11 Efectos de la esbeltez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "11 Efectos de la esbeltez"

Transcripción

1 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas de argas axiales mayoradas P u y momentos (de primer orden) mayorados M u, inluyendo la onsideraión de los efetos de la esbeltez de la olumna (momentos de segundo orden). La esbeltez de una olumna se expresa en términos de su relaión de esbeltez kl u /r, donde k es un fator de longitud efetiva (que depende de las ondiiones de vínulo de los extremos de la olumna), l u es la longitud de la olumna entre apoyos y r es el radio de giro de la seión transversal de la olumna. En general, una olumna es esbelta si las dimensiones de su seión transversal son pequeñas en relaión on su longitud. A los fines del diseño, el término "olumna orta" se usa para designar una olumna que tiene una resistenia igual a la alulada para su seión transversal, usando las fuerzas y los momentos obtenidos de un análisis para ombinaión de flexión y arga axial. Una "olumna esbelta" se define omo una olumna uya resistenia se redue debido a las deformaiones de segundo orden (momentos de segundo orden). Según estas definiiones, una olumna on una determinada relaión de esbeltez se puede onsiderar omo olumna orta bajo un determinado onjunto de restriiones, y omo olumna esbelta bajo otro onjunto de restriiones. Con el empleo de hormigones y armaduras de mayor resistenia, y on métodos de análisis y diseño más preisos, es posible diseñar seiones de menores dimensiones, lo ual da origen a elementos más esbeltos. En onseuenia, la neesidad de ontar on proedimientos de diseño onfiables y raionales para las olumnas esbeltas se onvierte así en una onsideraión importante en el diseño de olumnas. Una olumna orta puede fallar a ausa de una ombinaión de momento y arga axial que supere la resistenia de la seión transversal. Este tipo de falla se onoe omo "falla del material." A modo de ejemplo, onsideremos la olumna ilustrada en la Figura Debido a la arga, la olumna tiene una deformaión que provoará un momento adiional (de segundo orden) en la olumna. En el diagrama de uerpo libre se puede ver que el momento máximo en la olumna ourre en la seión A-A, y es igual al momento apliado más el momento debido a la deformaión del elemento, que es M = P (e + ). La falla de una olumna orta puede ourrir en ualquier punto a lo largo de la urva de interaión de resistenias, dependiendo de la ombinaión del momento y la arga axial apliada. Como se menionó anteriormente, se produirá alguna deformaión y habrá una "falla del material" uando una ombinaión partiular de arga P y momento M = P (e + ) interseque la urva de interaión de resistenias.

2 Si la olumna es muy esbelta, podría llegar a una deformaión debida a arga axial P y momento Pe tal que la deformaión aumente indefinidamente sin que aumente la arga P. Este tipo de falla se onoe omo "falla de estabilidad," omo se india en la urva de interaión de resistenias. P P M = Pe M = Pe P Pe P A A M = P (e+ ) olumna orta falla del material P falla de estabilidad P M M Figura 11-1 Interaión de las resistenias en olumnas esbeltas El onepto básio del omportamiento de las olumnas esbeltas retas on arga axial onéntria fue desarrollado originalmente por Euler, hae ya más de 200 años. El onepto establee que un elemento fallará por pandeo bajo la arga rítia P = π 2 EI/(l e ) 2, siendo EI la rigidez flexional de la seión transversal del elemento y l e la longitud efetiva, que es igual a kl u. Para las olumnas ortas "robustas," el valor de la arga de pandeo será mayor que la resistenia al aplastamiento por ompresión direta (orrespondiente a la falla del material). En los elementos que son más esbeltos (es deir, elementos para los uales el valor de kl u /r es más elevado), la falla puede ourrir por pandeo (falla de estabilidad), on la arga de pandeo disminuyendo a medida que aumenta la esbeltez (ver Figura 11-2). P 2 2 u π EI P = ( k ) ompresión pandeo Figura 11-2 Carga de falla en funión de la esbeltez de una olumna Como se puede observar, es imposible representar los efetos de la esbeltez y los momentos amplifiados en una típia urva de interaión de resistenias. En onseuenia, se puede desarrollar una "familia" de diagramas de interaión de resistenias para olumnas esbeltas on diferentes relaiones de esbeltez, omo se ilustra en la Figura El diagrama de interaión de resistenias para kl u /r = 0 orresponde a las ombinaiones de momento y arga axial donde la resistenia no se ve afetada por la esbeltez del elemento (resistenia de olumna orta). P kl u /r kl u /r = M Figura 11-3 Diagramas de interaión de resistenias para olumnas esbeltas 11-2

3 CONSIDERACIÓN DE LOS EFECTOS DE LA ESBELTEZ Se estableen límites para la esbeltez tanto de pórtios indesplazables omo para pórtios desplazables, inluyendo métodos de diseño permitidos para ada rango de esbeltez. Se estableen límites inferiores para la esbeltez, por debajo de los uales los momentos de segundo orden se pueden despreiar y sólo es neesario onsiderar la arga axial y los momentos de primer orden para seleionar la seión transversal y la armadura de las olumnas (diseño de olumnas ortas). Se debe observar que, para las vigas y olumnas de dimensiones habituales y las alturas de piso típias de los sistemas de hormigón, los efetos de la esbeltez se pueden despreiar en más del 90 por iento de las olumnas de los pórtios indesplazables y en alrededor del 40 por iento de las olumnas de los pórtios desplazables. Cuando las relaiones de esbeltez son moderadas se permite un análisis aproximado de los efetos de la esbeltez que se basa en un fator de amplifiaión de los momentos (ver y 10.13). Cuando la relaión de esbeltez de la olumna es elevada se requiere un análisis de segundo orden más exato (ver ), que onsidere el omportamiento no lineal del material y la fisuraión, así omo los efetos de la urvatura y del desplazamiento lateral del elemento, la duraión de las argas, la ontraión y la fluenia lenta, y la interaión on las fundaiones. No se espeifian límites superiores para la esbeltez de las olumnas. En la Figura 11-4 se resumen los límites de la relaión de esbeltez indiados en para pórtios indesplazables y en para pórtios desplazables, junto on los métodos permitidos para onsidera la esbeltez de las olumnas. Pórtio desplazable Pórtio indesplazable kl u /r < 22 Despreiar la esbeltez kl u /r 34 12(M 1 /M 2 )* 22 kl u /r 100 Métodos aproximados 100 kl u /r > 34 12(M 1 /M 2 )* Análisis kl u /r > 100 P - ** kl u /r > 100 * 34 12(M 1 /M 2 ) 40 ** Permitido para ualquier relaión de esbeltez. Figura 11-4 Consideraión de la esbeltez de las olumnas EFECTOS DE LA ESBELTEZ EN ELEMENTOS COMPRIMIDOS Análisis de segundo orden El ódigo alienta el uso de análisis de segundo orden o análisis P- para onsiderar los efetos de la esbeltez en los elementos omprimidos. En general, los resultados de un análisis de segundo orden permiten obtener valores más realistas para los momentos que los que se obtienen usando un análisis aproximado de auerdo on las seiones ó En el aso de los pórtios desplazables, utilizando análisis de segundo orden generalmente se obtendrán diseños más eonómios. En las Referenias se presentan proedimientos para realizar un análisis de segundo orden. En R el letor enontrará una disusión sobre las limitaiones para la utilizaión de un análisis de segundo orden de auerdo on

4 Si por algún motivo no resulta prátio realizar un análisis más exato, la seión permite onsiderar los efetos de la esbeltez mediante un método aproximado de amplifiaión de momentos. Sin embargo, se debe observar que para todos los elementos omprimidos en los uales la relaión de esbeltez (kl u /r) es mayor que 100 (ver Figura 11-4), para onsiderar los efetos de la esbeltez se debe utilizar un análisis más exato según lo definido en EVALUACIÓN APROXIMADA DE LOS EFECTOS DE LA ESBELTEZ Se usa el fator de amplifiaión de momentos δ para amplifiar los momentos de primer orden y así tomar en uenta el aumento de los momentos provoado por la urvatura y el desplazamiento lateral del elemento. El fator de amplifiaión de momentos δ depende de la relaión entre la arga axial apliada y la arga rítia o de pandeo de la olumna, de la relaión entre los momentos apliados en los extremos de la olumna, y de la geometría deformada de la olumna Propiedades de la seión para el análisis del pórtio De auerdo on , las argas axiales mayoradas (P u ), los momentos mayorados en los extremos de la olumna (M 1 y M 2 ) y las deformaiones laterales de piso, o, se deberán alular usando un análisis elástio de primer orden del pórtio, onsiderando la presenia de regiones fisuradas a lo largo del elemento. Es evidente que realizar estos álulos no es fatible desde el punto de vista eonómio, aún para estruturas pequeñas. Por lo tanto, para onsiderar la fisuraión en el análisis se pueden usar las propiedades de la seión dadas en y resumidas en la Tabla Los valores de E, I y A han sido seleionados a partir de los resultados obtenidos en ensayos y análisis de pórtios de auerdo on la Referenia Es importante observar que para analizar la estrutura a nivel de la arga de serviio resulta satisfatorio multipliar los momentos de ineria espeifiados en la Tabla 11-1 por 1/0,70 = 1,43 (R ). Además, los momentos de ineria se deben dividir por (1 + β d ) en el aso que sobre la estrutura atúen argas horizontales de larga duraión (por ejemplo, las argas horizontales provoadas por las presiones del suelo) o para verifiaión de la estabilidad frente a argas gravitatorias realizadas de auerdo on Tabla 11-1 Propiedades de las seiones para el análisis de pórtios Vigas Columnas Tabiques no fisurados Tabiques fisurados Plaas planas y losas planas Módulo de elastiidad Momento de ineria Área 0,35 l g 0,70 I g E de ,70 l g 1,0 A g 0,35 l g 0,25 l g Dividir por (1 + β d ) uando atúen argas de larga duraión, o para las verifiaiones de estabilidad realizadas de auerdo on Para los análisis a nivel de la arga de serviio multipliar por 1/0,70 = 1, Radio de giro En general el radio de giro, r, es I g /A g. En partiular, para los elementos de seión retangular r se puede tomar igual a 0,30 por la dimensión en la direión en la ual se está onsiderando la estabilidad, mientras que para los elementos de seión irular se puede tomar igual a 0,25 por el diámetro de la seión, omo se ilustra en la Figura

5 h r = 0,3h b r = 0,3b D r = 0,25 D r = Ig A g Figura 11-5 Radio de giro, r , Longitud sin apoyo lateral y longitud efetiva de elementos omprimidos La longitud sin apoyo lateral (o longitud no soportada) l u de una olumna, definida en , es la distania libre entre apoyos laterales, omo se ilustra en la Figura Observar que la longitud l u puede ser diferente para el pandeo respeto de ada uno de los ejes prinipales de la seión transversal de la olumna. La euaión básia de Euler para la arga rítia de pandeo se puede expresar omo P = π 2 EI/(l e ) 2, siendo l e la longitud efetiva kl u. Las euaiones básias para el diseño de olumnas esbeltas fueron desarrolladas para extremos artiulados y, por lo tanto, se las debe modifiar para onsiderar los efetos de las ondiiones de vínulo. La longitud efetiva de la olumna, kl u, y no la longitud real sin apoyo lateral l u, es la que se utiliza para estimar las resistenias de las olumnas esbeltas. Esta longitud efetiva onsidera tanto las ondiiones de vínulo omo la ondiión de sistema indesplazable o desplazable. Direión analizada lu lu lu Figura 11-6 Longitud sin apoyo lateral, l u Cuando se produe la arga rítia definida por la euaión de Euler, un elemento originalmente reto pandea on una forma de semionda sinusoidal, omo se ilustra en la Figura 11-7(a). Con esta onfiguraión, en ada seión atúa un momento adiional P-, siendo el desplazamiento lateral en el punto espeífio onsiderado a lo largo de la olumna. Este desplazamiento lateral ontinúa aumentando hasta que la tensión por flexión provoada por el momento (P- ), más la tensión de ompresión original provoada por las argas apliadas, exede la resistenia a la ompresión del hormigón y la olumna falla. La longitud efetiva l e (= kl u ) es la longitud entre los apoyos artiulados, entre puntos de momento nulo o entre puntos de inflexión. Para la ondiión de ambos extremos artiulados ilustrada en la Figura 11-7(a), la longitud efetiva es igual a la longitud sin apoyo lateral o no soportada, l u. Si el elemento está empotrado en ambos extremos (restringido ontra la rotaión), el pandeo se produirá en la forma ilustrada en la Figura 11-7(b); habrá puntos de inflexión en los puntos indiados, y la longitud efetiva l e será igual a la mitad de la longitud sin apoyo lateral, l u. La arga rítia de pandeo P para la ondiión de extremos empotrados es uatro vees mayor que para la ondiión de extremos artiulados. En las estruturas reales rara vez las olumnas son perfetamente artiuladas o empotradas, sino que sus extremos están parialmente restringidos ontra la rotaión por los elementos solidarios a la olumna. En onseuenia, la longitud efetiva está omprendida entre l u /2 y l u, omo se india en la Figura 11-7(), siempre que esté impedido el desplazamiento lateral de un extremo de la olumna respeto del otro. El valor real de la longitud efetiva depende de la rigidez de los elementos solidarios a los extremos superior e inferior de la olumna. 11-5

6 P P P pi l u /4 pi l e = l u l u >l e >l u /2 l u /2 = l e l u pi pi l u P P P pi = punto de inflexión (a) (b) () Figura 11-7 Longitud efetiva, l e (ondiión indesplazable) Una olumna que está empotrada en un extremo y totalmente libre en el otro (en voladizo) pandeará omo se ilustra en la Figura 11-8(a). El extremo superior tendrá un desplazamiento lateral relativo on respeto al extremo inferior. La geometría deformada de estos elementos es similar a la mitad de la deformada sinusoidal del elemento artiulado en ambos extremos ilustrado en la Figura 11-7(a). En onseuenia, la longitud efetiva es igual a dos vees la longitud real. Si la olumna está impedida ontra la rotaión en ambos extremos pero uno de los extremos se puede desplazar lateralmente respeto del otro, la olumna pandeará omo se ilustra en la Figura 11-8(b). La longitud efetiva l e será igual a la longitud real l u, on un punto de inflexión (pi) ubiado omo se india. La arga de pandeo de la olumna de la Figura 11-8(b), en la ual el desplazamiento lateral no está impedido, es un uarto de la de la olumna de la Figura 11-7(b), en la ual el desplazamiento lateral sí está impedido. Como se indió anteriormente, los extremos de las olumnas rara vez son totalmente artiulados o totalmente empotrados, sino que están parialmente restringidos ontra la rotaión por los elementos solidarios a la olumna. Por lo tanto, la longitud efetiva variará entre l u e infinito, omo se india en la Figura 11-8(). Si los elementos que restringen el movimiento (vigas o losas) son muy rígidos en relaión on la olumna, el pandeo se aproximará al esquema ilustrado en la Figura 11-8(b). En ambio, si los elementos que restringen el movimiento son bastante flexibles, la olumna se aproximará a una ondiión artiulada en ambos extremos y la olumna (o las olumnas), y posiblemente la estrutura, se aproximarán a la instabilidad. En las estruturas habituales de hormigón armado el diseñador rara vez se oupa de elementos individuales, sino que analiza sistemas aportiados rígidos ompuestos por onjuntos de viga-olumna y losa-olumna. El omportamiento de pandeo de un pórtio que no está arriostrado ontra el desplazamiento lateral (desplazable) se puede ilustrar mediante el pórtio senillo de la Figura Como no tiene restriión lateral en el extremo superior, la totalidad del pórtio (no arriostrado) es libre de moverse lateralmente. El extremo inferior puede ser artiulado o estar parialmente restringido ontra la rotaión. En general, la longitud efetiva l e depende del grado de restriión ontra la rotaión de los extremos de la olumna y l u < l e <. P P P pi l u l e = 2l u l u pi l e = l u l u l u < l e < P P (a) (b) () pi P pi = punto de inflexión Figura 11-8 Longitud efetiva, l e (ondiión desplazable) 11-6

7 P P l e > l u l u P P Resumiendo, se pueden haer los siguientes omentarios. Figura 11-9 Pórtio rígido (ondiión desplazable) 1. Para los elementos soliitados a ompresión en pórtios indesplazables, la longitud efetiva l e está omprendida entre l u /2 y l u, siendo l u la longitud real sin apoyo lateral de la olumna. 2. Para los elementos soliitados a ompresión en pórtios desplazables, la longitud efetiva l e siempre es mayor que la longitud real de la olumna l u, y puede ser igual a 2l u o mayor. En este aso un valor de k inferior a 1,2 no sería realista. 3. El uso de los nomogramas de las Figuras y (también en la Figura R ) permiten determinar gráfiamente los fatores de longitud efetiva para los elementos soliitados a ompresión de pórtios indesplazables y desplazables, respetivamente. Si ambos extremos de una olumna de un pórtio indesplazable tienen mínima rigidez rotaional, o se aproximan a ψ =, y entones k = 1,0. Si ambos extremos se aproximan al empotramiento perfeto, ψ = 0, y k = 0,5. Si ambos extremos de una olumna de un pórtio desplazable tienen mínima rigidez rotaional, o se aproximan a ψ =, entones k =. Si ambos extremos se aproximan al empotramiento perfeto, ψ = 0, entones k = 1,0. R presenta un método alternativo para alular los fatores de longitud efetiva para los elementos omprimidos en pórtios indesplazables y desplazables. Para los elementos omprimidos en pórtios indesplazables, se puede tomar omo límite superior para el fator de longitud efetiva el menor de los valores dados por las siguientes expresiones, tomadas del doumento 1992 British Standard Code of Pratie (Referenias ACI y 10.34): ( ) k = 0,7+ 0,05 ψ +ψ 1,0 k = 0,85+ 0,05ψmin 1,0 A donde ψ A y ψ B son los valores de ψ en los extremos de la olumna y B ψ min es el menor de los dos valores. Para los elementos omprimidos restringidos en ambos extremos, en pórtios desplazables, el fator de longitud efetiva se puede tomar omo (Referenia ACI 10.32): 20 ψm Para ψ m < 2, k = 1+ψ 20 m donde Para ψ 2, k = 0,9 1+ψ m m ψ m es el promedio de los valores de ψ en ambos extremos de la olumna. 11-7

8 A MA P ψ A M B A MA P ψ A MB EI ols. ψ= EI vigas 50,0 10,0 5,0 4,0 3,0 2,0 B ψ B B ψ B 1,0 0,9 50,0 10,0 5,0 3,0 2,0 1,0 0,8 1,0 0,8 0,7 0,6 0,5 ψ A k 0,7 ψ B 0,8 0,7 0,6 0,5 0,4 0,4 0,3 0,3 0,2 0,6 0,2 0,1 0,1 0 0,5 0 Figura Fatores de longitud efetiva para elementos omprimidos en pórtios indesplazables Para los elementos omprimidos artiulados en uno de sus extremos, en pórtios desplazables, el fator de longitud efetiva se puede tomar omo (Referenias ACI y 10.34): k = 2,0+ 0,3ψ donde ψ es la relaión entre las rigidees de la olumna y la viga en el extremo restringido. Al determinar el fator de longitud efetiva, k, usando las Figuras y 11-11, o usando las euaiones del Comentario, las rigidees (EI) de las vigas (o de las losas) y de las olumnas se deben alular en base a los valores dados en

9 B P ψ A A M A M ψ A B B EI ols. ψ= EI vigas ,0 50,0 30,0 20,0 20,0 10,0 5,0 4, ,0 50,0 30,0 20,0 10,0 9,0 8,0 7,0 6,0 5,0 4,0 ψ A 3,0 2,0 ψ B 10,0 9,0 8,0 7,0 6,0 5,0 4,0 3,0 3,0 2,0 1,5 2,0 1,0 1,0 0 1,0 0 Figura Fatores de longitud efetiva para elementos omprimidos en pórtios desplazables Pórtios indesplazables y Pórtios desplazables En las estruturas reales rara vez existen ondiiones totalmente indesplazables o desplazables. Esto no se puede determinar fáilmente mediante inspeión; las seiones y presentan dos manera posibles para determinar si un pórtio es indesplazable o desplazable. De auerdo on , una olumna de una estrutura se puede onsiderar indesplazable si los momentos de segundo orden en los extremos de la olumna no son superiores a 5 por iento de los momentos de primer orden en dihos extremos. De auerdo on , también se permite asumir que un entrepiso de una estrutura es indesplazable si: Pu o Q = 0,05 V u E. (10-6) donde Q = índie de estabilidad de un entrepiso P u = arga vertial total mayorada en el entrepiso orrespondiente al aso de arga horizontal para el ual P u es máximo (R ) V u = orte total en el entrepiso 11-9

10 o = desplazamiento relativo de primer orden entre la parte superior y la parte inferior del entrepiso debido a V u l = longitud de la olumna, medida entre los ejes de los nudos del pórtio Observar que la Euaión (10-6) no es apliable uando V u = Fator de amplifiaión de momentos δ para flexión biaxial Cuando en una olumna hay flexión biaxial, se deben amplifiar los momentos alulados para ada eje prinipal. Los fatores de amplifiaión de momentos, δ, se alulan onsiderando la arga de pandeo, P, respeto de ada eje en forma separada, en base a las longitudes efetivas orrespondientes y a la rigidez relativa de la olumna y las vigas en ada direión. En onseuenia, si las apaidades de pandeo respeto de los dos ejes son diferentes, los fatores de amplifiaión de momentos en ambas direiones también serán diferentes. Los momentos respeto de los dos ejes se amplifian de forma separada, y luego la seión transversal se dimensiona para una arga axial P u y los momentos biaxiales amplifiados , Consideraión de los efetos de la esbeltez Para los elementos omprimidos en pórtios indesplazables, los efetos de la esbeltez se pueden despreiar uando kl u /r es menor o igual que [34-12 (M 1 /M 2 )], siendo M 2 el mayor de los momentos en ambos extremos y M 1 el menor de estos momentos. La relaión M 1 /M 2 es positiva si la olumna se deforma on urvatura simple, y negativa si el elemento se deforma on urvatura doble. Observar que M 1 y M 2 son los momentos mayorados en los extremos obtenidos a partir de un análisis de pórtio elástio, y que el término [34-12 (M 1 /M 2 )] no se debe tomar mayor que 40. Para los elementos omprimidos en pórtios desplazables, los efetos de la esbeltez se pueden despreiar uando kl u /r es menor que 22 ( ). El método del fator de amplifiaión de momentos se puede usar para olumnas en las uales la relaión de esbeltez es mayor que estos límites inferiores. El límite superior de la esbeltez de las olumnas para que sea apliable el método del fator de amplifiaión de momentos es kl u /r igual a 100 ( ). Si kl u /r es mayor que 100 se deberá realizar un análisis de auerdo on lo definido en , tomando en uanta la influenia de las argas axiales y los momentos de ineria variables sobre la rigidez del elemento y los momentos de los extremos empotrados, el efeto de las deformaiones sobre los momentos y las fuerzas, y los efetos de la duraión de las argas (efeto de las argas sostenidas o de larga duraión). En la Figura 11-4 se resumen los riterios para la onsideraión de la esbeltez de las olumnas. Los límites inferiores de la esbeltez permitirán despreiar los efetos de la esbeltez para una gran antidad de olumnas. Considerando la esbeltez kl u /r en términos de l u /h para olumnas retangulares, los efetos de la esbeltez se pueden despreiar uando l u /h es menor que 10 para elementos omprimidos en pórtios indesplazables y on restriión nula en ambos extremos. Este límite aumenta a 18 para el aso de olumnas on doble urvatura on momentos iguales en sus extremos y una relaión entre la rigidez de la olumna y la rigidez de las vigas igual a 1,0 en ambos extremos. Para las olumnas on poa o ninguna restriión en sus extremos, se debería utilizar un valor k = 1,0. Para las olumnas robustas restringidas mediante losas planas, k está omprendido entre alrededor de 0,95 y 1,0 por lo ual se puede estimar onservadoramente igual a 1,0. Para las olumnas de los pórtios formados por vigas y olumnas, k varía entre alrededor de 0,75 y 0,90 por lo ual se puede estimar onservadoramente igual a 0,90. Si el álulo iniial de la esbeltez en base a los valores k estimados india que es neesario onsiderar los efetos de la esbeltez en el diseño, se debería alular un valor de k más exato y evaluar nuevamente la esbeltez. Para los elementos omprimidos en pórtios desplazables donde la relaión entre la rigidez de la olumna y la rigidez de las vigas es igual a 1,0 en ambos extremos, los efetos de la esbeltez se pueden despreiar uando l u /h es menor que 5. Este valor se redue a 3 si la rigidez de las vigas se redue a un quinto de la rigidez de la olumna en ada extremo de la misma. En onseuenia, las rigidees en la parte superior e inferior de las olumnas de los edifiios en altura en los uales el desplazamiento lateral no está restringido mediante muros estruturales u otros elementos afetarán signifiativamente el grado de esbeltez de la olumna. El límite superior de la esbeltez indiado, kl u /r = 100, orresponde a l u /h = 30 para un elemento omprimido en un pórtio indesplazable on restriión nula en ambos extremos. Este límite de l u /h aumenta a 39 uando la relaión entre la rigidez de la olumna y la rigidez de las vigas en ambos extremos es igual a 1, Momentos amplifiados Pórtios indesplazables Las euaiones para el diseño aproximado de olumnas esbeltas indiadas en para pórtios indesplazables se basan en el onepto de un fator de amplifiaión de momentos, δ ns, que se aplia al mayor de los momentos mayorados, M 2, de ambos 11-10

11 extremos del elemento omprimido. Luego la olumna se diseña para la arga axial mayorada P u y el momento amplifiado M, siendo M : donde M =δ M E. (10-8) ns 2 δ Cm ns = 1, 0 P u 1 0,75P E. (10-9) P = 2 π EI 2 ( k u ) E. (10-10) La arga rítia P se alula para ondiión indesplazable usando un fator de longitud efetiva, k, menor o igual que 1,0. Cuando k se determina usando los nomogramas o las euaiones de R10.12, en los álulos se deben usar los valores de E e I de Observar que el fator 0,75 de la Euaión (10-9) es un fator de reduión de la rigidez (ver R ). Para definir la arga rítia de una olumna, la prinipal difiultad radia en elegir un parámetro de rigidez EI que aproxime razonablemente las variaiones de la rigidez debidas a la fisuraión, la fluenia lenta y la no linealidad de de la urva tensióndeformaión del hormigón. Si no se realiza un análisis más exato, EI se deberá tomar omo: o bien EI = ( 0, 2EIg + EsIse) 0, 4E I EI = 1+β 1+β g d d E. (10-11) E. (10-12) La segunda euaión es una aproximaión simplifiada de la primera. Ambas euaiones aproximan los límites inferiores de EI para las seiones habituales y, por lo tanto, son onservadoras. La Figura ilustra la naturaleza aproximada de las euaiones para determinar EI, omparándolas on valores obtenidos de diagramas momento-urvatura para el aso que no hay arga sostenida (β d = 0). E. (10-11) E. (10-12) EI Teório EI E.(10-11) 2 1 ρ = 8% ρ = 1% EI Teório EI E. (10-12) ρ = 1% ρ = 8% 0,6 0,7 0,8 0,9 P u/po 0,6 0,7 0,8 P u/po 0,9 Figura Comparaión de EI obtenido mediante las euaiones on valores de EI obtenidos de diagramas momento-urvatura 11-11

12 La Euaión (10-11) representa el límite inferior del rango prátio de los valores de rigidez. Esto es partiularmente válido para las olumnas fuertemente armadas. Como se observó anteriormente, la Euaión (10-12) es más fáil de usar pero subestima en gran medida el efeto de la armadura en las olumnas fuertemente armadas (ver Figura 11-12). Ambas euaiones para determinar EI fueron desarrolladas para valores de e/h pequeños y valores de P u /P o elevados, aso en el ual el efeto de la arga axial es más pronuniado. El término P o es la resistenia nominal a la arga axial para exentriidad nula. En las olumnas de hormigón armado soliitadas por argas de larga duraión, la fluenia lenta transfiere parte de la arga del hormigón a la armadura, aumentando así las tensiones en el aero. En las olumnas poo armadas esta transferenia de arga puede provoar que el aero llegue a fluenia de forma prematura, provoando una pérdida en el valor efetivo de EI. Esto se toma en uenta dividiendo EI por (1 + β d ). Para los pórtios indesplazables β d se define de la siguiente manera (ver 10.0): β = d Máxima arga axial de larga duraión mayorada Máxima arga axial mayorada asoiada on la misma ombinaión de argas En las olumnas ompuestas en las uales un perfil de aero representa un gran porentaje de la seión transversal total de la olumna, la transferenia de arga debida a la fluenia lenta no es signifiativa. En onseuenia, sólo la parte de EI orrespondiente al hormigón se debería reduir apliando (1 + β d ) para tomar en uenta los efetos de la arga de larga duraión. El término C m es un fator de orreión para momentos equivalentes. Para elementos sin argas transversales entre sus apoyos, el término C m es ( ): M1 Cm = 0,6+ 0,4 0,4 M2 E. (10-13) En los elementos on argas transversales entre sus apoyos, es posible que el momento máximo ourra en una seión alejada de los extremos del elemento. En este aso, el mayor momento alulado que ourre en ualquier seión de la longitud del elemento se debería amplifiar apliando δ ns, y C m se debe tomar igual a 1,0. La Figura muestra algunos de los valores del oefiiente C m, en funión de la deformada de la olumna y las ondiiones de vínulo de los extremos. Si en la Euaión (10-8) el momento M 2 alulado es pequeño o nulo, el diseño de una olumna indesplazable se debe basar en el momento mínimo M 2,min ( ): 2,min u ( ) M = P 0,6+ 0,03h E. (10-14) Para los elementos en los uales se verifique M 2,min > M 2, el valor de C m se debe tomar igual a 1,0 o bien se debe alular mediante la Euaión (10-13) onsiderando el oiente de los momentos reales alulados para los extremos, M 1 y M 2. C = 1,0 m C m= 0,6 C m= 0,4 C = 0,6 + 0,4 (M /M ) m 1 2 Figura Valores del oefiiente C m 11-12

13 Momentos amplifiados Pórtios desplazables El diseño de los pórtios desplazables onsiderando los efetos de la esbeltez onsiste esenialmente en tres pasos: 1. Se alulan los momentos amplifiados debidos al desplazamiento lateral, δ m M s, de una de las tres manera siguientes: a. Un análisis elástio de segundo orden del pórtio ( ) b. Un análisis de segundo orden aproximado ( ). Un método aproximado en base a un fator de amplifiaión de los ódigos ACI anteriores ( ) 2. Los momentos amplifiados debidos al desplazamiento lateral, δ m M s, se suman a los momentos M ns, no amplifiados y sin onsiderar el desplazamiento lateral, en ada extremo de la olumna ( ): M1 = M1ns +δ sm1s E. (10-15) M2 = M2ns +δ sm2s E. (10-16) Los momentos que no onsideran el desplazamiento lateral, M 1ns y M 2ns, se alulan usando un análisis elástio de primer orden. 3. Si la olumna es esbelta y las argas axiales que atúan sobre la misma son elevadas, se debe verifiar si los momentos en los puntos entre los extremos de la olumna son mayores que los momentos en dihos extremos. De auerdo on , esta verifiaión se realiza usando el fator de amplifiaión δ ns para pórtios indesplazables, alulando P en base a k = 1,0 o menor Determinaión de δ s M s Como se indió anteriormente, existen tres maneras para alular los momentos amplifiados debidos al desplazamiento lateral, δ s M s. Si para alular δ s M s se utiliza un análisis elástio de segundo orden, las deformaiones deben ser representativas del estado inmediatamente anterior a la arga última. Por este motivo en los análisis de segundo orden se deben usar los valores de EI dados en Observar que I se debe dividir por (1 + β d ), donde para pórtios desplazables β d se define de la siguiente manera (ver 10.0): β = d Máximo orte de larga duraión mayorado en un entrepiso Máximo orte mayorado en el entrepiso Para argas sísmias β d = 0. Un ejemplo de un valor de β d diferente de ero puede ourrir uando los elementos están soliitados por presiones del suelo. La seión permite utilizar un análisis de segundo orden aproximado para determinar δ s M s. En este aso, la soluión de la serie infinita que representa el análisis iterativo P- para los momentos de segundo orden es: δ = M I Q s sms Ms E. (10-17) donde Q = índie de estabilidad de un entrepiso Pu = V u o E. (10-7) 11-13

14 Observar que la Euaión (10-7) predie en forma preisa los momentos de segundo orden en los pórtios desplazables para valores de δ s menores que 1,5. Cuando se verifia δ s > 1,5: δ m M s se debe alular usando ó El ódigo también permite determinar δ s M s usando el proedimiento de amplifiaión de momentos inluido en los ódigos ACI anteriores ( ): M δ = s sms Ms Pu 1 0,75 P E. (10-18) donde P u P = sumatoria de todas las argas vertiales en un piso = sumatoria de las argas rítias para todas las olumnas que resisten el desplazamiento lateral de un piso Es importante observar que, en las onstruiones on desplazamientos torsionales signifiativos, el proedimiento de amplifiaión de momentos puede subestimar la amplifiaión de los momentos de las olumnas más alejadas del entro de rotaión. En estos asos se debería onsiderar un análisis de segundo orden tridimensional Ubiaión del máximo momento Al sumar los momentos no amplifiados y sin onsiderar el desplazamiento lateral en los extremos de la olumna on los momentos amplifiados debidos al desplazamiento lateral, uno de los momentos totales resultantes obtenidos generalmente es el máximo momento de la olumna. Sin embargo, en las olumnas esbeltas on elevadas argas axiales, el máximo momento puede ourrir en un punto ubiado entre ambos extremos de la olumna. En se india una manera senilla de determinar si esto ourre: si en un elemento individual omprimido u r > 35 Pu f' A g E. (10-19) el máximo momento ourrirá en un punto ubiado entre ambos extremos de la olumna. En este aso, M 2, definido en la Euaión (10-16) se debe amplifiar apliando el fator de amplifiaión de momentos para pórtios indesplazables dado en la Euaión (10-9). Luego la olumna se diseña para la arga axial mayorada P u y el momento M, donde M se alula de la siguiente manera: M =δ M E. (10-8) ns 2 C m = +δ Pu 1 0,75P ( M M ) 2ns s 2s Observar que k se determina de auerdo on y δ ns 1, Estabilidad estrutural bajo argas gravitatorias En los pórtios desplazables se debe investigar la posibilidad de inestabilidad por desplazamiento lateral de la estrutura en su onjunto. Esto se verifia de tres maneras diferentes, dependiendo del método usado para determinar δ m M s : 1. Cuando δ s M s se determina mediante un análisis de segundo orden ( ) se debe satisfaer la siguiente expresión: 11-14

15 deformaiones laterales de segundo orden 2,5 deformaiones laterales de primer orden Observar que estas deformaiones se basan en una arga apliada de 1,4P D y 1,7P L más la arga horizontal apliada. El pórtio se debería analizar dos vees para este onjunto de argas: el primer análisis debería ser un análisis de primer orden, y el segundo un análisis de segundo orden. La arga horizontal se puede tomar omo las argas horizontales reales usadas en el diseño, o bien puede ser una arga horizontal únia apliada en la parte superior del pórtio. En ualquier aso, la arga horizontal debe ser lo sufiientemente grande para produir deformaiones on valores de tal magnitud que puedan ser omparadas on preisión. 2. Cuando δ s M s se determina mediante un análisis de segundo orden aproximado ( ): Pu o Q = 0,60 V u donde el valor de Q se evalúa usando 1,4P D y 1,7P L. Observar que la expresión anterior equivale a δ s = 2,5. Los valores de V u y o se pueden determinar usando el onjunto real de las argas horizontales o bien un onjunto arbitrario de argas horizontales. Esta verifiaión de la estabilidad se onsidera satisfeha si el valor de Q alulado en es menor o igual que 0,2. 3. Cuando δ s M s se determina usando las expresiones de los ódigos ACI anteriores ( ), la verifiaión de la estabilidad se onsidera satisfeha uando 0<δs 2,5 En este aso P u y P o orresponden a las argas permanentes y sobreargas mayoradas. Es importante observar que en ada uno de los tres asos presentados β d se deberá tomar omo: β = d Máxima arga axial de larga duraión mayorada Máxima arga axial mayorada Amplifiaión de momentos para elementos soliitados a flexión La resistenia de un pórtio desplazable depende de la estabilidad de las olumnas y del grado de restriión proporionado por las vigas del pórtio. Si en las vigas que proveen restriión se forman rótulas plástias, el omportamiento de la estrutura se aproxima al de un meanismo, y su apaidad de resistir argas axiales se redue en forma drástia. La seión espeifia que los elementos soliitados a flexión (vigas o losas) que proveen restriión deben tener apaidad para resistir los momentos amplifiados de las olumnas. El método del fator de amplifiaión de momentos permite obtener una buena aproximaión de los momentos amplifiados reales que atúan en los extremos de los elementos de los pórtios no arriostrados; esto es un avane signifiativo on respeto al método de los fatores de reduión para olumnas largas que se espeifiaba en ódigos anteriores de ACI para tomar en uenta la esbeltez de los elementos en el diseño

16 RESUMEN DE LAS ECUACIONES DE DISEÑO Creemos que el siguiente resumen de euaiones para el diseño de olumnas esbeltas bajo argas permanentes, sobreargas y argas de viento, tanto en pórtios indesplazables omo en pórtios desplazables, puede ser de utilidad para el diseñador. Los Ejemplos 11.1 y 11.2 ilustran la apliaión de estas euaiones para el diseño de olumnas en pórtios indesplazables y pórtios desplazables, respetivamente. Pórtios indesplazables 1. Determinar las ombinaiones de argas mayoradas de auerdo on 9.2. En los ejemplos que siguen se asume que el fator de arga para sobrearga es 0,5 (es deir, se aplia la ondiión 9.2.1(a)) y que la arga de viento ha sido reduida apliando el fator de direionalidad (9.2.1(b)). Observar que los momentos mayorados M u,sup y M u,inf en los extremos superior e inferior de la olumna, respetivamente, se han de determinar usando un análisis de pórtio de primer orden, en base a las propiedades de la seión fisurada del elemento. 2. Determinar M para ada ombinaión de argas, siendo M el mayor momento mayorado que atúa en un extremo de la olumna, inluyendo los efetos de la esbeltez (si fuera neesario). Observar que M se puede determinar mediante uno de los siguientes métodos: a. Análisis de segundo orden (P- ) ( ) b. Método del fator de amplifiaión de momentos (sólo si kl u /r 100; ver y el paso (3) siguiente) Determinar la armadura requerida en la olumna para la ombinaión de argas rítia determinada en el paso (1) anterior. Cada ombinaión de argas onsiste en P u y M u. 3. Método del fator de amplifiaión de momentos (10.12): Los efetos de la esbeltez se pueden despreiar uando: k r M M2 u 1 E. (10-7) donde [ ] 34 12M / M El término 1 2 M /M es positivo si la olumna se deforma on urvatura simple, y negativo si el elemento se deforma on urvatura doble. Si es neesario onsiderar los efetos de la esbeltez, determinar M para ada ombinaión de argas: donde M =δ M E. (10-8) ns 2 M 2 = valor mayor entre M u,inf y M u,sup u ( ) P 0,6+ 0,03h δ Cm ns = 1, 0 P u 1 0,75P E. (10-9) 11-16

17 o bien P = 2 π EI 2 ( k u ) EI = ( 0, 2EIg + EsIse) 0, 4E I EI = 1+β 1+β g d d E. (10-10) E. (10-11) E. (10-12) Máxima arga axial de larga duraión mayorada β d = 10.0 Máxima arga axial mayorada asoiada on la misma ombinaión de argas M1 Cm = 0,6+ 0,4 0,4 M2 (sin argas transversales) E. (10-13) = 1,0 (on argas transversales) El fator de longitud efetiva se deberá tomar igual a 1,0 o bien se deberá determinar mediante análisis (por ejemplo, usando el nomograma o las euaiones dadas en R10.12). En este último aso, k se deberá basar en los valores de E e I usados en (ver ). Pórtios desplazables 1. Determinar las ombinaiones de argas mayoradas. a. Cargas gravitatorias (permanentes y sobreargas) Todos los momentos (M u,inf ) ns y (M u,sup ) ns en la parte inferior y superior de la olumna, respetivamente, se deben determinar usando un análisis de pórtio elástio de primer orden, en base a las propiedades de la seión fisurada de los elementos. Los momentos M 1 y M 2 son el valor menor y el valor mayor de los momentos (M u,inf ) ns y (M u,sup ) ns, respetivamente. Los momentos M 1ns y M 2ns son los momentos mayorados en los extremos orrespondientes a los extremos en los uales atúan M 1 y M 2, respetivamente. b. Cargas gravitatorias (permanentes y sobreargas) más argas de viento Los momentos totales en la parte superior e inferior de la olumna son M u,sup = (M u,sup ) ns + (M u,sup ) s y M u,inf = (M u,inf ) ns + (M u,inf ) s, respetivamente. Los momentos M 1 y M 2 son el valor menor y el valor mayor de los momentos M u,sup y M u,inf, respetivamente. Observar que en esta etapa M 1 y M 2 no inluyen los efetos de la esbeltez. Los momentos M 1ns y M 1s son los momentos mayorados indesplazables y desplazables, respetivamente, que atúan en el extremo de la olumna donde atúa M 1, mientras que M 2ns y M 2s son los momentos mayorados indesplazables y desplazables, respetivamente, que atúan en el extremo de la olumna donde atúa M 2.. Cargas gravitatorias (permanentes) más argas de viento Para esta ombinaión de argas los momentos se definen omo se espeifia en el punto 1(b). d. En las ombinaiones de argas espeifiadas en los puntos 1(b) y 1() anteriores se deben onsiderar los efetos que se produen uando las argas de viento atúan en la direión de análisis iniial y en la opuesta

18 2. Determinar la armadura requerida en la olumna para la ombinaión de argas rítia determinada en el punto (1) anterior. Cada ombinaión de argas está ompuesta por P u, M 1 y M 2, donde ahora M 1 y M 2 son los momentos mayorados totales que atúan en los extremos, inluyendo los efetos de la esbeltez. Observar que si la arga rítia P se alula usando EI de la Euaión (10-11), también es neesario estimar primero la armadura de la olumna. Los momentos M 1 y M 2 se determinan mediante uno de los métodos siguientes: a. Análisis de segundo orden (P - ) ( ) b. Método del fator de amplifiaión de momentos (sólo si kl u /r 100; ver y el paso (3) a ontinuaión) 3. Método del fator de amplifiaión de momentos (ver 10.13): Los efetos de la esbeltez se pueden despreiar uando k r u < Si es neesario onsiderar los efetos de la esbeltez: M1 = M1ns +δ sm1s E. (10-15) M2 = M2ns +δ sm2s E. (10-16) Los momentos δ s M 1s y δ s M 2s se deben alular usando uno de los métodos siguientes (ver ): a. Análisis de segundo orden (P - ) (ver ) b. Análisis de segundo orden aproximado ( ) Ms δ sms = M s, 1,0 δs 1,5 1 Q E. (10-17) donde Pu Q = V u o E. (10-6). Método aproximado dado en ódigos ACI anteriores (ver ): M δ = s sms Ms Pu 1 0,75 P E. (10-18) donde P = 2 π EI 2 ( k u ) EI = ( 0, 2EIg + EsIse) 1+β d E. (10-10) E. (10-11) 11-18

19 o bien 0, 4E I EI = 1+β g d E. (10-12) El fator de longitud efetiva, k, debe ser mayor que 1,0 y se debe basar en los valores de E e I indiados en (ver ). 4. Determinar si el máximo momento ourre en los extremos de la olumna o en un punto ubiado entre los extremos ( ). Si u r > 35 Pu f' A g E. (10-19) la olumna se debe diseñar para la arga axial mayorada P u y el momento M, siendo M =δ M ns 2 C m = +δ Pu 1 0,75P ( M M ) 2ns s 2s En este aso, k se determina de auerdo on los requisitos de y δ ns 1,0. 5. Verifiar la posibilidad de inestabilidad por desplazamiento lateral bajo argas gravitatorias ( ): a. Si δ s M s se alula en base a : Deformaiones laterales de segundo orden 2,5 Deformaiones laterales de primer orden en base a una arga de 1,4P D y 1,7P L más la arga horizontal. b. Si δ s M s se alula en base a : Pu o Q = 0,60 V u en base a una arga de 1,4P D y 1,7P L más la arga horizontal.. Si δ s M s se alula en base a : 0<δs 2,5 donde δ s se alula usando P u y P orrespondientes a una arga de 1,4P D y 1,7P L. En los tres asos β d se deberá tomar omo: 11-19

20 β = d Máxima arga axial de larga duraión mayorada Máxima arga axial mayorada La referenia 11.1 ontiene el desarrollo de las euaiones de diseño para los requisitos de esbeltez presentados en esta seión. REFERENCIA 11.1 MaGregor, J. G., "Design of Slender Conrete Columns Revisited," ACI Strutural Journal, V. 90, No. 3, Mayo-Junio 1993, pp

21 Ejemplo 11.1 Efetos de la esbeltez para olumnas en un pórtio indesplazable Diseñar las olumnas A3 y C3 para el primer piso del edifiio de ofiinas de 10 pisos ilustrado. La luz libre del primer piso es de 21 ft-4 in., y en todos los demás pisos es de 11 ft-4 in. Suponer que las argas horizontales que atúan en el edifiio son provoadas por el viento, y que las argas permanentes son las únias argas de larga duraión. Los demás datos neesarios son los siguientes: Propiedades de los materiales: Hormigón: Entrepisos: f' = 4000 psi, w = 150 lb/ft 3 Columnas y tabiques: f' = 6000 psi, w = 150 lb/ft 3 Armadura: f y = 60 ksi Vigas: in. Columnas exteriores: Columnas interiores: Muros de ortante: in in. 12 in Peso de los nervios de las losas = 86 lb/ft 2 Carga permanente impuesta = 32 lb/ft 2 Sobrearga en la ubierta = 30 lb/ft 2 Sobrearga en los entrepisos = 50 lb/ft 2 Las argas de viento se alulan de auerdo on ASCE 7. A B 28'-0" 28'-0" 28'-0" 28'-0" 28'-0" 28'-0" Nervios (típ) 28'-0" C N D E F 28'-0" 28'-0" 28'-0" R 10 23'-0" 9 a 13-0" = 117-0" G 5 a 28-0" = 140-0" 11-21

22 Cálulos y disusión Referenia del Código 1. Cargas axiales y momentos fletores mayorados para las olumnas A3 y C3 en el primer piso. Caso de Carga Columna A3 Carga axial (kips) Momento fletor (ft-kips) Superior Inferior Permanente (D) 718,0 79,0 40,0 Sobrearga (L)* 80,0 30,3 15,3 Sobrearga en la ubierta (L r ) 12,0 0,0 0,0 Viento (W) ±8,0 ±1,1 ±4,3 E. No. Combinaión de Cargas ,4D 1005, ,2D + 1,6L + 0,5Lr 995,6 143,3 72, ,2D + 0,5L + 1,6Lr 920,8 110,0 55,7 4 1,2D + 1,6Lr + 0,8W 887,2 95,7 51,4 5 1,2D + 1,6Lr - 0,8W 874,4 93,9 44,6 6 1,2D + 0,5L + 0,5L r + 1,6W 920,4 111,7 62,5 7 1,2D + 0,5L + 0,5L r - 1,6W 894,8 108,2 48,8 8 0,9D + 1,6W 659,0 72,9 42, ,9D - 1,6W 633,4 69,3 29,1 * Inluye la reduión de la sobrearga de auerdo on ASCE 7 Caso de Carga Columna C3 Carga axial (kips) Momento fletor (ft-kips) Superior Inferior Permanente (D) 1269, Sobrearga (L)* Sobrearga en la ubierta (L r ) Viento (W) ±3,0 ±2,5 ±7,7 E. No. Combinaión de Cargas ,4D 1776,6 1,4 1, ,2D + 1,6L + 0,5Lr 1770,0 53,0 26, ,2D + 0,5L + 1,6Lr 1634,7 17,4 7,0 4 1,2D + 1,6Lr + 0,8W 1563,6 3,2 9,0 5 1,2D + 1,6Lr - 0,8W 1558,8-0,8-5,3 6 1,2D + 0,5L + 0,5L r + 1,6W 1613,1 21,4 21,3 7 1,2D + 0,5L + 0,5L r - 1,6W 1603,5 13,4-3,3 8 0,9D + 1,6W 1146,9 4,9 13, ,9D - 1,6W 1137,3-3,1-11,7 * Inluye la reduión de la sobrearga de auerdo on ASCE

23 Observar que las olumnas A3 y C3 se deforman on urvatura doble. 2. Determinar si el pórtio en el primer piso es indesplazable o desplazable. Los resultados de un análisis elástio de primer orden en base a las propiedades seionales indiadas en son los siguientes: P u = arga vertial total en el primer piso orrespondiente al aso de arga lateral para el ual P u es máximo Las argas totales del edifiio son: D = kips, L = 3609 kips, y L r = 602 kips. P u máxima se determina en base a la Euaión (9-4): u ( ) ( ) ( ) P = 1, , , = kips V u = orte de piso mayorado en el primer piso orrespondiente a las argas de viento = 1,6 324,3 = 518,9 kips E. (9-4), (9-6) o = deformaión relativa de primer orden entre la parte superior e inferior del primer piso debida a V u = 1,6 ( 0,03 0) = 0,05in. Índie de estabilidad Pu o , 05 Q = = = 0,02< 0,05 Vu 518,9 ( 23 12) ( 20 / 2) E. (10-6) Como Q < 0,05 el pórtio a nivel del primer piso se onsidera indesplazable Diseño de la olumna C3. a. Determinar si es neesario onsiderar los efetos de la esbeltez. Usando un fator de longitud efetiva k = 1,0: k u 1, 0 21, = = 35,6 r 0,3 24 Como la olumna se deforma on urvatura doble, el menor valor de ombinaión de argas No. 5: ( 0,8) M = = 35,8 < 40 M 5,3 2 M M 2 se obtiene de la Para la olumna C3 no es neesario onsiderar los efetos de la esbeltez, ya que kl u /r < (M 1 M 2 ) Observar que en este aso no es neesario alular un valor de k más exato ya que la olumna no es esbelta para k = 1,0. b. Determinar la armadura requerida. Para la olumna de in., intentar on 16 barras No

24 Determinar la máxima fuerza de ompresión axial admisible, φp n,max : ( ) φ P = 0,80φ 0,85f ' A A + f A n,max g st y st E. (10-2) 2 ( 0,80 0,65) ( 0,85 6)( 24 9,6) ( 60 9,6) = + = 1801, 6 kips > Pu máx. = 1776, 6 kips VERIFICA La siguiente tabla ontiene los resultados obtenidos de un análisis de ompatibilidad de las deformaiones; las deformaiones de ompresión se onsideran positivas (ver Partes 6 y 7). 21,69" 16,84" 12,00" 24" 7,16" 2,31" 24" Reubrimiento libre 1,5" para los estribos No. 3 No. P u (kips) M u (ft-kips) (in.) ε t φ φp n (kips) φm n (ft-kips) ,6 1,4 25,92 0, , ,6 367, ,0 53,0 25,83 0, , ,0 371, ,7 17,4 23,86 0, , ,7 447, ,6 7,0 22,85 0, , ,6 480, ,8 5,3 22,78 0, , ,8 483, ,1 21,4 23,55 0, , ,1 457, ,5 13,4 23,41 0, , ,5 462, ,9 13,0 17,25-0, , ,9 609, ,3 11,7 17,13-0, , ,3 611,7 Por lo tanto, omo φm n > M u para ualquier φp n = P u, usar una olumna uadrada de in. on 16 barras No. 7 (ρ g = 1,7%). 4. Diseño de la olumna A3. a. Determinar si es neesario onsiderar los efetos de la esbeltez

25 Determinar k usando el nomograma de la Figura o la Figura R : 4 20 Iol = 0, 7 = 9333in (b) 6000 E = = 4415 ksi Para la olumna debajo del nivel 2: EI = = in.-kips ( 23 12) ( 20 / 2) Para la olumna enima del nivel 2: EI = = in.-kips Iviga = 0, 35 = 5600 in (b) EI = = in.-kips EI/ Ψ A = = = 7,0 EI/ 60 Asumir Ψ B = 1, 0 (olumna esenialmente empotrada en la base) De la Figura R (a), k = 0,86. M1 Por lo tanto, para la olumna A3, deformada on doble urvatura, el menor valor de M 2 de la ombinaión de argas No. 9: se obtiene 29, = 39, 0 69,3 k u 0,86 21, = = 36,7 < 39,0 r 0,3 20 Para la olumna A3, deformada on urvatura simple, el menor valor de ombinaión de argas No. 8: k u 42,9 == 36, 7 > = 26, 9 r 72,9 M M 2 se obtiene de la 11-25

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada)

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada) Ejémplo de álulo estrutural utilizando el Sistema Conretek : (Preparado por: Ing. Denys Lara Lozada) Para el siguiente ejemplo se diseñará una losa de teho de dimensiones según se muestra en la figura:

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

El Concreto y los Terremotos

El Concreto y los Terremotos Por: Mauriio Gallego Silva, Ingeniero Civil. Binaria Ltda. mgallego@binaria.om.o Resumen Para diseñar una edifiaión de onreto reforzado que sea apaz de resistir eventos sísmios es neesario tener ontrol

Más detalles

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES VOLUMEN 4 Seguridad Estrutural Diseño de Estruturas de Conreto NORMATIVIDAD E INVESTIGACIÓN VOLUMEN 4 SEGURIDAD ESTRUCTURAL

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

8 Redistribución de los Momentos

8 Redistribución de los Momentos 8 Redistribuión de los Momentos TULIZIÓN PR EL ÓIGO 00 En el ódigo 00, los requisitos de diseño unifiado para redistribuión de momentos ahora se enuentran en la Seión 8.4, y los requisitos anteriores fueron

Más detalles

20 Losas en dos direcciones - Método del Pórtico Equivalente

20 Losas en dos direcciones - Método del Pórtico Equivalente 0 Losas en dos direiones - Método del Pórtio Equivalente CONSIDERACIONES GENERALES El Método del Pórtio Equivalente onvierte un sistema aportiado tridimensional on losas en dos direiones en una serie de

Más detalles

ICNC: Longitudes de pandeo de columnas: Método riguroso

ICNC: Longitudes de pandeo de columnas: Método riguroso CC: ongitudes de pandeo de olumnas: método riguroso S008a-S-U CC: ongitudes de pandeo de olumnas: Método riguroso sta CC proporiona informaión respeto al álulo de la longitud de pandeo de olumnas, para

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD.

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. Tema 5. Estrutura de la Tierra y anomalías de la gravedad. 5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. 5. Estrutura interna de la Tierra y gravedad asoiada. El avane en el onoimiento interno

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Universidad Naional del Callao Esuela Profesional de Ingeniería Elétria Faultad de Ingeniería Elétria y Eletrónia Cilo 2008-B ÍNDICE GENERAL INTRODUCION... 2 1. OBJETIVOS...3 2. EXPERIMENTO...3 2.1 MODELO

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

19 Losas en dos direcciones - Método de Diseño Directo

19 Losas en dos direcciones - Método de Diseño Directo 19 Losas en dos direcciones - Método de Diseño Directo CONSIDERACIONES GENERALES El Método de Diseño Directo es un procedimiento aproximado para analizar sistemas de losas en dos direcciones solicitados

Más detalles

PARTE 7 HORMIGÓN ESTRUCTURAL SIMPLE

PARTE 7 HORMIGÓN ESTRUCTURAL SIMPLE PARTE 7 HORMIGÓN ESTRUCTURAL SIMPLE COMENTARIOS AL CAPÍTULO 22. HORMIGÓN ESTRUCTURAL SIMPLE C 22.0. SIMBOLOGÍA Las unidades que se indian en este artíulo, para orientar al usuario, no tienen la intenión

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

6 Principios Generales del Diseño por Resistencia

6 Principios Generales del Diseño por Resistencia 6 Prinipios Generales el Diseño por Resistenia ACTUALIZACIÓN PARA EL CÓDIGO 00 Los Requisitos e Diseño Unifiao, anteriormente inluios en el Apénie B, ahora se han inorporao al uerpo prinipal el óigo. Estos

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Nueva tendencia en la normalización del diseño de estructuras de acero. Presentación de la nueva norma unificada AISC 360-2010

Nueva tendencia en la normalización del diseño de estructuras de acero. Presentación de la nueva norma unificada AISC 360-2010 Nueva tendencia en la normalización del diseño de estructuras de acero Presentación de la nueva norma unificada AISC 360-2010 Historia Norma de estado límite Para cualquier solicitación o combinación de

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 GASES Y VAPORES: los términos gas y vapor se utilizan muha vees indistintamente, pudiendo llegar a generar alguna onfusión.

Más detalles

18 Sistemas de losas que trabajan en dos direcciones

18 Sistemas de losas que trabajan en dos direcciones 18 Sistemas de losas que trabajan en dos direcciones ACTUALIZACIÓN PARA EL CÓDIGO 2002 Hay un pequeño cambio en el artículo 13.3.8.5 del Capítulo 13: ahora para las barras inferiores de las franjas de

Más detalles

Tema 2: Elección bajo incertidumbre

Tema 2: Elección bajo incertidumbre Tema : Eleión bajo inertidumbre Ref: Capítulo Varian Autor: Joel Sandonís Versión:..0 Javier López Departamento de Fundamentos del Análisis Eonómio Universidad de Aliante Miroeonomía Intermedia Introduión

Más detalles

Estrategias De Ventas

Estrategias De Ventas Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas

Más detalles

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Universidad de Buenos Aires - Faultad de Cienias Eonómias CRECIMIENTO ECONÓMICO NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Por: los integrantes del urso 1 Año 2012 1 Las presentes notas de lase

Más detalles

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1 PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 1399-1 Índie Sistemas de montaje de tornillo/tuera/arandela (Consulte la tabla más abajo) 2 La empresa 3 Tornillos estruturales de alta resistenia

Más detalles

Estructuras de Concreto Armado para Edificaciones. Análisis y Diseño ARTICULADO FONDONORMA / COVENIN / CT-3

Estructuras de Concreto Armado para Edificaciones. Análisis y Diseño ARTICULADO FONDONORMA / COVENIN / CT-3 Norma COVENIN 1753-1(R) 1(R) Año o 2005 Estruturas de Conreto Armado para Edifiaiones. Análisis y Diseño ARTICULADO Proyeto de Norma sometida a disusión n públia p por: FONDONORMA / COVENIN / CT-3 Basada

Más detalles

Dimensionado a pandeo de soportes de acero secciones abiertas clase 1 y 2 solicitados a flexocompresión con un My,Ed.

Dimensionado a pandeo de soportes de acero secciones abiertas clase 1 y 2 solicitados a flexocompresión con un My,Ed. Soportes e aero seiones abiertas lase 1 a flexoompresión on un M, Dimensionao a paneo e soportes e aero seiones abiertas lase 1 soliitaos a flexoompresión on un M,. Apellios, nombre Arianna Guariola Víllora

Más detalles

TS210-134 SISTEMA DE FIJACIÓN OCULTA SOBRE UNA SUBESTRUCTURA DE ALUMINIO CÁMARA AMPLIADA

TS210-134 SISTEMA DE FIJACIÓN OCULTA SOBRE UNA SUBESTRUCTURA DE ALUMINIO CÁMARA AMPLIADA TS210-134 SISTEMA DE FIJACIÓN OCULTA SOBRE UNA SUBESTRUCTURA DE ALUMINIO CÁMARA AMPLIADA Este sistema ofree una gran flexiilidad en la instalaión de plaas Trespa Meteon, el uso de arazaderas ajustales

Más detalles

Unidades. Hormigón Propiedades

Unidades. Hormigón Propiedades Unidades SI MKS Inglés Longitud m M ft Masa kg Kgf*s 2 /m lbf*s 2 /ft Tiempo s s s Fuerza N=kg*m/s 2 kgf lbf Fuerza kn = 1000 N = 100 kgf kn = 0.225 kips = 225 lbf Tensión/Esfuerzo MPa = 10 6 Pa = 10 6

Más detalles

DISEÑO DE PERFILES AERODINÁMICOS

DISEÑO DE PERFILES AERODINÁMICOS INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD TICOMAN INGENIERÍA AERONÁUTICA DISEÑO DE PERFILES AERODINÁMICOS TESIS QUE PARA OBTENER EL TITULO DE: INGENIERO

Más detalles

Evaluación de la Birrefringencia de una Fibra Óptica Monomodo Usando el Método de Barrido Espectral, Estudio Comparativo de Dos Metodologías

Evaluación de la Birrefringencia de una Fibra Óptica Monomodo Usando el Método de Barrido Espectral, Estudio Comparativo de Dos Metodologías Simposio de Metrología 8 Santiago de Querétaro, Méxio, al 4 de Otubre Evaluaión de la Birrefringenia de una Fibra Óptia Monomodo Usando el Método de Barrido Espetral, Estudio Comparativo de Dos Metodologías

Más detalles

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido.

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido. INGENIERÍA HIDRÁULICA Y AMBIENTAL VOL. XXIII No. 3 Modelaión del flujo en una ompuerta a través de las pérdidas de energía relativas de un salto idráulio sumergido. Primera Parte INTRODUCCIÓN El análisis

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

Cofra. AuGeo. terraplén sobre pilotes. Cofra. Building worldwide on our strength

Cofra. AuGeo. terraplén sobre pilotes. Cofra. Building worldwide on our strength C Building worldwide on our strength La instalaión o renovaión de infraestruturas debe realizarse ada vez más rápido y bajo ondiiones estritas, en partiular en arreteras y autopistas prinipales. Como resultado,

Más detalles

ÁCIDO BASE QCA 09 ANDALUCÍA

ÁCIDO BASE QCA 09 ANDALUCÍA ÁCIDO BASE QCA 9 ANDALUCÍA.- El ph de L de disoluión auosa de hidróxido de litio es. Calule: a) Los gramos de hidróxido que se han utilizado para prepararla. b) El volumen de agua que hay que añadir a

Más detalles

Refuerzo longitudinal. Refuerzo transversal. Lateral

Refuerzo longitudinal. Refuerzo transversal. Lateral Sección Refuerzo longitudinal Refuerzo transversal Lateral Refuerzo transversal Refuerzo longitudinal Lateral Suple Refuerzo longitudinal Recubrimientos ACI 318 08 7.7.1 Protección por grados de exposición

Más detalles

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN INOTERMS 2010 DEFINIIÓN Las operaiones omeriales internaionales tienen su origen en un ontrato de ompraventa realizado entre importador y exportador, en el ual se estipulan las láusulas por las que se

Más detalles

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO 1 Tema 8 íneas de Transmisión: análisis iruital y transitorio Eletromagnetismo TEMA 8: INEAS DE TRANSMISIÓN: ANÁISIS CIRCUITA Y TRANSITORIO Miguel Angel Solano Vérez Eletromagnetismo Tema 8 íneas de transmisión:

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

Solicitud de cambio para suscriptores de pequeñas empresas Blue Shield of California y Blue Shield of California Life & Health Insurance Company

Solicitud de cambio para suscriptores de pequeñas empresas Blue Shield of California y Blue Shield of California Life & Health Insurance Company Soliitud de ambio para susriptores de pequeñas empresas Blue Shield of California y Blue Shield of California Life & Health Insurane Company Todas las soliitudes de ambio deben reibirse en el transurso

Más detalles

DGRS DIRECCIÓN GENERAL DE REGLAMENTO Y SISTEMA DISEÑO A FLEXOCOMPRESION DE MUROS DE HORMIGON ARMADO. SECCIONES RECTANGULARES, L y C.

DGRS DIRECCIÓN GENERAL DE REGLAMENTO Y SISTEMA DISEÑO A FLEXOCOMPRESION DE MUROS DE HORMIGON ARMADO. SECCIONES RECTANGULARES, L y C. DGRS DIREIÓN GENERAL DE REGLAMENTO Y SISTEMA DISEÑO A FLEXOOMPRESION DE MUROS DE HORMIGON ARMADO SEIONES RETANGULARES, L y. PUBLIO SILFA SERIE DE PUBLIAIONES TENIAS PT- DIIEMBRE 986 M-08 SERETARIA DE ESTADO

Más detalles

Análisis de correspondencias

Análisis de correspondencias Análisis de orrespondenias Eliseo Martínez H. 1. Eleiones en París Hemos deidido presentar un legendario ejemplo para expliar el objetivo del Análisis de Correspondenia. Este ejemplo se enuentra en el

Más detalles

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas

Más detalles

4. Mecanizado con máquinas de control numérico computacional

4. Mecanizado con máquinas de control numérico computacional Meanizado on máquinas de ontrol numério omputaional INTRODUCCIÓN Este módulo onsta de 228 horas pedagógias y tiene omo propósito que los y las estudiantes de uarto medio de la espeialidad de Meánia Industrial

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

9. Mantenimiento de redes de acceso y banda ancha

9. Mantenimiento de redes de acceso y banda ancha 9. Mantenimiento de redes de aeso y banda anha INTRODUCCIÓN Este módulo de 190 horas pedagógias tiene omo propósito promover en los y las estudiantes un onjunto de onoimientos y habilidades para realizar

Más detalles

24 Hormigón Pretensado Flexión

24 Hormigón Pretensado Flexión 24 Hormigón Pretensado Flexión ACTUALIZACIÓN PARA EL CÓDIGO 2002 Los ambios introduidos en ACI 318-02 en relaión on el diseño de elementos de hormigón pretensado son más profundos que los introduidos en

Más detalles

LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO

LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO Patriia N. Domínguez a, Claudio J. Orbanih a,b, Néstor F. Ortega a a Departamento de Ingeniería Universidad Naional del Sur Av. Alem 153

Más detalles

LIXIVIACION DE MINERALES MEDIANTE PILAS Y BATEAS

LIXIVIACION DE MINERALES MEDIANTE PILAS Y BATEAS LIXIVICION DE MINERLES MEDINTE PILS Y TES Fabián Cárdenas, Mauriio Díaz, Carlos Guajardo, María elén Oliva Universidad de Chile Estudiantes de ingeniería en minas Departamentos de Ingeniería de Minas Tupper

Más detalles

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.- 1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estruturas de aero: Problemas Pilares Dimensionar un pilar de 5 m de altura mediante un peril HEB, sabiendo que ha de soportar simultáneamente una arga axial de ompresión F de 50 unas argas horiontales

Más detalles

Sistemas Numéricos MC Guillermo Sandoval Benítez Capítulo 1. Capítulo 1. Sistemas Numéricos

Sistemas Numéricos MC Guillermo Sandoval Benítez Capítulo 1. Capítulo 1. Sistemas Numéricos Sistemas Numérios MC Guillermo Sandoval Benítez Capítulo Capítulo Sistemas Numérios Temario. Representaión de los sistemas numérios. Conversión entre bases.3 Aritmétia.4 Complementos.5 Nomenlatura para

Más detalles

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5.1 Introduión La valoraión de la reatividad se puede enfoar bajo tres puntos de vista diferentes:

Más detalles

independiente de la cantidad de masa y es propio de cada sustancia c =.

independiente de la cantidad de masa y es propio de cada sustancia c =. Tema 7 Termodinámia 7.. Calorimetría y ambios de fase. 7... Capaidad alorífia y alor espeífio. La temperatura de un uerpo aumenta uando se añade alor o disminuye uando el uerpo desprende alor. (Por el

Más detalles

C.9.3.2.2 Secciones controladas por compresión como se definen en C.10.3.3:

C.9.3.2.2 Secciones controladas por compresión como se definen en C.10.3.3: 7. COLUMNAS Elementos verticales que transmiten cargas de comprensión, generalmente acompañadas de un momento. Las cargas son transmitidas por la placa de entrepiso a las vigas, de estas a las columnas,

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Ciclones. 1.- Descripción.

Ciclones. 1.- Descripción. Cilones 1.- Desriión. Los ilones son equios meánios estaionarios, amliamente utilizados en la industria, que ermiten la searaión de artíulas de un sólido o de un líquido que se enuentran susendidos en

Más detalles

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería Conreto reorzado Parte de la Normas Ténias Complementarias para Diseño Construión de Estruturas de Conreto Cálulo de Viviendas de Mampostería Elaboró: M. I. Wiliams de la Cruz Rodríguez E-Mail: albasus@avantel.net

Más detalles

6. Acción de masas y dependencia del potencial químico con la concentración

6. Acción de masas y dependencia del potencial químico con la concentración 6 Aión de masas y dependenia del potenial químio on la onentraión Tema: Dependenia del potenial químio on la onentraión y apliaiones más importantes 61 El onepto de aión de masas Desde hae muho tiempo

Más detalles

671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU

671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU 671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU 671.1 DEFINICIÓN Se definen omo imentaiones por pilotes de hormigón armado moldeados in sit u las realizadas mediante pilotes de hormigón

Más detalles

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS 3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS En esta sección se describe el procedimiento de diseño para cada uno de los casos siguientes: Placas base para columnas o

Más detalles

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad T El GPS y la teoría de la atividad Eduardo Huerta(*), arlos Galles(**), Andrés Greo(**) y Aldo Mangiaterra(*) (*) DEPARTAMENTO DE GEOTOPOARTOGRAFÍA (**) DEPARTAMENTO DE FÍSIA FAULTAD DE IENIAS EXATAS,

Más detalles

PREDICCIÓN DEL DESEMPEÑO A CORTANTE DE MUROS DE CONCRETO PARA VIVIENDA RESUMEN ABSTRACT INTRODUCCIÓN

PREDICCIÓN DEL DESEMPEÑO A CORTANTE DE MUROS DE CONCRETO PARA VIVIENDA RESUMEN ABSTRACT INTRODUCCIÓN PREDICCIÓN DEL DESEMPEÑO A CORTANTE DE MUROS DE CONCRETO PARA VIVIENDA Julián Carrillo León 1, Sergio M. Aloer 2 y Roberto Uribe 3 RESUMEN En las viviendas omunes de baja altura se emplean muros on resistenia

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

REGLAMENTO COLOMBIANO DE

REGLAMENTO COLOMBIANO DE REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 NSR-10 TÍTULO C CONCRETO ESTRUCTURAL TÍTULO C CONCRETO ESTRUCTURAL TÍTULO C CONCRETO

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de Hidráulia Ing. David Hernández Huéramo Manual de prátias Hidráulia de anales o semestre Autores: Guillermo Benjamín Pérez Morales Jesús Alberto Rodríguez Castro Jesús Martín Caballero Ulaje

Más detalles

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN.

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. Ing. Carlos Rodríguez Garía 1 1. Universidad de Matanzas, Vía Blana, km 3 ½, Matanzas, Cuba. CD de

Más detalles

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz.

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz. Espeializaión aión sin daño y onstruión de paz Espeializaión aión sin daño y onstruión de paz Fortaleimiento organizaional, un aporte a la onstruión de paz. Módulo Espeializaión aión sin daño y onstruión

Más detalles

CÁLCULO DE DEPÓSITOS DE HORMIGÓN ARMADO PARA AGUA

CÁLCULO DE DEPÓSITOS DE HORMIGÓN ARMADO PARA AGUA CÁLCULO D DPÓSITOS D HORIGÓN RDO PR GU DPÓSITOS CILÍNDRICOS. Determinaión de la oliitaione: La oliitaione en la parede del depóito, a una altura x on: xiale N x, ortante V x y letore x. La euaione para

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al

Más detalles

Fracciones: términos, lectura y escritura

Fracciones: términos, lectura y escritura Fraiones: términos, letura y esritura Feha Reuerda Los términos de una fraión son el numerador y el denominador: El denominador india el número de partes iguales en que se divide la unidad. El numerador

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1 DETERMINAION DEL VALOR DE LA UOTA Y EL RONOGRAMA DE PAGOS DE REDITOS HIPOTEARIOS Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación Introducción DAÑOS EN ELEMENTOS NO ESTRUCTURALES (PARTE I) Las patologías en elementos estructurales suelen llevar consigo daños en los elementos no estructurales que conforman el conjunto constructivo.

Más detalles

Radiobiología Revista electrónica

Radiobiología Revista electrónica Radiobiología Revista eletrónia ISSN 1579-3087 http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/radiobiologia.ht http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/nueros/rb4(2004)74-77.pdf Radiobiología

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las tenologías de la Informaión y Comuniaión apliadas a la enseñanza de las Matemátias Parte III Patriia Cabrera M. Para dar ontinuidad a esta serie de artíulos, que tienen

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR Fórulas de Interabiadores TEMA INTERCAMBIAORES E CALOR Resistenia téria de onduión para pared plana: Resistenia téria de onveión: R t onv A Coefiie global de transferenia de alor U: R tot R t ond L ka

Más detalles

Contenido. Diseño de Estructuras de Acero McCormac /Csernak

Contenido. Diseño de Estructuras de Acero McCormac /Csernak Contenido Prefacio iii CAPÍTULO 1 Introducción al diseño estructural en acero 1 1.1 Ventajas del acero como material estructural 1 1.2 Desventajas del acero como material estructural 3 1.3 Primeros usos

Más detalles

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 112 111 CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 8.1 ANALISIS 8.1.1 CRITERIOS Las placas son los elementos que gobiernan el comportamiento sísmico de la edificación. Como lo hemos mencionado anteriormente,

Más detalles

San Bartolomé. Albañilería Armada. Albañilería Confinada

San Bartolomé. Albañilería Armada. Albañilería Confinada San Bartolomé Albañilería Armada Albañilería Confinada Lecciones dejadas por los sismos Resultados experimentales Estudios teóricos Japón La norma de 1982 empleaba un método de diseño elástico admitiéndose

Más detalles

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales Congreso Anual 010 de la Asoiaión de Méxio de Control Automátio. Puerto Vallarta, Jaliso, Méxio. Diseño e Implementaión de Controladores Digitales Basados en Proesadores Digitales De Señales Barrera Cardiel

Más detalles

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA Objetivos OS SINDICATOS Y A NEGOCIACIÓN COECTIVA 1. Comprender por qué surgen los sindiatos y que papel desempeñan en el merado de trabajo 2. Aprender a identifiar las distintas teorías eonómias que explian

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

1. INTRODUCCIÓN. 2. SOLUCIONES ADOPTADAS. 2.1- ESTRUCTURA.

1. INTRODUCCIÓN. 2. SOLUCIONES ADOPTADAS. 2.1- ESTRUCTURA. MEMORIA DE CÁLCULO 1. INTRODUCCIÓN. Se realiza la presente Memoria de Cálculo de una estructura prefabricada de hormigón de un parking a construir en Cullera (Valencia). En esta Memoria se exponen las

Más detalles

Manual de Conducción Eficiente para

Manual de Conducción Eficiente para I N S T I T U T O P A R A L A D I V E R S I F I C A C I Ó N Y A H O R R O D E L A E N E R G Í A Efiienia en el Transporte Manual de Conduión Efiiente para Condutores del Parque Móvil del Estado MINISTERIO

Más detalles

SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO. Delma V. Almada Navarro y Humberto López Salgado

SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO. Delma V. Almada Navarro y Humberto López Salgado SOFTWARE EDUCATIVO PARA EL ANÁLISIS Y DISEÑO DE ELEMENTOS DE CONCRETO REFORZADO Delma V. Almada Navao y Humbeto López Salgado Depto. de Ingenieía Civil, ITESM Ave. Eugenio Gaza Sada Su 50 Aulas IV, e piso.

Más detalles

... 8.2. Comportamiento de Multiplicadores.

... 8.2. Comportamiento de Multiplicadores. AfUALlZAION DE MATRIES DE INSUMO-RODUTO ON EL METODO RAS plladas a la subrutina RAS onviene haer algunas observaiones.respeto al omportanúento de los multipliadores a través de las iteraiones. En el proeso

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO CAPITULO II MARCO TEORICO Reordemos que las Turbinas Pelton son Turbinas de Aión, y son apropiadas para grandes saltos y pequeños audales; por lo ual sus números espeífios son bajos. Referente a las partes

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las plataformas en la eduaión en línea Alberto Domingo Robles Peñaloza La Eduaión a Distania se ha visto en gran manera benefiiada del desarrollo de las Tenologías de Informaión

Más detalles

Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD

Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD Compilado, redatado y agregado por el Ing. Osar M. Santa Cruz - 010 Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD INTRODUCCION Las señales de informaión deben ser transportadas entre un transmisor y un

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9 Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para

Más detalles