Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO"

Transcripción

1 Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -, n espectivamente. a) alcula el campo eléctico (valo, diección y sentido) en el oigen de coodenadas. b) uáles son las coodenadas del punto en el que hay que coloca una caga de -5, n paa que se anule el campo eléctico en el oigen? c) Repite el apatado anteio consideando que la caga es de 5, n. a) Se dibujan los vectoes intensidad de campo y se calculan los módulos de dichos vectoes: k 9 = 9 4 A 9 = = O (, ) Y (; ) k 9 4 A = = 9 = O (, ) Se obtienen los vectoes intensidad de campo y se ealiza la suma: O = O O = j i = ; ste vecto tiene de módulo: Oy un ángulo α = actg = 5º con el eje X positivo. Ox b) La tecea caga debe situase de tal foma que el campo eléctico ceado po ella sea tal que anule la intensidad de campo en O, es (-; ) O O 4 O = 8 y está diigido en el tece cuadante, fomando Y (; ) O O X deci, debe tene el mismo módulo que O y de sentido contaio. Luego estaá situada en el pime cuadante y, fomando un ángulo de 45º con el eje X positivo. La distancia desde esta (-; ) O 45º X tecea caga al punto O vendá dada po: O

2 Facultad de iencias uso = 9 O = 4, O Las coodenadas catesianas de la posición de esta caga seán: ( cos 45º; 45º ) = (,8;,8) O O cm sen cm c) n el caso de una caga de -5, n, debe situase en el tece cuadante, a 5º y una distancia de 4, cm del punto O. De esta foma, el campo eléctico ceado po esta caga cancelaá el campo geneado po las cagas y en el punto O.. n los puntos (4, ) y (,) de un sistema de coodenadas donde las dimensiones se expesan en metos, se colocan dos cagas de 5 µ y µ, espectivamente. alcula a) el campo eléctico en el punto (,) (m) y b) la fueza sobe un electón situado en este mismo punto. a) l campo eléctico en (-,) se obtiene consideando los campos elécticos ceados po las cagas: = k e u k e u - y - - u 4 x u Las distancias y y los vectoes u y u : l campo eléctico entonces, = ( ) 4 ( ) = 5 4 = 9 = ( ) = 4 4 = 8 5 u =, 9 9 u =, ( 5 ) 5 9 = 9, 9, = ( 9 ) ( 8) 9 ( 5 ) ( 5 ) ( ) 9 ( 5 ) ( ) = 9, 9 / / = / / (,,, ) = 8 /

3 Facultad de iencias uso - l módulo del campo eléctico: = ( 8, ) (, ) =,9 / y foma un ángulo α con el eje x: α = b) La fueza sobe un electón en ese punto:, actan =,º º 8, F = q = 9 5 5,6 =,8, omo la caga del electón es negativa, la fueza tiene sentido contaio al campo, es deci, foma un ángulo de 5º con el eje x.. Un plano conducto de gandes dimensiones está cagado positivamente poduciendo un campo eléctico de /. alcula a) el flujo del vecto campo eléctico a tavés de cada una de las caas de un cubo de aista 5 cm que cota el plano como se indica en la figua, b) la caga enceada en dicho cubo y c) la densidad supeficial de caga del plano. â) omo el vecto intensidad de campo ceado po un plano de gandes dimensiones es pependicula al plano, sólo existe flujo a tavés de las caas del cubo que son paalelas al plano cagado. Al se dichas caas planas y el vecto supeficie pependicula a ellas, el flujo en cada una de dichas caas seá: Φ = = = = S a, 5 6, V m b) A pati de la intensidad de campo eléctico ceado po una lámina unifomemente cagada, podemos obtene: σ = = = = a ε =, 5 8, 85 =, ε Sε a ε También lo podemos detemina a pati del teoema de Gauss: el flujo total a tavés de una supeficie ceada es igual a la caga neta contenida en el volumen enceado po dicha supeficie dividida po la pemitividad dieléctica del medio en el que se encuentan las cagas : Φ = Φ = = = T S = a S a ε ε

4 Facultad de iencias uso - c) La densidad supeficial de caga es:, 8 σ = = = = S a, 5 m 4. a) n una egión de la atmósfea teeste se ha medido el campo eléctico esultando se de 5 / a una altua de 5 m y de 7 / a 4 m, en ambos casos diigido hacia abajo. a) alcula el flujo del vecto campo eléctico a tavés de un cubo de lado 5 m cuyas caas infeio y supeio se encuentan a altuas 5 y 4 m, espectivamente. b) Aplica la ley de Gauss paa calcula la caga en el inteio del cubo. c) alcula la densidad de caga de la atmósfea en esa egión. aa hace los cálculos supón que el campo es unifome ente 5 y 4 m y despecia la cuvatua de la Tiea. a) aa obtene el flujo del vecto campo eléctico a tavés del cubo, hay que considea el flujo a tavés de cada una de las caas. l flujo a tavés de las caas lateales es nulo, ya que el vecto supeficie es pependicula al campo eléctico. o lo tanto, sólo hay que considea el flujo a tavés de las caas supeio e infeio: 6 Φ = S = 5 5 cos º =, 4 V m S h = 4 m 6 Φ = S = 7 5 cos 8º =, 9 V m l flujo total es: 6 5 Φ = Φ Φ =, 4, 9 = 4, 5 V m b) La caga en el inteio del cubo se puede calcula a tavés de la ley de Gauss: Φ = S = S cosθ = ε Φ =, = ε ε µ 5 = = 8, 85 4, 5 =, 98 = 4, c) La densidad de caga de la atmósfea en esa egión: S h = 5 m 4, ρq = = = = 8 V S h 5 5, /m

5 Facultad de iencias uso - 5. Dos cagas elécticas q =, µ y q =-5, µ se encuentan en las posiciones señaladas en la figua. alcula a) el campo eléctico (módulo, diección y sentido) en el punto, b) potencial q, m A, m q, m eléctico en los puntos A y y c) el tabajo paa taslada una caga de -, µ desde A hasta. d) ué difeencia hay si la caga que se taslada es de, µ? a) Se actúa de la misma foma que en ejecicios anteioes. luego, q 4 = k = 9 =, 7 ;cos α =,senα = = = ( cos α, senα ) (,58 ;, 4 ) = De la misma foma: 9 = = 9 = 5, q 5 k luego, = (, ) = ( ;5, ) q α q X La intensidad de campo en el punto seá: = =,58 ;, 4 ;5, =,58 ; 4, 57 l módulo del vecto intensidad de campo eléctico es: =, 58 4, 57 = 4, 6 l vecto se encuenta en el pime cuadante y foma fomando un ángulo y θ = actg = 8º con el eje X positivo. x b) l potencial en los puntos A y se obtiene de la foma siguiente: q q VA = V A V A = k k = 9 9 =, 5 kv A A

6 Facultad de iencias uso - q q V = V V = k k = 9 9 =, 4 kv 5 c) l tabajo paa taslada una la caga de -, µ desde A hasta viene dado po: W = q V V =, 5 4 = 4, mj A A d) Si la caga que se taslada es positiva, el tabajo sale del mismo valo peo negativo. llo indica que hay que ealiza un tabajo en conta del campo eléctico paa taslada la caga desde A hasta. 6. Dos cagas puntuales =6, n y =-, n están situadas en los vétices infeioes de un cuadado de lado l=5, cm como se indica en la figua. a) alcula el valo y oientación del campo eléctico en el vétice supeio deecho del cuadado (punto de la figua). b) alcula el potencial en mismo punto. alcula c) el tabajo paa taslada un electón desde el infinito hasta el punto y d) la fueza sobe el electón cuando se encuenta en el punto. l a) Las distancias ente las cagas y el punto son: =, 5, 5 =, 75m ; =, 5m Se actúa de la misma foma que en ejecicios anteioes. Y,y = sen α α,y = cos α,x = α,y = - X 6,, 5 = k = 9 = ; cosα = = s enα,75,

7 Facultad de iencias uso - luego, ( 4 4 = cos α, senα =, 7 ;, 7 ) 4 luego, = (, ) = ( ;, 7 ), k = = 9 =, 7, o lo tanto, = = (,7 ;,7 ) ( ;,7 ) = (,7 ;) , 9, b) V = V V = k k = 9 9 =, 8kV, 75, 5 c) l tabajo paa taslada un electón desde hasta viene dado po: W = q V V = e V =,, =, J d) La fueza debido al campo eléctico es el poducto del vecto intensidad de campo po la caga a la que afecta dicha inteacción: F q, 6 = =, 7 i =, 4 i 7. Tes cagas puntuales q, q y q están situadas en los vétices de un tiángulo equiláteo de lado,5 m. alcula la enegía potencial de esta distibución de cagas a pati del tabajo necesaio paa tae las cagas desde el infinito hasta sus posiciones finales si q = q = q = 4, µ. aa ello, a) supón una caga positiva de 4, µ en un punto cualquiea y calcula el tabajo necesaio paa situa una segunda caga igual a la pimea a una distancia de,5 m. Después, b) calcula el tabajo paa situa una tecea caga igual a las anteioes a una distancia de,5 m de las otas dos de manea que las tes queden situadas en los vétices de un tiángulo equiláteo de lado,5 m. Finalmente, c) calcula la enegía potencial de la distibución. a) Se sitúa la pimea de las cagas en uno de los vétices (A), lo cual no conlleva tabajo ya que no existe aún ningún campo eléctico. n segundo luga se tae la segunda caga desde el infinito hasta oto de los vétices (). l tabajo paa taslada esta caga, q, teniendo en cuenta que ya se tiene una caga eléctica, q, que cea un campo eléctico a su alededo, viene dado po:

8 Facultad de iencias uso - q q ( 4, ) 9 W = q V V = qv = k = 9 =, 64 J, 5 b) o último, se tae ota caga, q, desde el infinito hasta el tece vétice (), teniendo en cuenta que ahoa tenemos un campo eléctico ceado po las dos pimeas cagas: q ( 4, ) 9 W = q V V = qv = q k k = 9 =, J, 5 c) Teniendo en cuenta que las tes cagas tienen el mismo valo, q, y se encuentan sepaadas ente sí la misma distancia,, el tabajo total seá: q 4 q, 9 W = W W = k = 9 =, 9 J, 5 Además, W = = = =, 9 J 8. n las poximidades de un plano de gandes dimensiones con una densidad de caga,4 µ/m se coloca una caga puntual de n. a) alcula el valo, diección y sentido del campo eléctico en el punto de la figua. b) n qué punto de la línea pependicula al plano que une éste con la caga es nulo el campo eléctico? c) alcula el valo, diección y sentido del campo eléctico en el punto de la figua. cm cm a) Se calculan los módulos de las intensidades de los campos: k 9 9 = = 9 = 7 (,) σ σ, 4 = = = ε 8,85 Los dos vectoes se encuentan oientados tal y,, como muesta la figua, luego: = 5 i

9 Facultad de iencias uso - b) aa que el campo eléctico sea nulo en punto de la línea pependicula al plano que une éste con la caga, los módulos de los vectoes intensidad de campo deben se iguales ya que su sentido es contaio. σ ε 8, 85 k = = k = 9 =, m, 9 9 ε σ 4 c) Los módulos de los vectoes intensidad de campo son los mismos que en el apatado a), peo en este caso son pependiculaes ente sí, de tal foma que: cuyo módulo es: = = (7 ; ) p 7 eje X positivo: α = actg = 5º = 5, y el ángulo con el σ, α, 9. Dos planos, de dimensiones muy gandes, unifomemente cagados y con densidades de caga σ y σ. Se disponen tal y como se muesta en la figua. Sabiendo que σ > y que el campo eléctico en el punto A es A = j ( ). a) ómo debe se σ, positiva o negativa? ué valoes tienen σ y σ? b) uál es el valo del campo eléctico en el punto? a) Si el plano está cagado positivamente, el campo eléctico ceado po este plano en el punto A tiene el sentido positivo del eje z. aa que el campo total en A esté oientado en el sentido positivo del eje y, el campo ceado po el plano en A tiene que tene una A A

10 Facultad de iencias uso - componente en el sentido positivo del eje y. o lo tanto, la caga del plano debe se negativa, tal como se muesta en la figua. l vecto campo en el punto A: l vecto campo en A: σ = ε,, / σ σ =, cos 45, sin 45 / ε ε expesión donde los valoes de σ y σ se están consideando positivos. l campo total: σ σ σ = A, cos, sin = ε ε ε,, / Igualando las componentes y y z a su valo numéico, podemos obtene los valoes numéicos de: σ ε cos = = =, /m, /m ε cos σ 5 5 σ σ sin 45 = σ = σ sin 45 =, 5 sin 45 =, 77 /m, 8 /m ε ε ntonces, teniendo en cuenta el signo de las cagas, σ =,8-9 /m y σ =-,5-9 /m. b) Los campos y en el punto : 9 σ, 8 ε 8, 85 =,, =,, =,, 96 / σ ( 45 45) ( ) = = ε l campo total en el punto es: y su módulo:, cos,sin,, / ( 96 ) ( 96) =,, =,, / = = 96 /

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Unidad didáctica 10 Campo eléctrico

Unidad didáctica 10 Campo eléctrico Unidad didáctica 0 Campo eléctico .- Caga eléctica. La mateia está fomada po átomos. Los átomos, a su vez, contienen potones (p + ), en el núcleo, y electones (e - ), en la coteza. Tanto los electones

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36 http://www.educa.aagob.es/iesfgcza/depat/depfiqui.htm I.E.S. Fancisco Gande Covián Campo Eléctico mailto:lotizdeo@hotmail.com 26 de septiembe de 29 Física 2ªBachille Campo Eléctico 1.- Nuesta expeiencia

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

Interacción magnética

Interacción magnética Inteacción magnética Áea Física Resultados de apendizaje Utiliza las leyes de Gauss, Biot-Savat y Ampee paa calcula campos magnéticos en difeentes poblemas. Estudia el movimiento de una patícula cagada

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

6.- Campo eléctrico. 6.1 Relación de los fenómenos eléctricos y magnéticos

6.- Campo eléctrico. 6.1 Relación de los fenómenos eléctricos y magnéticos 6.- Campo eléctico 6.1 Relación de los fenómenos elécticos y magnéticos Fenómenos físicos: - Ley de Coulomb > fuezas ente dos cuepos electizados. - Pieda imán > capacidad paa atae objetos újula > oientación

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

Campo magnético en el vacío.

Campo magnético en el vacío. Campo magnético en el vacío. El campo magnético. Intoducción históica (I). Desde la Gecia Clásica (Tales de Mileto 640 610 ac a 548 545 ac) se sabe que algunas muestas de mineal de magnetita tienen la

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA CAMPO ELÉCTRICO

INTERACCIÓN ELECTROMAGNÉTICA CAMPO ELÉCTRICO INTRAIÓN LTROMAGNÉTIA AMPO LÉTRIO IS La Magdalena. Avilés. Astuias De manea análoga a como sucedía en la inteacción gavitatoia, la inteacción eléctica ente cagas no se ejece a distancia. Una caga colocada

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada, FLUJO ELÉCTRICO La definición de fluj de camp eléctic E a tavés de una supeficie ceada (Fig. 1) es Φ = E d s, dnde, E (Fig. 1) a) el símbl epesenta una integal sbe una supeficie ceada, b) d s es un vect

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Bases Físicas del Medio Ambiente. Campo Magnético

Bases Físicas del Medio Ambiente. Campo Magnético ases Físicas del Medio Ambiente Campo Magnético Pogama X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fueza de Loentz. Movimiento de patículas cagadas en el seno de un campo magnético. Fueza magnética sobe un

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

Dieléctricos Campo electrostático

Dieléctricos Campo electrostático Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

A.Paniagua-H.Poblete (F-21)

A.Paniagua-H.Poblete (F-21) A.Paniagua-H.Poblete (F-2) ELECTRICIDAD MODULO 5 Condensadoes Un condensado es un dispositivo ue está fomado po dos conductoes ue poseen cagas de igual magnitud y signo contaio. Según la foma de las placas

Más detalles

1. Tenemos dos bolas de 2 kg cada una, designadas por m1. tal como se muestra en la figura. Halla la el campo gravitacional en el punto P.

1. Tenemos dos bolas de 2 kg cada una, designadas por m1. tal como se muestra en la figura. Halla la el campo gravitacional en el punto P. FÍSICA º BACHILLERATO EJERCICIOS RESUELTOS DE CAMPO GRAVITATORIO Juan Jesús Pascual Capo Gavitatoio. Teneos dos bolas de k cada una, desinadas po y tal coo se uesta en la fiua. Halla la el capo avitacional

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

r r r m m El signo menos se interpreta como que son fuerzas atractivas, es decir que tiene la dirección del vector unitario u r

r r r m m El signo menos se interpreta como que son fuerzas atractivas, es decir que tiene la dirección del vector unitario u r LEY DE GRITCIÓN UNIERSL Todos las masas en el univeso, po el hecho de selo, se ataen con una fueza que es popocional al poducto de las masas e invesamente popocional al cuadado de la distancia que las

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 7. Electrostática

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 7. Electrostática FÍSIC. PRUEB CCESO UNIERSIDD +5 TEM 7. Electostática La caga eléctica, al igual ue la masa, el volumen y la tempeatua, es una popiedad geneal de la mateia ue se manifiesta de divesas maneas en difeentes

Más detalles

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas.

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas. I..S. VICNT MDINA Depatamento de Física y Química Sapee aude CUSTIONS FÍSICA CAMPO LÉCTRICO Soluciones a las cuestiones planteadas 1. xplique las analogías y difeencias ente el campo eléctico ceado po

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Tema 3: Campo eléctrico

Tema 3: Campo eléctrico Tema : Campo eléctico Ley de Colomb. Campo eléctico. Teoema de Gass. Potencial eléctico. Enegía potencial. Dipolo eléctico. Condctoes. Dielécticos. Polaización. Desplazamiento eléctico. Campo en aislantes:

Más detalles

TEMA 3. CAMPO MAGNÉTICO.

TEMA 3. CAMPO MAGNÉTICO. Física º Bachilleato TEMA 3. CAMPO MAGNÉTICO. 0. INTRODUCCIÓN. NATURALEZA DEL MAGNETISMO. Hasta ahoa en el cuso hemos estudiado dos tipos de inteacciones: gavitatoia y electostática. La pimea se manifestaba

Más detalles

Ley de Coulomb F = K 2 K = 9 10

Ley de Coulomb F = K 2 K = 9 10 Lcdo. Eleaza J. Gacía Ley de oulob La Ley de oulob se define así: el ódulo de la fueza de atacción o de epulsión ente dos cagas elécticas es, diectaente popocional al poducto de los valoes absolutos de

Más detalles

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por.

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por. Ley de Gauss La ley de Gauss elacina el fluj del camp eléctic a tavés de una supeficie ceada cn la caga neta incluida dent de la supeficie. sta ley pemite calcula fácilmente ls camps eléctics que esultan

Más detalles

TEMA 1: CAMPO ELÉCTRICO

TEMA 1: CAMPO ELÉCTRICO Concepto de campo eléctico: DIFÍCIL RAZONES: - El se humano no dispone de detectoes Fig 23.0, Tiple 5ª Ed. - Es una magnitud vectoial - diección y sentido - módulo - Es una magnitud vectoial que puede

Más detalles

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS LA LY D COULOMB COMO CASO PATICULA D LA LY D GAUSS Una caga eléctica genea un campo eléctico cuyas líneas de fueza son adiales ue pemiten conclui ue el vecto de intensidad de campo eléctico ti hay desde

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Guía 1: ampo Eléctico y Difeencia de potencial Ley de oulomb 1. Dos pequeñas esfeas de igual masa m = 0.5 g y de igual caga eléctica están suspendidas del mismo punto po sendos hilos de 15 cm de longitud.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles