Normal Recta Tengente Ejemplo: Determinar las rectas tangente normal a la función en el punto de abscisa. En primer lugar necesitamos las dos coordenadas del punto f() 5 Por lo tanto, el punto de tangencia es (,5) Ahora necesitamos las pendientes, para ello calculamos la derivada ', Entonces la pendiente es '(), para la recta tangente normal. Bastará sustituir los valores en las fórmulas '() para la recta La recta tangente es: 5 ( ) Y la recta normal: 5 ( ) 0 6/0

7 BLOQUE : ANÁLISIS DE FUNCIONES 5.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Vamos a fijarnos en la siguiente gráfica: La función es creciente en los intervalos,, La función es decreciente en, Si dibujáramos la recta tangente en = -, tendríamos que: la pendiente de dicha recta es positiva (lo mismo va a ocurrir con cualquier punto donde la función sea creciente), sin embargo, si lo hacemos en = 0. Veremos que la recta es decreciente, por lo tanto, la pendiente será negativa ( lo mismo ocurre en cualquier valor donde sea decreciente En resumen, la derivada es positiva en los puntos donde la función es creciente negativa donde es decreciente. Ha unos valores en los que la recta tangente es horizontal, eres capaz de averiguar cuáles? Cuánto valdrá la derivada en dichos valores? Cómo llamaremos a esos puntos? Ejemplo: Determinar los intervalos de monotonía (crecimiento decrecimiento) de la función En primer lugar tendremos que determinar aquellos valores donde la derivada no es ni positiva ni negativa (puntos críticos o puntos singulares) ' 0 0 Esta ecuación tiene soluciones = 0, = -, =. Mediante una tabla de signos determinaremos donde la derivada es positiva donde negativa 7/0

8 BLOQUE : ANÁLISIS DE FUNCIONES - 0 En resumen, la función es creciente en,0, decreciente en, 0, En = = -, la función cambia de decreciente a creciente, son mínimos relativos. En = 0, la función cambia de creciente a decreciente es un máimo relativo Ejemplo: Determinar los intervalos de monotonía (crecimiento decrecimiento) de la función En primer lugar tendremos que determinar aquellos valores donde la derivada no es ni positiva ni negativa (puntos críticos o puntos singulares) ' Ahora bien, los valores = =., también ha que tenerlos en cuenta en nuestra tabla de signos porque NO SON DEL DOMINIO de la función (ni de la derivada) por lo tanto, la función en dichos puntos no es derivable. Es decir, en la tabla ha que poner los valores donde la derivada vale cero además aquellos puntos donde la función no es derivable - 0 En el punto = 0, tenemos entonces un mínimo relativo porque la función cambia de decreciente a creciente. 8/0

9 BLOQUE : ANÁLISIS DE FUNCIONES 6.- CONCAVIDAD Y CONVEXIDAD Una función f() es cóncava en el punto = a si la recta tangente a la curva en ese punto queda por debajo de la gráfica de la función. Una función f() es convea en el punto = a si la recta tangente a la curva en ese punto queda por encima de la gráfica de la función Si la recta tangente a f() la corta en el punto = a, diremos que a es un punto de infleión. Si nos fijamos en la parte cóncava, la derivada de la función en los puntos a la izquierda del mínimo es negativa, mientras que los que están a la derecha tienen derivada positiva. Si consideramos la derivada como una función, podemos decir que es una función creciente (va de menos a mas) por lo tanto su derivada (la derivada de la derivada) es positiva. En resumen: Las funciones cóncavas se caracterizan por tener segunda derivada positiva. De manera análoga podemos concluir que las funciones conveas tienen la segunda derivada negativa que la característica de los puntos de infleión es que su segunda derivada es cero. Para determinar los intervalos de concavidad conveidad el procedimiento es análogo al de la monotonía, pero a partir de la derivada segunda. 9/0

10 BLOQUE : ANÁLISIS DE FUNCIONES 7.- OPTIMIZACIÓN DE FUNCIONES Muchos problemas de los que se plantean en la ciencia, en la técnica o en la economía consisten en optimizar una función. Obtener el máimo rendimiento con el mínimo consumo, o bien, obtener los máimos beneficios con el mínimo coste. Para audarnos a resolverlos nos puede ser útil es siguiente esquema:.- Escribimos los datos las incógnitas, hacemos un dibujo si es posible.- Escribimos la función que deseamos maimizar o minimizar.- A partir de los datos del problema o relacione conocidas dejamos la función con una sola variable independiente..- Hallamos los máimos o mínimos derivando 5.- comprobamos si es máimo o mínimo (en la derivada segunda o en la tabla de signos) 6.- Interpretamos los resultados obtenidos rechazamos los que no sean posibles. Ejemplo: De todos los rectángulos de perímetro 0 m, calcula las dimensiones del que tiene maor área.- Perímetro = 0 X = longitud Y = Anchura.- La función maimizar es A =.- El perímetro es 0 m 0 A= A() (0 ).- A'() A ''() 0 Se trata de un máimo Longitud 5m, anchura = 5 m A() El rectángulo que obtenemos es un cuadrado, la solución es correcta, porque un cuadrado es un caso particular de un rectángulo. 0/0

0. INTRODUCCIÓN. 9, su inclinación es -1. Diremos por tanto. que la derivada en el punto señalado es también -1.

0. INTRODUCCIÓN. 9, su inclinación es -1. Diremos por tanto. que la derivada en el punto señalado es también -1. BLOQUE : ANÁLISIS DE FUNCIONES 0. INTRODUCCIÓN Si vemos una carretera o un camino que asciende rápidamente acia la parte alta de una montaña, con una pronunciada cuesta, tal vez digamos que es un camino

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Estudia la continuidad derivabilidad de las funciones f() g() si f() si < Estudiamos la continuidad en. f() ( ) - - f() ( ) + + La función f() es continua

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS. Monotonía: Crecimiento y decrecimiento de una unción. Determinación de etremos relativos. Optimización de unciones. Curvatura: Concavidad o curvatura de una unción 5. Puntos

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Actualización de Conocimientos de Matemáticas para Tema 08 DERIVADAS Derivada de una función en un punto Una función f () es derivable en el punto a si f ( a + ) f ( a) eiste el límite: lím Este límite

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

Matemáticas aplicadas a las CC.SS. II

Matemáticas aplicadas a las CC.SS. II Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada 1. Introducción Tema 8: Aplicaciones de la derivada En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

Tema 7: Aplicaciones de la derivada

Tema 7: Aplicaciones de la derivada Tema 7: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

UNIDAD 10 DERIVADAS Y APLICACIONES.

UNIDAD 10 DERIVADAS Y APLICACIONES. IES Padre Poveda (Guadi UNIDAD 0 DERIVADAS Y APLICACIONES.. Tasa de variación media.. Derivada de una unción en un punto. Función derivada. Derivadas sucesivas.. Reglas de derivación. 4. Interpretación

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

CONCEPTO DE DERIVADA

CONCEPTO DE DERIVADA TASA DE VARIACIÓN MEDIA CONCEPTO DE DERIVADA ACTIVIDADES ) Halla la tasa de variación media de la función f siguientes intervalos: en cada uno de los a), b), c) 0, d), 3 ) Halla la T.V.M. de esta función

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Parte II. DERIVADAS. APLICACIONES.

Parte II. DERIVADAS. APLICACIONES. Parte II. DERIVADAS. APLICACIONES. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. f ( a + h ) f ( a ) Se dice que f es derivable en = a si eiste el límite lim. Este número se denomina derivada

Más detalles

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios

Más detalles

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2 EJERCICIOS,.Calcular las ecuaciones de la tangente y de la normal a la parábola y en el punto en que la abscisa es Punto de tangencia,, ' Tangente... y y y y y Normal... y y y 8.- Calcular la ecuación

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real.

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real. .-Deinición DERIVADAS Dada una unción y (), llamamos derivada de la unción en el punto a, (, ( a + ) al límite '( y es un número real. 0 Cuando eiste este límite, decimos que la unción es derivable en

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de UNIDAD 9 Aplicaciones de la derivada n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de E las funciones), así como sus máimos y mínimos, estos conceptos tienen muchas aplicaciones

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

BLOQUE TEMÁTICO III: ANÁLISIS

BLOQUE TEMÁTICO III: ANÁLISIS BLOQUE TEMÁTICO III: ANÁLISIS 9.- LÍMITES Y CONTINUIDAD 1.- Funciones reales Una función es una relación de dependencia entre dos conjuntos en la que a cada elemento del conjunto inicial le corresponde

Más detalles

Solución La función raíz cuadrada tiene sentido cuando lo de dentro de la raíz es mayor o igual que cero, por tanto:

Solución La función raíz cuadrada tiene sentido cuando lo de dentro de la raíz es mayor o igual que cero, por tanto: Análisis Matématico Matemáticas Aplicadas a las CCSS º Bachillerato Ejercicio nº Para qué valores de tiene sentido la siguiente función? Es continua la función? f () La función raíz cuadrada tiene sentido

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO

DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO . TASA DE VARIACIÓN MEDIA. Imaginemos la siguiente tabla que relaciona los kilómetros recorridos por un ciclista en las siete horas que dura una etapa

Más detalles

10.APLICACIÓN DE LAS DERIVADAS

10.APLICACIÓN DE LAS DERIVADAS .APLICACIÓN DE LAS DERIVADAS. DERIVADAS SUCESIVAS Antes de introducirnos en algunas importantes aplicaciones de las derivadas, vamos a ver una ampliación de los puntos estudiados en el tema anterior que

Más detalles

tema09 24/6/04 09:35 Página CÁLCULO DE DERIVADAS

tema09 24/6/04 09:35 Página CÁLCULO DE DERIVADAS tema09 24/6/04 09:35 Página 166 9 CÁLCULO DE DERIVADAS tema09 24/6/04 09:35 Página 167 Introducción En muchas ocasiones se realizan cálculos de valores medios; por ejemplo, la velocidad media ha sido de

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal UNIDAD : DERIVADAS Y APLICACIONES.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO. Definición : Sea f una función definida en un a, b Dom f. Se llama tasa de intervalo [ ] variación media de f en dicho intervalo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV 5HVXHOYHW~3iJppp 'HPXHVWUDTXHODIXQFLyQI[ [ FRV[WLHQHDOJ~QSXQWRFUtWLFRHQHOLQWHUYDOR f() = ( - 4) cos Como es producto de dos funciones continuas y derivables, una polinómica de º grado ( -4) y otra trigonométrica

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1

x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1 Selectividad CCNN 004. [ANDA] [JUN-A] Considerar la función f: definida por f() = (+)(-)(-). (a) Hallar las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa =. (b) Determinar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Una función f(x) es una regla que asocia a cada valor posible de la variable independiente un valor, y solo uno, de los números reales

Una función f(x) es una regla que asocia a cada valor posible de la variable independiente un valor, y solo uno, de los números reales Tema : Limite y continuidad 0. INTRODUCCIÓN Las gráficas de algunas funciones presentan características especiales que, para su estudio, requieren del uso del cálculo. Por ahora, con nuestras herramientas

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos

III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos III BLOQUE III ANÁLISIS Página 9 Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y etremos de la función y =, y represéntala gráficamente. Asíntotas: Vertical: = Posición: = @ 8 8 +

Más detalles