UAM CSIC Grupo 911 Abril Ejercicios Resueltos de Equaciones Diferenciales Ordinarias. Asignatura de Matemáticas Grado en Química
|
|
- Ángel Rodríguez Padilla
- hace 2 años
- Vistas:
Transcripción
1 UAM CSIC Grupo 911 Abril 201 Ejercicios Resueltos de Equaciones Diferenciales Ordinarias Asignatura de Matemáticas Grado en Química Nota: Los ejercicios pueden contener errores, agradecemos que se comuniquen a los profesores para su corrección Escribir a Problemas Resueltos: 1, 2,, 4, 5, 7, 10, 11, 12, 1, 14, 15, Encuentra al menos dos soluciones del problema de valor inicial: t t 2, 0 0 Solución: Una posible solución es la función constante igual a 0, ie 1 t 0 Ciertamente satisface la ecuación 1t 1 t 2 a que al sustituir obtenemos 0 0, también la condición inicial Hallemos una segunda solución 2 t distinta de 1 t 0 Teniendo en cuenta que el eponente es 2/ es razonable hacer el ansatz 2 t t Efectivamente, 2t t 2 t 2 2 t 2 0 Luego 2 t es una solución de la ecuación distinta de 1 t * Solución a una EDO lineal de primer orden [ + P Q e P d ] Qe P d d + C, C R 2 Hallar la solución general de la ecuación diferencial dada Dar un intervalo en el cual la solución general esté definida: a t + 2t 0 Solución: En este caso P t 2 Qt 0, luego la solución general es t c 1 e 2t, c 1 R b 2 t + 10t 1 Solución: P t 5 Qt 1/2 La solución general es t c 1 e 5t + 0 Observemos que la solución general es de la forma h t + p t, con h t la solución general de la ecuación homogénea 2 t + 10t 0 p t 1/10 una solución particular de ecuación original no homogénea 2 t+10t 1 c t t + t Solución: P t 1 Qt t Integrando por partes la fórmula general para el caso de ecuaciones lineales de orden 1, obtenemos que la solución general es 1
2 UAM CSIC Grupo 911 Abril 201 t c 1 e t t + 1 Alternativamente podemos obtener la solución general como t h t + p t, h t solución general de la ecuación homogénea t t p t una solución particular de t t + t Se tiene h t c 1 e t Para hallar p t observamos que el término independiente Qt t es un polinomio de grado 1, luego podemos probar con p t at + b La ecuación pt p t + t implica a b 1, ie p t t + 1 d t + 5t 20, 0 2 Solución: P t 5 Qt 20 La solución general es t c 1 e 5t + 4 Del mismo modo que en los apartados anteriores esta solución es la forma t h t + p t con h t c 1 e 5t solución de la ecuación homogénea t + 5t 0 p t una solución particular de t + 5t 20 Debemos imponer la condición 0 2: La solución es t 2e 5t c c 1 2 Resolver los siguientes sistemas lineal de ecuaciones diferenciales a t 1 2 t t 2 1 t 1 2 Solución: Hallemos los autovalores de la matriz Obtenemos dos 2 1 autovalores puramente imaginarios λ 1 i λ 2 i Luego la solución es t c 1 sin t t c 2 sin t + c 2sin t + cos t + c 1 cos t sin t b 4 4 Solución: La matriz A tiene autovalores λ 1 λ 2 1 no diagonaliza La descomposición es P DP Luego la solución del sistema es t c te t + e t + c 2 te t t c 1 te t + c 2 2te t e t 2
3 UAM CSIC Grupo 911 Abril 201 c Solución: Los autovalores de la matriz A Luego la matriz diagonaliza: P DP 1 son λ 1 4 λ La solución en la base de los autovectores viene dada por e td e 4t 0 0 e 5t En la base original tenemos e ta P e td P 1 la solución general es t c 1 8e 5t + e 4t + c 2 e 5t e 4t d 1 t c 1 e 5t e 4t + c 2 e 5t + 8e 4t Solución: Los autovalores de la matriz A Luego la matriz diagonaliza: 1 1 P DP 1 son λ 1 4 λ La solución en la base de los autovectores se obtiene de e e td 2t 0 0 e 2t En la base original se tiene e ta P e td P 1 la solución general es t c 1 e 2t + e 2t + c 2 e 2t e 2t t c 1 e 2t e 2t + c 2 e 2t + e 2t
4 UAM CSIC Grupo 911 Abril Resolver el sistema de ecuaciones diferenciales con condiciones iniciales, 0 1, Solución: La matriz del sistema A Luego diagonaliza: A P DP tiene autovalores λ 1 2 λ 2 1 La eponencial es e ta P e td P 1 las soluciones generales del sistema son t c 1 e t 2e 2t + c 2 e t e 2t t c 1 e t e 2t + c 2 2e t e 2t Las condiciones iniciales implican t e t + 4e 2t, t e t + 2e 2t 5 Resolver el sistema de ecuaciones diferenciales con condiciones iniciales 5 1, 0 2, Solución: La matriz del sistema A La descomposición es tiene autovalores λ 1 2 λ 2 4 A P DP De e ta P e td P 1, las soluciones generales del sistema son t c 1 e 4t e 2t + c 2 e 4t e 2t t c 1 e 4t e 2t + c 2 2e 4t e 2t Las condiciones iniciales implican 1 t 7e4t e 2t, t 7e4t 9e 2t 4
5 UAM CSIC Grupo 911 Abril Resolver el siguiente sistema no homogéneo + 2 Solución: Obtenemos la solución general del sistema mediante una solución particular más las soluciones del sistema homogéneo Una solución particular es p p 7/ 8/ Hallemos las soluciones del sistema homogéneo La matriz A diagonal es A P DP 1 tiene autovalores λ 1 1, λ 2 Su descomposición Luego la solución del sistema homogéneo es La solución del sistema no homogéneo es t c 1 e t + e t + c 2 e t e t t c 1 e t e t + c 2 e t + e t 1 t c 1 e t + e t + c 2 e t e t Solucionar el problema de Cauch t c 1 e t e t + c 2 e t + e t 8 +, 0 2 Solución: El problema coincide con 2c la solución general es c 1 e +1 La condición inicial implica 2 0 c 1 1 c 1 Luego la solución al problema es e + 1 5
6 UAM CSIC Grupo 911 Abril Hallar la solución del problema de Cauch + 2 sin, 0 4 Solución: P 2 Q sin La solución general es c 1 e 2 + sin cos 5 La condición inicial implica c 1 21/5 la solución al problema de Cauch es e sin cos 12 Hallar la solución general de la ecuación diferencial cos Solución: Se trata de una EDO lineal de primer orden con P 1 Q cos La solución general es c 1 e + 1 sin cos 2 1 Hallar la solución general de la ecuación diferencial + 5 e 5 Solución: Es una EDO lineal de primer orden con P 5 Q e 5 La solución general es c 1 e 5 + e Hallar la solución general de la ecuación diferencial 1 2 Solución: Observemos que no es una EDO lineal Podemos reescribir la ecuación: Necesitamos una función de modo que la suma de los cuadrados de ella su derivada sea constante igual a 1 Sabemos que cos 2 + sin 2 1 Como sin cos tenemos que sin o cos son soluciones En general podemos considerar sin + k, k R Nótese que el caso cos corresponde a k π/2 Falta justificar que la solución general es de hecho sin + k Para ello consideramos la epresión Derivando respecto a en ambos lados se tiene En los puntos donde 0, obtenemos la igualdad + 0 Esto es un oscilador de solución c 1 sin + c 2 cos Recordando la formula sinα + β sin α cos β + cos α sin β, concluimos que la solución general es de la forma sin + k, k R 6
7 UAM CSIC Grupo 911 Abril Hallar la solución del problema de Cauch 2, 4 2 Solución: Es una EDO lineal de primer orden Si asumimos 0 podemos reescribir la ecuación como Para esta ecuación se tiene P 1/2 Q 2 1/2 La solución general es c La condición inicial implica c 1 17/ Hallar la solución general de la ecuación diferencial + + Solución: Es una EDO lineal de segundo orden En primer lugar hallemos la solución h de la ecuación homogénea + 0 h c 1 sin +c 2 cos Es suficiente encontrar una solución particular p Teniendo en cuenta que el término independiente + es un polinomio de grado podemos probar con una solución del tipo p a +b 2 +c+d Imponiendo la ecuación p+ p + obtenemos a 1, b 0, c 5 d 0 Luego p 5 La solución general de la ecuación es de la forma p + h 5 + c 1 sin + c 2 cos 17 Hallar la solución de la ecuación diferencial + 4 cos con condiciones iniciales 0 6, 0 6 Solución: Es una EDO lineal de segundo orden Hallemos la solución h de la ecuación homogénea una solución particular p La ecuación homogénea es + 4 de solución general h c 1 sin2 + c 2 cos2 Para hallar la solución particular probamos con una función de la forma p A sin + B cos dado que el término independiente es cos : p + 4 p cos A 0, B 1 p cos Luego la solución general de la ecuación + 4 cos es p + h cos + c 1 sin2 + c 2 cos2 Las condiciones iniciales implican c 1 9/ c 2 17/ Así, la solución al problema es 1 cos 9 sin cos2 7
Tema 3: Aplicaciones de la diagonalización
TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
Valores propios y vectores propios
Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas
1. INVERSA DE UNA MATRIZ REGULAR
. INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz
Valores y vectores propios de una matriz. Juan-Miguel Gracia
Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-
PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS
Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un
TÉCNICAS DE INTEGRACIÓN
C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple
Tema 7: Valores y vectores propios
Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un
EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO
MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química
E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Objetivos: Al inalizar la unidad, el alumno:
Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará
Polinomios y fracciones algebraicas
0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Problemas Resueltos de Ecuaciones en Derivadas Parciales
Problemas Resueltos de Ecuaciones en Derivadas Parciales Alberto Cabada Fernández 4 de diciembre de. Índice general Introducción I. Ecuaciones de primer orden.. Método de las bandas características...................
Polinomios y Ecuaciones
Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.
Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas
Universidad Central Del Este U C E Facultad de Ciencias de la Salud Escuela de Farmacia Programa de la asignatura:
Universidad Central Del Este U C E Facultad de Ciencias de la Salud Escuela de Farmacia Programa de la asignatura: MAT-011 Análisis Matemático I Descripción General: Total de Créditos: 4 Teórico: 4 Práctico:
6.1 Definición de valores y vectores característicos de una matriz cuadrada
6.Valores y Vectores Característicos 6. Definición de valores y vectores característicos de una matriz cuadrada El cálculo de los valores propios y de los vectores propios de una matriz simétrica tiene
Diagonalización de matrices
diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla
UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química
UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una
Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales
Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2
Formas bilineales y cuadráticas.
Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos
Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización
Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización Ejercicio. Decidir cuáles de las siguientes aplicaciones son lineales. Cuál es la dimensión del espacio imagen? a f(x, x 2, x 3 = (x 2 + x
APLICACIONES LINEALES. DIAGONALIZACIÓN
I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones
Congruencias de Grado Superior
Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración
CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,
SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales
SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría
Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral
Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES
Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N
EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo
vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:
.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)
Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)
ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin
MÉTODOS MATEMÁTICOS (Curso 2008-2009) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla
MÉTODOS MATEMÁTICOS (Curso 8-9) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II Universidad de Sevilla Lección 4: Interpolación Polinómica Introducción Son muchas y muy distintas
LÍMITES Y CONTINUIDAD
UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()
Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.
Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...
ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de
E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva
Cálculo Simbólico también es posible con GeoGebra
www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES
CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular
Operaciones lineales en R 3 y sus propiedades
Operaciones lineales en R 3 y sus propiedades Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z
GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los
2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace
2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma
MATRICES SELECTIVIDAD
MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
TEMA 4: CALCULO NUMERICO DE AUTOVALORES
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema
Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de
Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x
1.4.1. Residuos pesados
1.4. Métodos de aproximación de ED 1.4.1. Residuos pesados El método de los residuos pesados es un método general y poderoso para obtener soluciones aproximadas de ecuaciones diferenciales ordinarias (EDO)
Nivelación de Matemática MTHA UNLP 1. Vectores
Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:
Departamento de Matemáticas
MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente
Tema 5. Análisis de componentes principales
Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 5. Análisis de componentes principales 5.1. Introducción. El análisis de componentes principales
dv I L P E T rsa logaritmica polinomio exponencial trigonometica
Integración por partes (revisión) Sea ʃsen d, esta integral no se puede hacer por sustitución. pero, es posible aplicar el método de integración por partes que se fundamenta en el uso de la siguiente fórmula:
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos.
CAPÍTULO XVI. NÚMEROS COMPLEJOS SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. 73 A. DEFINICIÓN. PRIMERAS PROPIEDADES. Un número complejo
Las anteriores fórmulas suelen expresarse matricialmente como
Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
Calculo Actuarial con Cadenas de Markov, una aplicación
Calculo Actuarial con Cadenas de Marov, una aplicación Xavier Cabezas, Fernando Sandoya 2 Ingeniero en Estadística Informática 2 2 Director de esis, Matemático, Escuela Politécnica Nacional 996, Profesor
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
Recurrencias lineales
Recurrencias lineales Juan-Miguel Gracia 10 de febrero de 2008 Recurrencias lineales 68 Las recurrencias lineales son ecuaciones en las que la incógnita es una sucesión numérica (x k ) k=0 que aparece
Objetivos: Al inalizar la unidad, el alumno:
Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará
Espacios vectoriales con producto interno
Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.
Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología.
Aplicaciones de las Matrices a la Solución de Problemas de Redes Eléctricas Resumen Se muestra como obtener, sistemas de ecuaciones lineales que permitan calcular intensidades de corrientes en los ramales
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.
6 Ecuaciones de 1. er y 2. o grado
8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 SEGUNDA INTERROGACIÓN
ECUACIONES DIFERENCIALES ORDINARIAS, MAT53 SEGUNDA INTERROGACIÓN PROFESORES ISABEL FLORES Y ROLANDO REBOLLEDO Ejercicio. [5%] () Resuelva x 6x + 9x = t. () Considere el sistema: x = x + z y = y z = y 3z.
Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión
CAPÍTULO EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y ANÁLISIS DE ERRORES Ejercicios resueltos Ejercicios.1 Calcula la suma y la resta de los números a = 0.453 10 4, y b = 0.115 10 3, con una aritmética
MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad
MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..
Álgebra y Trigonometría CNM-108
Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada.
Métodos Numéricos: Resumen y ejemplos Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 9 Versión 7 Contenido
Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden
Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no
1. SISTEMAS DE ECUACIONES DIFERENCIALES
1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t
Integración por fracciones parciales
Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla
Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.
Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal
9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.
ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices
(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g
Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como
3 Espacios Vectoriales
Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta
CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo
CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
A modo de Presentación
Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad
Grado polinomial y diferencias finitas
LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de
Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).
Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid
MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)
MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se