Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diferencia de potencial y potencial eléctricos. En el campo gravitatorio."

Transcripción

1 Difeencia de potencial y potencial elécticos En el campo gavitatoio.

2 Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d

3 Difeencia de potencial eléctico Si se desea coloca el cuepo en el mismo punto un agente exteno tiene que ealiza el mismo tabajo peo en sentido contaio paa vence el campo. W F d mg d

4 Difeencia de potencial eléctico El tabajo se considea negativo cuando se ealiza en conta del campo (-W).

5 Difeencia de potencial eléctico Cuando el tabajo es negativo, la difeencia de enegía potencial (Epf-Epi) es positiva ya que el punto f se encuenta a una cieta altua con especto a la efeencia implícita que es el nivel del piso y cuya enegía potencial en ese punto vale ceo (punto inicial i). W E P E Pf E Pi

6 Difeencia de potencial eléctico En caso eléctico se pesenta una situación semejante: Paa move una caga de un punto inicial i a un punto final f en conta del campo un agente exteno tienen que desaolla tabajo

7 Difeencia de potencial eléctico i W f i f F dl q i f E dl Donde: q es la cagaeléctica E es el campo dl es el vecto que indica la tayectoía seguida.

8 Difeencia de potencial eléctico Se define la difeencia de potencial eléctico como el tabajo que un agente exteno ealiza paa move una caga del punto inicial i al punto final f : f i W q i W q f f E i dl

9 Difeencia de potencial o voltaje debido a una caga puntual Quién ealiza el tabajo paa move los pelillos de conejo?

10 Difeencia de potencial o voltaje debido a una caga puntual Considee la caga puntual Q mostada en la figua:

11 Difeencia de potencial o voltaje debido a una caga puntual Se desea detemina la difeencia de potencial que ealiza un agente exteno paa move la caga puntual Q del punto i al punto f. Utilizando la expesión anteio: f E dl f i i [ ]

12 Difeencia de potencial o voltaje debido a una caga puntual Recodando que el campo eléctico poducido po una caga puntual Q se cuantifica po: Q E ke 2 ˆ Sustituyendo en la ecuación anteio

13 Difeencia de potencial o voltaje debido a una caga puntual ˆ d l f Q J ke ˆ d l f i i 2 C cos θ d l 1cos(180 )d l d l ; y además d l d ˆ fi fi f f i i kq f d i 2 kq 1 f 1 kq 1 i f i [ ]

14 Ejemplo de Difeencia de potencial o voltaje debido a una caga puntual Considee la caga puntual Q2.51 [nc] mostada en la figua. Detemine la difeencia de potencial ente los puntos A(0,30,0)[cm] y B(0,50,0)[cm], es deci, AB.

15 Ejemplo de Difeencia de potencial o voltaje debido a una caga puntual Utilizando la expesión y sustituyendo valoes: AB AB A B ke 9 Q A B ( ) 22.59(1.33) [ ] A B 22.59

16 Difeencia de potencial o voltaje debido a una caga puntual De donde a donde se mueve la caga? Quién ealiza el tabajo? Si el punto B cambiaa de coodenadas (0,50,0)[cm] a (0,0, 50)[cm]. Cuál seia el valo de la difeencia de potencial AB? Si el punto B cambiaa de coodenadas a (0,30,0)[cm]. Cuál seia el valo de la difeencia de potencial AB? Cómo son las supeficies equipotenciales paa la caga puntual? ideo 31 voltaje y enegía

17 Difeencia de potencial debido a vaias cagas puntuales Considee el plano xy de la figua donde se muestan dos cagas puntuales q1-20[uc](1,2)[cm], q240[uc] (2,5) [cm] y los puntos A(2,2)[cm], B(5,5)[cm] y C(6,2)[cm], detemina:

18 Difeencia de potencial debido a vaias cagas puntuales a) La difeencia de potencial ente los puntos A y B, es deci, AB. AB AB 1 + AB2 keq keq 1 2 A1 B1 A2 B2 1 1 AB ke q1 + ke q ( ) [ ] AB

19 Difeencia de potencial debido a vaias cagas puntuales b) La enegía potencial eléctica de q2. Como el potencial de un punto (explica potencial eléctico) epesenta la enegía potencial po unidad de caga, al multiplicala po la caga se obtiene la enegía potencial total. U 2 q 2 ; 2 2 ke q

20 Difeencia de potencial debido a vaias cagas puntuales b) La enegía potencial eléctica de q2. U Sustituyendo valoes: 2 q 2 ; ke q ( 6 ) (31.62) [ ] ( ) [ J] U

21 Difeencia de potencial debido a vaias cagas puntuales c) El tabajo necesaio paa move una caga q3-8[uc], cuasiestáticamente, del punto A al punto B. De la definición de tabajo A B q E dl B A W q BA A W B q 3 BA ( ( 6 10 ) 115.2[ J] ) 14.4

22 Difeencia de potencial debido a vaias cagas puntuales Considee el plano xy, donde se encuentan tes cagas puntuales q110[nc](-2,2)[cm], q2-20[nc](0,-2)[cm] y q320[nc] (2,2)[cm]; y los puntos A(0,2)[cm] y B(2,0)[cm], detemina: La difeencia de potencial AB :5[]

23 Difeencia de potencial debido a vaias cagas puntuales Detemine: a) La difeencia de potencial ente los puntos A y B, es deci, AB. b) La enegía potencial eléctica de q2. c) El tabajo necesaio paa move una caga q4 10[uC], cuasiestáticamente, del punto A al punto B.

