Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diferencia de potencial y potencial eléctricos. En el campo gravitatorio."

Transcripción

1 Difeencia de potencial y potencial elécticos En el campo gavitatoio.

2 Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d

3 Difeencia de potencial eléctico Si se desea coloca el cuepo en el mismo punto un agente exteno tiene que ealiza el mismo tabajo peo en sentido contaio paa vence el campo. W F d mg d

4 Difeencia de potencial eléctico El tabajo se considea negativo cuando se ealiza en conta del campo (-W).

5 Difeencia de potencial eléctico Cuando el tabajo es negativo, la difeencia de enegía potencial (Epf-Epi) es positiva ya que el punto f se encuenta a una cieta altua con especto a la efeencia implícita que es el nivel del piso y cuya enegía potencial en ese punto vale ceo (punto inicial i). W E P E Pf E Pi

6 Difeencia de potencial eléctico En caso eléctico se pesenta una situación semejante: Paa move una caga de un punto inicial i a un punto final f en conta del campo un agente exteno tienen que desaolla tabajo

7 Difeencia de potencial eléctico i W f i f F dl q i f E dl Donde: q es la cagaeléctica E es el campo dl es el vecto que indica la tayectoía seguida.

8 Difeencia de potencial eléctico Se define la difeencia de potencial eléctico como el tabajo que un agente exteno ealiza paa move una caga del punto inicial i al punto final f : f i W q i W q f f E i dl

9 Difeencia de potencial o voltaje debido a una caga puntual Quién ealiza el tabajo paa move los pelillos de conejo?

10 Difeencia de potencial o voltaje debido a una caga puntual Considee la caga puntual Q mostada en la figua:

11 Difeencia de potencial o voltaje debido a una caga puntual Se desea detemina la difeencia de potencial que ealiza un agente exteno paa move la caga puntual Q del punto i al punto f. Utilizando la expesión anteio: f E dl f i i [ ]

12 Difeencia de potencial o voltaje debido a una caga puntual Recodando que el campo eléctico poducido po una caga puntual Q se cuantifica po: Q E ke 2 ˆ Sustituyendo en la ecuación anteio

13 Difeencia de potencial o voltaje debido a una caga puntual ˆ d l f Q J ke ˆ d l f i i 2 C cos θ d l 1cos(180 )d l d l ; y además d l d ˆ fi fi f f i i kq f d i 2 kq 1 f 1 kq 1 i f i [ ]

14 Ejemplo de Difeencia de potencial o voltaje debido a una caga puntual Considee la caga puntual Q2.51 [nc] mostada en la figua. Detemine la difeencia de potencial ente los puntos A(0,30,0)[cm] y B(0,50,0)[cm], es deci, AB.

15 Ejemplo de Difeencia de potencial o voltaje debido a una caga puntual Utilizando la expesión y sustituyendo valoes: AB AB A B ke 9 Q A B ( ) 22.59(1.33) [ ] A B 22.59

16 Difeencia de potencial o voltaje debido a una caga puntual De donde a donde se mueve la caga? Quién ealiza el tabajo? Si el punto B cambiaa de coodenadas (0,50,0)[cm] a (0,0, 50)[cm]. Cuál seia el valo de la difeencia de potencial AB? Si el punto B cambiaa de coodenadas a (0,30,0)[cm]. Cuál seia el valo de la difeencia de potencial AB? Cómo son las supeficies equipotenciales paa la caga puntual? ideo 31 voltaje y enegía

17 Difeencia de potencial debido a vaias cagas puntuales Considee el plano xy de la figua donde se muestan dos cagas puntuales q1-20[uc](1,2)[cm], q240[uc] (2,5) [cm] y los puntos A(2,2)[cm], B(5,5)[cm] y C(6,2)[cm], detemina:

18 Difeencia de potencial debido a vaias cagas puntuales a) La difeencia de potencial ente los puntos A y B, es deci, AB. AB AB 1 + AB2 keq keq 1 2 A1 B1 A2 B2 1 1 AB ke q1 + ke q ( ) [ ] AB

19 Difeencia de potencial debido a vaias cagas puntuales b) La enegía potencial eléctica de q2. Como el potencial de un punto (explica potencial eléctico) epesenta la enegía potencial po unidad de caga, al multiplicala po la caga se obtiene la enegía potencial total. U 2 q 2 ; 2 2 ke q

20 Difeencia de potencial debido a vaias cagas puntuales b) La enegía potencial eléctica de q2. U Sustituyendo valoes: 2 q 2 ; ke q ( 6 ) (31.62) [ ] ( ) [ J] U

21 Difeencia de potencial debido a vaias cagas puntuales c) El tabajo necesaio paa move una caga q3-8[uc], cuasiestáticamente, del punto A al punto B. De la definición de tabajo A B q E dl B A W q BA A W B q 3 BA ( ( 6 10 ) 115.2[ J] ) 14.4

22 Difeencia de potencial debido a vaias cagas puntuales Considee el plano xy, donde se encuentan tes cagas puntuales q110[nc](-2,2)[cm], q2-20[nc](0,-2)[cm] y q320[nc] (2,2)[cm]; y los puntos A(0,2)[cm] y B(2,0)[cm], detemina: La difeencia de potencial AB :5[]

23 Difeencia de potencial debido a vaias cagas puntuales Detemine: a) La difeencia de potencial ente los puntos A y B, es deci, AB. b) La enegía potencial eléctica de q2. c) El tabajo necesaio paa move una caga q4 10[uC], cuasiestáticamente, del punto A al punto B.

24 Difeencia de potencial eléctico ente dos puntos poducida po una línea infinita cagada unifomemente. En la figua se muesta una línea con caga positiva distibuida unifomemente, coincidente con el eje x. La difeencia de potencial ente los puntos inicial i y final f queda definida po la siguiente expesión:

25 Difeencia de potencial eléctico ente dos puntos poducida po una línea infinita cagada unifomemente f i f E i d l Realizando el poducto punto f i f E dy i i f k dy f λ k 2 lny k2 y i 2 λ λ y ln y i f [ ]

26 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente Ụna supeficie infinita, con distibución unifome de caga positiva σ, coincidente con el plano xz, se muesta en la siguiente figua, detemina la difeencia de potencial fi.

27 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente Como en toda la tayectoia ente los puntos inicial i y final f se cumple que el campo eléctico esta definido po E σ 2ε 0 ˆj

28 Difeencia de potencial eléctico ente dos puntos poducida po una supeficie infinita cagada unifomemente entonces la difeencia de potencial ente dichos puntos es f i f E dl i yf yi σ 2ε 0 dy σ 2ε 0 y yf yi f i σ 2ε 0 (y i y f )[]

29 Difeencia de potencial eléctico poducida po dos supeficies infinitas, paalelas y con cagas iguales en magnitud y signo contaio. El punto inicial i es coincidente con la supeficie de la izquieda (que tiene caga negativa) y el punto final f es coincidente con la supeficie de la deecha (que tiene caga positiva).

30 Difeencia de potencial eléctico poducida po dos supeficies infinitas, paalelas y con cagas iguales en magnitud y signo contaio. f i f 2E dl i f i σ ε 0 (y yf yi 2σ 2ε 0 dy )[] Como los puntos se encuentan sobe las supeficies cagadas, que se encuentan sepaadas una distancia d, como se ilusta en la figua, la difeencia de potencias se puede expesa en función del campo. E d[ ] f i i y f σ ε 0 y yf yi

31 Potencial eléctico debido a una caga puntual Si se selecciona un punto de efeencia (que en la mayoía de los casos es el infinito o tiea) se puede habla del potencial en un punto k Q

32 Potencial eléctico debido a dos cagas puntuales de difeente signo e: Física paa ciencias e ingenieía. Tomo II. Quinta edición. Seway- Beichne.. Edit. Mac. Gaw Hill.

33 Potencial eléctico en un punto debido a dos cagas de difeente signo

34 Campo eléctico de uptua E R d m Paa el aie el campo eléctico de uptua vale 0.8 [M/m]

35 Gadiente de potencial En la mayoía de los poblemas pácticos no es posible obtene la función que detemina el vecto campo eléctico en cada punto de una egión, con base en la distibución de caga, debido a que está última no es conocida.

36 Gadiente de potencial Genealmente la infomación que se tiene es la difeencia de potencial, po ello el pocedimiento usual es obtene pimeo la función de potencial y a pati de ésta el campo eléctico.

37 Gadiente de potencial Si se considea la función potencial ( x, y, z ) La vaiación de la función es: d x dx + y dy + z dz ( ) dl

38 Gadiente de potencial Ya que la divegencia de una función es Recodando que si A y B son dos puntos muy cecanos x x + y y AB + z z E A B E dl d l

39 Gadiente de potencial Compaando las ecuaciones E Es deci E x ; Ey ; x y E z z

40 Gadiente de potencial Al evalua el gadiente de la función potencial eléctico, obtenemos un vecto pependicula a la supeficie, el cual señala en la diección de aumento máximo de la función de potencial; es po ello que apaece un signo negativo en la ecuación anteio ya que, po convención, la diección del vecto campo eléctico es contaia.

41 Gadiente de potencial En la siguiente figua se muesta una caja de aena con dos placas metálicas en sus extemos a las cuales se le aplica una difeencia de potencial de 50 []. Se define el sistema catesiano con el eje de las y s a la deecha, el eje de las x s saliendo fuea de la hoja y el eje de las z s hacia aiba.

42 Gadiente de potencial

43 Gadiente de potencial Se obseva que la diección en donde la vaiación es mayo es en el eje y el cual es pependicula a las placas y el valo aumenta confome nos acecamos a la teminal positiva. En cuanto los ejes x y z no hay vaiación del potencial al desplazase sobe dichos ejes ya que se tata de supeficies equipotenciales.

44 Gadiente de potencial La opeación matemática que nos pemita calcula el vecto pependicula a una supeficie equipotencial es el gadiente, en nuesto caso, el gadiente de potencial E x La pendiente epesenta la vaiación de potencial con especto a la distancia y po lo tanto el campo eléctico ˆj

45 Bibliogafía. Gabiel A. Jaamillo Moales, Alfonso A. Alvaado Castellanos. Electicidad y magnetismo. Ed. Tillas. México 2003 Seas, Zemansky, Young, Feedman Física Univesitaia Ed. PEARSON. México 2005

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

4.5 Ley de Biot-Savart.

4.5 Ley de Biot-Savart. 4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Facultad de Ingeniería Instituto de Ciencias Básicas

Facultad de Ingeniería Instituto de Ciencias Básicas Facultad de Ingenieía Instituto de Ciencias Básicas TÓPICOS DE ELECTRICIDAD Y MAGNETISMO (Pimea Vesión) (Incluye poblemas esueltos) Julio Pozo Péez y Rosa Maía Chobadjian 6 Tópicos de Electicidad y Magnetismo

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S. 30/03/016 UNIVRSIDAD AUTONOMA JUAN MISAL SARACHO ACULTAD D CINCIAS Y TCNOLOGIA CARRRA D INGNIRIA CIVIL ISICA III CIV 1 DOCNT: ING. JOL PACO S. Capitulo II L CAMPO LCTRICO 1 30/03/016 CONTNIDO.1. Campos

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36 http://www.educa.aagob.es/iesfgcza/depat/depfiqui.htm I.E.S. Fancisco Gande Covián Campo Eléctico mailto:lotizdeo@hotmail.com 26 de septiembe de 29 Física 2ªBachille Campo Eléctico 1.- Nuesta expeiencia

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

A.Paniagua-H.Poblete (F-21)

A.Paniagua-H.Poblete (F-21) A.Paniagua-H.Poblete (F-2) ELECTRICIDAD MODULO 5 Condensadoes Un condensado es un dispositivo ue está fomado po dos conductoes ue poseen cagas de igual magnitud y signo contaio. Según la foma de las placas

Más detalles

Qué aprenderemos en este capítulo?

Qué aprenderemos en este capítulo? Qué apendeemos en este capítulo? El tabajo de una fueza consevativa Relación ente el tabajo y la enegía potencial El potencial eléctico geneado po cagas elécticas Enegía potencial asociada a distibuciones

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Guía 1: ampo Eléctico y Difeencia de potencial Ley de oulomb 1. Dos pequeñas esfeas de igual masa m = 0.5 g y de igual caga eléctica están suspendidas del mismo punto po sendos hilos de 15 cm de longitud.

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada, FLUJO ELÉCTRICO La definición de fluj de camp eléctic E a tavés de una supeficie ceada (Fig. 1) es Φ = E d s, dnde, E (Fig. 1) a) el símbl epesenta una integal sbe una supeficie ceada, b) d s es un vect

Más detalles

TEMA 3. CAMPO MAGNÉTICO.

TEMA 3. CAMPO MAGNÉTICO. Física º Bachilleato TEMA 3. CAMPO MAGNÉTICO. 0. INTRODUCCIÓN. NATURALEZA DEL MAGNETISMO. Hasta ahoa en el cuso hemos estudiado dos tipos de inteacciones: gavitatoia y electostática. La pimea se manifestaba

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Unidad didáctica 10 Campo eléctrico

Unidad didáctica 10 Campo eléctrico Unidad didáctica 0 Campo eléctico .- Caga eléctica. La mateia está fomada po átomos. Los átomos, a su vez, contienen potones (p + ), en el núcleo, y electones (e - ), en la coteza. Tanto los electones

Más detalles

Práctica 8: Carta de Smith

Práctica 8: Carta de Smith Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.

Más detalles

Introducción a circuitos de corriente continua

Introducción a circuitos de corriente continua Univesidad de Chile Facultad de Ciencias Físicas y Matemáticas Depatamento de Física FI2003 - Métodos Expeimentales Semeste Pimavea 2010 Pofesoes: R. Espinoza, C. Falcón, R. Muñoz & R. Pujada GUIA DE LABORATORIO

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES PRÁCTICA ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES A) MATERIAL Fuente de luz, banco óptico, lente delgada convegente, pantalla. B) OBJETIVO Intoduci los conceptos de ayo luminoso y de índice de

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

LECCION 8. ESTATICA DEL SOLIDO

LECCION 8. ESTATICA DEL SOLIDO LECCION 8. ESTATICA DEL SOLIDO 8.1. Intoducción. 8.2. Fuezas actuantes sobe un sólido. Ligaduas. 8.3. Pincipio de aislamiento. Diagama de sólido libe y de esfuezos esultantes. 8.4. Ligaduas de los elementos

Más detalles

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula

Más detalles

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Rotaciones Leyes de Newton. III Jaime Feliciano Henández Univesidad Autónoma Metopolitana - Iztapalapa México, D. F. 15 de agosto de 2012 INTRODUCCIÓN. La pimea Ley de Newton explica qué le sucede

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 184 (algunos histoiadoes de la ciencia,

Más detalles

CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY

CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY Tópicos e Electicia y Magnetismo J.Pozo y R.M. Chobajian. CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY 8.1. Ley e Faaay En 1831 Faaay obsevó expeimentalmente que cuano en una bobina que tiene conectao un galvanómeto

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria Electicidad y Magnetismo E.T.S.I.T. Univesidad de Las Palmas de Gan Canaia Electostática.- INTODUCCIÓN La electostática es el estudio de los efectos de las cagas elécticas en eposo y de los campos elécticos

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

1.6. DINÁMICA DEL PUNTO MATERIAL

1.6. DINÁMICA DEL PUNTO MATERIAL Fundamentos y Teoías Físicas ETS quitectua.6. DINÁMIC DEL PUNTO MTERIL Hemos visto anteiomente que la Cinemática estudia los movimientos, peo sin atende a las causas que los poducen. Pues bien, la Dinámica

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Dieléctricos Campo electrostático

Dieléctricos Campo electrostático Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.

Más detalles