24 Difeencia de potencial eléctico ente dos puntos poducida po una línea infinita cagada unifomemente. En la figua se muesta una línea con caga positiva distibuida unifomemente, coincidente con el eje x. La difeencia de potencial ente los puntos inicial i y final f queda definida po la siguiente expesión:

25 Difeencia de potencial eléctico ente dos puntos poducida po una línea infinita cagada unifomemente f i f E i d l Realizando el poducto punto f i f E dy i i f k dy f λ k 2 lny k2 y i 2 λ λ y ln y i f [ ]

26 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente Ụna supeficie infinita, con distibución unifome de caga positiva σ, coincidente con el plano xz, se muesta en la siguiente figua, detemina la difeencia de potencial fi.

27 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente Como en toda la tayectoia ente los puntos inicial i y final f se cumple que el campo eléctico esta definido po E σ 2ε 0 ˆj

28 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente entonces la difeencia de potencial ente dichos puntos es f i f E dl i yf yi σ 2ε 0 dy σ 2ε 0 y yf yi f i σ 2ε 0 (y i y f )[]

29 Difeencia de potencial eléctico poducida po dos supeficies infinitas, paalelas y con cagas iguales en magnitud y signo contaio. El punto inicial i es coincidente con la supeficie de la izquieda (que tiene caga negativa) y el punto final f es coincidente con la supeficie de la deecha (que tiene caga positiva).

30 Difeencia de potencial eléctico poducida po dos supeficies infinitas, paalelas y con cagas iguales en magnitud y signo contaio. f i f 2E dl i f i σ ε 0 (y yf yi 2σ 2ε 0 dy )[] Como los puntos se encuentan sobe las supeficies cagadas, que se encuentan sepaadas una distancia d, como se ilusta en la figua, la difeencia de potencias se puede expesa en función del campo. E d[ ] f i i y f σ ε 0 y yf yi

31 Potencial eléctico debido a una caga puntual Si se selecciona un punto de efeencia (que en la mayoía de los casos es el infinito o tiea) se puede habla del potencial en un punto k Q

32 Potencial eléctico debido a dos cagas puntuales de difeente signo e: Física paa ciencias e ingenieía. Tomo II. Quinta edición. Seway- Beichne.. Edit. Mac. Gaw Hill.

33 Potencial eléctico en un punto debido a dos cagas de difeente signo

34 Campo eléctico de uptua E R d m Paa el aie el campo eléctico de uptua vale 0.8 [M/m]

35 Gadiente de potencial En la mayoía de los poblemas pácticos no es posible obtene la función que detemina el vecto campo eléctico en cada punto de una egión, con base en la distibución de caga, debido a que está última no es conocida.

36 Gadiente de potencial Genealmente la infomación que se tiene es la difeencia de potencial, po ello el pocedimiento usual es obtene pimeo la función de potencial y a pati de ésta el campo eléctico.

37 Gadiente de potencial Si se considea la función potencial ( x, y, z ) La vaiación de la función es: d x dx + y dy + z dz ( ) dl

38 Gadiente de potencial Ya que la divegencia de una función es Recodando que si A y B son dos puntos muy cecanos x x + y y AB + z z E A B E dl d l

39 Gadiente de potencial Compaando las ecuaciones E Es deci E x ; Ey ; x y E z z

40 Gadiente de potencial Al evalua el gadiente de la función potencial eléctico, obtenemos un vecto pependicula a la supeficie, el cual señala en la diección de aumento máximo de la función de potencial; es po ello que apaece un signo negativo en la ecuación anteio ya que, po convención, la diección del vecto campo eléctico es contaia.

41 Gadiente de potencial En la siguiente figua se muesta una caja de aena con dos placas metálicas en sus extemos a las cuales se le aplica una difeencia de potencial de 50 []. Se define el sistema catesiano con el eje de las y s a la deecha, el eje de las x s saliendo fuea de la hoja y el eje de las z s hacia aiba.

42 Gadiente de potencial

43 Gadiente de potencial Se obseva que la diección en donde la vaiación es mayo es en el eje y el cual es pependicula a las placas y el valo aumenta confome nos acecamos a la teminal positiva. En cuanto los ejes x y z no hay vaiación del potencial al desplazase sobe dichos ejes ya que se tata de supeficies equipotenciales.

44 Gadiente de potencial La opeación matemática que nos pemita calcula el vecto pependicula a una supeficie equipotencial es el gadiente, en nuesto caso, el gadiente de potencial E x La pendiente epesenta la vaiación de potencial con especto a la distancia y po lo tanto el campo eléctico ˆj

45 Bibliogafía. Gabiel A. Jaamillo Moales, Alfonso A. Alvaado Castellanos. Electicidad y magnetismo. Ed. Tillas. México 2003 Seas, Zemansky, Young, Feedman Física Univesitaia Ed. PEARSON. México 2005

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

4.5 Ley de Biot-Savart.

4.5 Ley de Biot-Savart. 4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36 http://www.educa.aagob.es/iesfgcza/depat/depfiqui.htm I.E.S. Fancisco Gande Covián Campo Eléctico mailto:lotizdeo@hotmail.com 26 de septiembe de 29 Física 2ªBachille Campo Eléctico 1.- Nuesta expeiencia

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Guía 1: ampo Eléctico y Difeencia de potencial Ley de oulomb 1. Dos pequeñas esfeas de igual masa m = 0.5 g y de igual caga eléctica están suspendidas del mismo punto po sendos hilos de 15 cm de longitud.

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria Electicidad y Magnetismo E.T.S.I.T. Univesidad de Las Palmas de Gan Canaia Electostática.- INTODUCCIÓN La electostática es el estudio de los efectos de las cagas elécticas en eposo y de los campos elécticos

Más detalles

1.6. DINÁMICA DEL PUNTO MATERIAL

1.6. DINÁMICA DEL PUNTO MATERIAL Fundamentos y Teoías Físicas ETS quitectua.6. DINÁMIC DEL PUNTO MTERIL Hemos visto anteiomente que la Cinemática estudia los movimientos, peo sin atende a las causas que los poducen. Pues bien, la Dinámica

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por.

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por. Ley de Gauss La ley de Gauss elacina el fluj del camp eléctic a tavés de una supeficie ceada cn la caga neta incluida dent de la supeficie. sta ley pemite calcula fácilmente ls camps eléctics que esultan

Más detalles

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación OPCIÓN A FÍSICA PAEG UCLM- JUNIO 06 PROBLEMA.- Una onda viajea que se popaga po un medio elástico está descita po la ecuación y x, t = 0 sin 5πx 4000πt + π/6 Las unidades de x son metos, las de t son segundos

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS LA LY D COULOMB COMO CASO PATICULA D LA LY D GAUSS Una caga eléctica genea un campo eléctico cuyas líneas de fueza son adiales ue pemiten conclui ue el vecto de intensidad de campo eléctico ti hay desde

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA FUEZA ELECTO MOTIZ Y ESISTENCIA INTENA DE UNA ILA Intoducción: En la figua 1 se muesta un cicuito de dos esistencias 1 y 2 conectadas en seie, este gupo a su vez está conectado en seie con una pila ideal

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

Reflexiones sobre las Leyes de la ELECTROSTÁTICA

Reflexiones sobre las Leyes de la ELECTROSTÁTICA Reflexiones sobe las Leyes de la ELECTROSTÁTICA todo empezo con la le Ley de Coulomb... eceta paa calcula E: dada la densidad de caga ρ, se puede (en pincipio) intega y obtene E Luego, desaollamos dos

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos. CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas.

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas. I..S. VICNT MDINA Depatamento de Física y Química Sapee aude CUSTIONS FÍSICA CAMPO LÉCTRICO Soluciones a las cuestiones planteadas 1. xplique las analogías y difeencias ente el campo eléctico ceado po

Más detalles

a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.

a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación. FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico.

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico. TEM 4: INTERCCIÓN ELECTROMGNÉTIC PRTE 1: Campo eléctico. Magnitudes que lo caacteizan: intensidad de campo y potencial eléctico. Fueza ente cagas en eposo; ley de Coulomb. Caacteísticas de la inteacción

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

OPCIÓN A FÍSICA. 30/11/2010. E r

OPCIÓN A FÍSICA. 30/11/2010. E r OPCIÓN A FÍSICA. 0//00 PROBLEMA EXPERIMENTAL (.5 p). En el laboatoio de física se ealiza un expeimento paa medi la densidad de un sólido y de una disolución. Paa ello se utiliza un dinamómeto, se pesa

Más detalles

El Campo Eléctrico, La Energía Potencial, y El Voltaje

El Campo Eléctrico, La Energía Potencial, y El Voltaje Slide 1 / 66 l ampo léctico, La negía Potencial, y l oltaje Tabajo Slide 2 / 66 Q+ Q+ La fueza cambia mientas las cagas se colocan hacia el uno al oto ya que la fueza depende en la distancia ente las cagas.

Más detalles

UNIDAD IV: CAMPO MAGNETICO

UNIDAD IV: CAMPO MAGNETICO UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles