Tema 6: Sistemas de navegación integrados. El filtro de Kalman.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6: Sistemas de navegación integrados. El filtro de Kalman."

Transcripción

1 Navegación Aérea Tema 6: Sistemas de navegación integrados. El filtro de Kalman.

2 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Fusión de sensores. Una aeronave actual dispone de una gran diversidad de sensores y sistemas de navegación, que pueden obtener total o parcialmente las variables de navegación PVAT. Por ejemplo hemos visto el INS, que a partir de las medidas de la IMU, el modelo de Tierra y gravedad, y una estimación inicial, nos da posición, velocidad y actitud en todo momento. También hemos visto el GPS, que igualmente es capaz de darnos todos éstos datos, o al menos (si no disponemos de múltiples antenas), la posición y la velocidad. Puede haber otros sistemas (DME-DME, etc...) Cada sistema dará una estimación diferente, sujeta a error. La idea de fusión de sensores y de los sistemas de navegación integrados, consiste en obtener una única estimación PVAT a partir de todas las anteriores, tal que el error sea el menor posible. 2 / 26

3 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Ejemplo: el canal vertical. Se vio en el tema 4 que el canal vertical del INS es inestable. Una forma de estabilizar el canal es usar la medida de altitud obtenida de medidas barométricas, h B. Se denomina estimador baro-inercial de la altitud. Recordemos que las ecuaciones del canal vertical venían dadas por: ĥ = ˆV D, ˆV D = ˆρ z + µ e (R e + ĥ) 2, donde ˆρ z es la componente z de (ˆω n n/e + 2ˆωn e/i ) ˆv n + â n NG. 3 / 26

4 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Estimador baro-inercial de la altitud I Se modifica el canal vertical del INS de la siguiente forma, usando h B : ĥ = ˆV D C 1 (ĥ h B ), ˆV D = ˆρ z + µ e (R e + ĥ)2 + C 2(ĥ h B) + C 3 t donde C 1, C 2 y C 3 son ganancias a determinar. Calculando como en el tema 4 el error de altitud y despreciando el error en el término ρ z, obtenemos: δḣ = δv D + C 1 (ĥ h B ), δ V D 2g R e δh C 2 (ĥ h B ) C 3 t (ĥ(τ) h B(τ))dτ, (ĥ(τ) h B (τ))dτ, y obsérvese que ĥ h B = ĥ h + h h B = (δh δh B ), donde δh B es el error de estimación barométrico, que suponemos aproximadamente constante. 4 / 26

5 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Estimador baro-inercial de la altitud II Por tanto: δḣ = δv D C 1 (δh δh B ), δ V D 2g R e δh + C 2 (δh δh B ) + C 3 t (δh δh B )dτ, y tomando derivada en la primera ecuación y sustituyendo la segunda, obtenemos: δḧ = 2g R e δh C 2 (δh δh B ) C 3 t (δh δh B )dτ C 1 δḣ. Tomando otra derivada y reescribiendo la ecuación: δ... h + C 1 δḧ + (C 2 2g R e )δḣ + C 3 δh = C 3 δh B. Los autovalores de esta ecuación vienen dados por las raíces del polinomio s 3 + C 1 s 2 + (C 2 2g R e )s + C 3. 5 / 26

6 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Estimador baro-inercial de la altitud III Típicamente se eligen lo valores de C 1, C 2 y C 3 para que los autovalores tengan parte real negativa (es decir, la ecuación de δh sea estable). Una elección clásica es fijar un autovalor al valor λ y los otros dos a los valores λ + jλ y λ jλ. El polinomio característico sería entonces: (s + λ)(s + λ jλ)(s + λ + jλ) = (s + λ)(s 2 + 2λs + 2λ 2 ) = s 3 + 3λs 2 + 4λ 2 s + 2λ 3 Sustituyendo en el polinomio en función de los coeficientes estos valores, se llega a: C 1 = 3λ, C 2 = 4λ 2 + 2g R e, C 3 = 2λ 3. Un valor típico elegido de λ es λ =,1. 6 / 26

7 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS El caso INS-GPS El sistema de navegación INS y el GPS son particularmente complementarios. El INS: Da una estimación continua en el tiempo. Su error crece con el tiempo. Posee un elevado ancho de banda (KHz). El GPS: Proporciona una medida de alta precisión pero discreta en el tiempo. El error está acotado. Posee un bajo ancho de banda (Hz). Una primera solución sería resetear el INS cada vez que se obtenga una medida GPS. Pero la medida GPS tampoco es exacta. Por tanto hay que intentar, de algún modo, combinar el INS y el GPS para minimizar el error final. 7 / 26

8 Fusión de sensores. Ejemplo: el canal vertical. INS-GPS Tight Integration y Loose Integration Existen dos formas de llevar a cabo la integración: Loose Integration: Éste tipo de integración permite tomar dos sistemas separados, un INS y un GPS, y a partir de las salidas de ambos, obtener una estimación común. Es la forma más simple de integrar GPS e INS. No requiere modificar las estimaciones internas de ambos sistemas. Tight Integration: Éste tipo de integración emplea las señales de entrada al INS y GPS, es decir, las medidas de giróscopos y acelerómetros y los observables GPS, y los integra directamente. Es más complejo de desarrollar. No se emplean los algoritmos que hemos visto de GPS e INS, sino un único algoritmo que integra los dos sistemas a la vez. Se obtienen estimaciones más precisas que en la tipo loose. En ambos casos, la herramienta clave para desarrollar la integración es el Filtro de Kalman y sus extensiones (Filtro Extendido de Kalman). 8 / 26

9 El filtro de Kalman El filtro de Kalman (KF) fue desarrollado por Rudolph E. Kalman, un ingeniero húngaro nacionalizado estadounidense. Presentó su filtro a la NASA en 196; la NASA buscaba un algoritmo de fusión de sensores para el programa espacial Apollo. Finalmente una versión del KF fue utilizada en las misiones Apollo para integrar las diferentes medidas de los sensores del vehículo espacial. A día de hoy, el KF se emplea no sólo en navegación sino en multitud de sistemas en los que se desea reconstruir una señal que evoluciona en el tiempo, a partir de medidas con ruido, por ejemplo en teléfonos móviles. Realmente el KF sólo sirve para sistemas lineales. Puesto que muchos sistemas reales son no lineales, se han desarrollado extensiones no lineales, conocidas como Filtro Extendido de Kalman (EKF); en Navegación se emplean éste tipo de filtros. Nos limitaremos a entender el KF lineal y sus fundamentos. 9 / 26

10 Procesos dinámicos discretos con medidas PROCESO: Consideremos el siguiente modelo discreto de un proceso: x(t k+1 ) = A k x(t k ) + B k ɛ(t k ), donde x es un proceso gaussiano con dimensión n x, A k es una matriz (que puede cambiar en cada instante de tiempo t k ) de dimensión n x n x, ɛ(t k ) es ruido blanco gaussiano de dimensión n ɛ y varianza Q k (el ruido del proceso), y B k es una matriz (que puede cambiar en cada instante de tiempo t k ) de dimensión n x n ɛ. MEDIDA: En cada instante también consideramos que se realiza una medida, representada por z, y definida de la siguiente forma: z(t k+1 ) = H k+1 x(t k+1 ) + ν(t k+1 ), donde z es la medida, de dimensión n z, H k es una matriz (que puede cambiar en cada instante de tiempo t k ) de dimensión n z n x, y ν(t k ) es ruido blanco gaussiano de dimensión n ν y varianza R k (el ruido de medida). Además suponemos que ν(t k ) y ɛ(t k ) son independientes, y que sabemos que la condición inicial de x es x(t ) N nx (ˆx, P ). 1 / 26

11 Ecuaciones del proceso y la medida Resumiendo las ecuaciones: x(t k+1 ) = A k x(t k ) + B k ɛ(t k ), z(t k+1 ) = H k+1 x(t k+1 ) + ν(t k+1 ), E[ɛ(t k )] = E[ν(t k )] =, E[ɛ(t k )ɛ T (t j )] = δ kj Q k, E[ν(t k )ν T (t j )] = δ kj R k, E[ɛ(t k )ν T (t j )] =, x(t ) N nx (ˆx, P ). Definimos la estimación en t k de x(t k ) como ˆx(t k ). Definimos la covarianza del error de estimación como P(t k ) = E[(x(t k ) ˆx(t k ))(x(t k ) ˆx(t k )) T ]. El objetivo del filtro de Kalman es, empleando el conocimiento de las ecuaciones arriba formuladas, y a partir de las medidas z(t k ), obtener la mejor estimación posible, es decir, el valor de ˆx(t k ) que minimiza P(t k ). 11 / 26

12 El filtro de Kalman I Si sólo tuviéramos el proceso, podemos calcular su media y tomamos ˆx como dicha media; por tanto, x(t k ) N nx (ˆx(t k ), P k ), donde: ˆx(t k+1 ) = A k ˆx(t k ), P k+1 = A k P k A T k + B kq k B T k. La idea de Kalman es decir: la estimación arriba escrita es válida antes de tomar la medida z(t k+1 ). Denotamos dicha estimación a priori como ˆx (t k+1 ) y su covarianza como P k+1. Ahora, si la estimación fuera perfecta y la medida no tuviera error, se tendría que z(t k+1 ) = H k+1ˆx (t k+1 ). Como no es así, se actualiza la estimación ( a posteriori ) de forma proporcional a la discrepancia: ˆx + (t k+1 ) = ˆx (t k+1 ) + K k+1 (z(t k+1 ) H k+1ˆx (t k+1 )). 12 / 26

13 El filtro de Kalman II En la ecuación ˆx + (t k+1 ) = ˆx (t k+1 ) + K k+1 (z(t k+1 ) H k+1ˆx (t k+1 )) lo único que no conocemos es K k+1, que es la ganancia de Kalman. Ésta se determina para garantizar que la covarianza de ˆx + (t k+1 ), P + k+1, sea la menor posible. Calculemos P + k+1 : P + k+1 = E[(x(t k+1) ˆx + (t k+1 ))(x(t k+1 ) ˆx + (t k+1 )) T ], y sustituyendo la ecuación de ˆx + (t k+1 ): P + k+1 = E = E " x(t k+1 ) ˆx + (t k+1 )«x(t k+1 ) ˆx + «# T (t k+1 ) x(t k+1 ) ˆx (t k+1 ) K k+1 (z(t k+1 ) H k+1 ˆx «(t k+1 ) x(t k+1 ) ˆx (t k+1 ) K k+1 (z(t k+1 ) H k+1 ˆx «# T (t k+1 )) Sustituyendo ahora z(t k+1 ) = H k+1 x(t k+1 ) + ν(t k+1 ): P + k+1 = h E x(t k+1 ) ˆx (t k+1 ) K k+1 (H k+1 x(t k+1 ) + ν(t k+1 ) H k+1ˆx (t k+1 ) x(t k+1 ) ˆx (t k+1 ) K k+1 (H k+1 x(t k+1 ) + ν(t k+1 ) H k+1ˆx T (t k+1 )) 13 / 26

14 El filtro de Kalman III Simplificando, obtenemos: P + k+1 = h E (I K k+1 H k+1 )(x(t k+1 ) ˆx ) K k+1 ν(t k+1 ) (I K k+1 H k+1 )(x(t k+1 ) ˆx T ) K k+1 ν(t k+1 ) = (I K k+1 H k+1 )P k+1 (I K k+1h k+1 ) T + K k+1 R k+1 K T k+1 Es necesario encontrar el valor de K k+1 que minimiza la anterior expresión. Usando cálculo matricial, se encuentra que K k+1 = P ( k+1 HT k+1 Hk+1 P k+1 HT k+1 + R ) 1 k+1 Sustituyendo ésta expresión se llega a que: P + k+1 = (I K k+1h k+1 )P k+1. Ésta es la covarianza mínima. 14 / 26

15 Algoritmo del filtro de Kalman El algoritmo queda como sigue: 1 En el instante de tiempo t k+1, suponemos que tenemos la anterior estimación que incluyó también la última medida: ˆx + (t k ) y su covarianza P + t k. Para k = tomamos ˆx + (t ) = ˆx y P + = P. 2 Fase de propagación; usamos la ecuación del sistema dinámico para calcular la estimación a priori: ˆx (t k+1 ) = A k ˆx + (t k ), P k+1 = A k P + k AT k + B k Q k B T k. 3 Preparándonos para la medida, calculamos la ganacia de Kalman: K k+1 = P k+1 HT k+1 ( Hk+1 P k+1 HT k+1 + R k+1) 1. 4 Tomamos la medida y calculamos la estimación a posteriori: ˆx + (t k+1 ) = ˆx (t k+1 ) + K k+1 (z(t k+1 ) H k+1ˆx (t k+1 )), P + k+1 = (I K k+1 H k+1 )P k+1. 5 Iteramos para los siguientes valores de k. 15 / 26

16 Sobre las medidas Observación: es posible que no se realice una medida cada t k, sino que en ciertos instantes se hagan medidas, y en otros no se haga ninguna medida. Por ejemplo podemos tener un sensor con bajo ancho de banda (como el GPS) mientras que nuestro tiempo de muestreo t representa una elevada frecuencia. Una forma de solucionarlo es tomar H k =, luego K k = en los instantes t k en los que no se realizan medidas. Por tanto no es necesario realizar ninguna actualización y ˆx + (t k ) = ˆx (t k ), P + (t k ) = P (t k ). 16 / 26

17 El caso INS-GPS En el caso INS-GPS no podemos aplicar el Filtro de Kalman directamente porque los sistemas y medidas son no lineales. Lo que se hace es aplicar la solución al error de navegación. Recordemos que derivamos para el INS una ecuación de la forma: δx(t k+1 ) = A k δx(t k ) + B k ɛ(t k ), donde el vector δx(t k ) contiene los errores de posición, velocidad y actitud en t k y ɛ(t k ) son las fuentes de error. Por otro lado en el tema del GPS obtuvimos ecuaciones de la forma: ρ(t k+1 ) = H k+1 x(t k+1 ) + ν(t k+1 ), donde x(t k+1 ) eran errores de posición (y velocidad, si también estimamos velocidad) respecto a una estimación inicial y ρ(t k+1 ) las diferencias entre los observables medidos y los estimados. Por tanto usando la medida del INS como estimación para el GPS, ya tenemos los errores linealizados escritos de una forma adecuada para implementar el filtro de Kalman! El error estimado se suma a la posición estimada por el INS, para conseguir la mejor estimación final posible. 17 / 26

18 El caso INS-GPS Esquema de la integración INS-GPS (loose): 18 / 26

19 Ejemplo 1-D del filtro de Kalman I Para entender mejor el filtro de Kalman consideremos un sistema sencillo. Imaginemos un vehículo que sólo se puede mover en una dirección, con un acelerómetro de un ancho de banda de 1Hz que mide la aceleración en dicha dirección, y con un sensor con un ancho de banda de 1Hz que estima la posición en dicha dirección. El modelo del sistema será:ẍ = a. Llamando v a la velocidad: d dt x v El modelo del error será: d dt δx δv = = 1 1 x v δx δv + a + 1 δa Pasando a tiempo discreto y teniendo en cuenta que d dt x(t) x(t k+1) x(t k ) t : δx(tk+1 ) δv(t k+1 ) = 1 t 1 δx(tk ) δv(t k ) + t δa(t k ) 19 / 26

20 Ejemplo 1-D del filtro de Kalman II Por otro lado el modelo de medida será: z = x + ν, luego el modelo de error será: δz = δx + ν. Escribiéndolo todo: δx(tk+1 ) δv(t k+1 ) = 1 t 1 δx(tk ) δv(t k ) δz(t k+1 ) = δx(t k+1 ) + ν(t k+1 ) + t δa(t k+1 ) Además las medidas sólo se hacen con una frecuencia de 1Hz (cada segundo), mientras que la frecuencia del acelerómetro es 1 Hz con lo que deberíamos tomar t =,1. Supongamos además que la precisión de los instrumentos es: σδa 2 =,1, σ2 ν =,1, y que se verifican las hipótesis del KF (ruidos blancos gaussianos, independientes, etc...). En la nomenclatura que hemos usado para el KF, tendremos: A k = 1,1 1, B k =,1, Q k =,1, R k =,1, H k = j ˆ 1, tk = n, t k n. donde n es cualquier entero (para modelar que se toman medidas cada segundo, pero no en fracciones de segundo). 2 / 26

21 Ejemplo 1-D del filtro de Kalman III Por tanto las ecuaciones del filtro de Kalman dirán, para cada instante de tiempo t k+1 : δˆx (tk+1 ) δˆv (t k+1 ) P k+1 = = 1,1 1 1,1 1 δˆx + (tk ) δˆv + (t k ) P + 1 k,1 1 +,1,1 ˆ,1 Si t k+1 = n, es decir, tiene un valor entero, significa que ha habido medida. Entonces, calcular la ganancia de Kalman: K k+1 = P k+1 1 ˆ 1 P k ,1«. Tomamos la medida y calculamos la estimación a posteriori: δˆx + (tk+1 ) δˆv + (t k+1 ) = δˆx (tk+1 ) δˆv (t k+1 ) P + k+1 = (I K k+1 ˆ 1 )P k+1. + K k+1 (δz(t k+1 ) ˆ 1 δˆx (t k+1 ) δˆv (t k+1 ) donde δz(t k+1 ) = z(t k+1 ) H k+1 (ˆx(t k+1 ) + δˆx (t k+1 )). Si no hubo medida, entonces simplemente: δˆx + (tk+1 ) δˆv + (t k+1 ) = δˆx (tk+1 ) δˆv (t k+1 ), P + k+1 = P k+1. Actualizamos ˆx(t k+1 ) = ˆx(t k+1 ) + δˆx + (t k+1 ). Iteramos para los siguientes valores de k. 21 / 26,

22 Ejemplo 1-D del filtro de Kalman: simulación I Simulación de la posición (exacta) y medidas: 35 posicion medidas t 22 / 26

23 Ejemplo 1-D del filtro de Kalman: simulación II ('! * (!! "'! "!! &'! &!! '!! Usando las medidas para estimar la posición, el resultado es bueno porque el sensor es preciso y el movimiento en x es lento. Si intentamos estimar la velocidad con la fórmula v(t k ) = x(t k) x(t k 1 ) se obtiene ) una estimación muy mala:!'!*! "! #! $! %! &!! &"! t,-.//-1 234/45. % + $ 637-/454 6*3.)/2545*43*234/45. * ' # ( " &!!&!"*! "! #! $! %! &!! &"! ) 23 / 26

24 Ejemplo 1-D del filtro de Kalman: simulación III Comportamiento de la estimación y del error sin filtro de Kalman: 4 3 posicion estimacion de posicion t 8 6 velocidad estimacion de velocidad t 24 / 26

25 Ejemplo 1-D del filtro de Kalman: simulación IV Comportamiento de la estimación y del error con filtro de Kalman: posicion estimacion de posicion (KF) t velocidad estimacion de velocidad (KF) t 25 / 26

26 Ejemplo 1-D del filtro de Kalman: simulación V Comparación de errores con y sin filtro de Kalman: 4 3 error de posicion (sin KF) error de posicion (con KF) t error de velocidad (sin KF) error de velocidad (con KF) t 26 / 26

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

Filtrado e identificación de parámetros mediante métodos bayesianos

Filtrado e identificación de parámetros mediante métodos bayesianos Filtrado e identificación de parámetros mediante métodos bayesianos Guillermo La Mura a, Eduardo Serrano b,d, Ricardo Sirne c a Escuela de Ciencia y Tecnología - UNSAM b Centro de Matemática Aplicada -

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Estimación de homografías

Estimación de homografías Estimación de homografías Visión en Robótica 1er cuatrimestre de 2013 1 Introducción del problema Una homografía es una transformación proyectiva que determina una correspondencia entre puntos El problema

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Errores en navegación inercial. Modelos de Error. Tema 4: Sistema de navegación autónomo. Navegación inercial. Errores.

Errores en navegación inercial. Modelos de Error. Tema 4: Sistema de navegación autónomo. Navegación inercial. Errores. Navegación Aérea Tema 4: Sistema de navegación autónomo. Navegación inercial. Errores. La IMU: sensores inerciales Mecanización en ejes n y en ejes e Alineamiento inicial Sistema de navegación autónomo:

Más detalles

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora:

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora: Curso de Métodos Numéricos Instituto de Matemática Práctico 1: Errores Agosto de 2005 1) Encuentre experimentalmente los siguientes valores de su calculadora: (a) El valor ɛ mach definido como el minimo

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Métodos Numéricos: aproximación y error

Métodos Numéricos: aproximación y error Métodos Numéricos: aproximación y error Eduardo P. Serrano Versión previa Feb 0. Problemas y métodos numéricos Un problema numérico es aquel cuya solución es un número finito de números reales. Ej: - Ecuaciones

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Bases del filtro de Kalman

Bases del filtro de Kalman Bases del filtro de Kalman Rafael Molina Soriano Depto Ciencias de la Computación e IA Universidad de Granada Rafael Molina Bases del filtro de Kalman 1 Contenidos! Introducción.! El filtro de Kalman "

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

x^new = x^old + K(b new A new x^old )

x^new = x^old + K(b new A new x^old ) El Filtro de Kalman: La idea fundamental del filtro de Kalman es la actualización La llegada de una nueva observación supone un cambio en la mejor estimación mínimo cuatrática del parámetro x Se desea

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Capítulo 12. Polinomios de Hermite Función generatriz. Definimos los polinomios de Hermite por: . (12.1)

Capítulo 12. Polinomios de Hermite Función generatriz. Definimos los polinomios de Hermite por: . (12.1) Capítulo 12 Polinomios de Hermite 12.1 Definición Definimos los polinomios de Hermite por: = ( 1) n dn t2 e dt n e t2 {} n N son polinomios de grado n. Se tiene que: es decir, H n es par si n es par, e

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Práctica 3. Nombre del curso: Teoría Moderna de la Detección y Estimación. Autores: Emilio Parrado Hernández

Práctica 3. Nombre del curso: Teoría Moderna de la Detección y Estimación. Autores: Emilio Parrado Hernández Práctica 3 Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Emilio Parrado Hernández Práctica 3: Cancelación de ruido mediante filtrado. Teoría Moderna de la Detección y la Estimación

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

INGENIERO DE TELECOMUNICACION Control por Computador (Examen 9-Septiembre-2009)

INGENIERO DE TELECOMUNICACION Control por Computador (Examen 9-Septiembre-2009) INGENIERO DE ELECOMUNICCION Control por Computador Eamen 9-Septiembre-009. puntos Se desea desarrollar un sistema de control por computador remoto donde el controlador se implementa en un computador distanciado

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

El filtro de Kalman. José Antonio Camarena Ibarrola

El filtro de Kalman. José Antonio Camarena Ibarrola El filtro de Kalman José Antonio Camarena Ibarrola Que es un Filtro de Kalman? Es un algoritmo recursivo óp?mo de procesamiento de datos Hay muchas formas de definir óp?mo El filtro de Kalman es óp?mo

Más detalles

3.3. Número de condición de una matriz.

3.3. Número de condición de una matriz. 96 33 Número de condición de una matriz Consideremos el sistema Ax = b, de solución u Queremos controlar qué cambios se producen en la solución cuando hacemos pequeños cambios en las componentes de b o

Más detalles

El Algoritmo E-M. José Antonio Camarena Ibarrola

El Algoritmo E-M. José Antonio Camarena Ibarrola El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Ejercicios resueltos de MRUA

Ejercicios resueltos de MRUA Ejercicios resueltos de MRUA 1) La trayectoria de un móvil viene determinada por la expresión r = 2t 2 i + 2j - 8tk m a) Halla las ecuaciones de la velocidad y la aceleración del móvil y di qué tipo de

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

Curso: Métodos de Monte Carlo. Unidad 2, Sesión 3: Estimación de volúmenes

Curso: Métodos de Monte Carlo. Unidad 2, Sesión 3: Estimación de volúmenes Curso: Métodos de Monte Carlo. Unidad 2, Sesión 3: Estimación de volúmenes Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo,

Más detalles

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales Solución de ecuaciones no lineales c M. Valenzuela 007 008 (5 de mayo de 008) 1. Definición del problema: raíces de ecuaciones no lineales Dada una ecuación de una variable independiente x, f(x) =0, (1)

Más detalles

APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D.

APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D. APLICACIÓN DEL SISMO VERTICAL A UN ELEMENTO SUSCEPTIBLE DEL MISMO. MÉTODO SIMPLIFICADO, UTILIZANDO CÁLCULOS SENCILLOS Y LA AYUDA DE CYPE 3D. Podemos entender como elementos susceptibles al sismo vertical,

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contents 1 Mínimos Cuadrados en 2 Etapas 2 Mínimos Cuadrados en 2 Etapas El método de Mínimos Cuadrados

Más detalles

Receptor de Correlación. Sistemas de Comunicación

Receptor de Correlación. Sistemas de Comunicación Receptor de Correlación Sistemas de Comunicación Facundo Mémoli * -Versión 2.- mayo, 22 * memoli@iie.edu.uy Índice. Introducción 3 2. Hipótesis y Planteo del Problema 3 3. Procedimiento 4 3.. Hipótesis

Más detalles

Localización. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Localización. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Problemas de Navegación de los Robots Dónde estoy?. Dónde he estado? Mapa de decisiones. A dónde voy? Planificación de misiones. Cuál es la mejor manera de llegar? Planificación

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Introducción A continuación se presentan unos pocos y simples ejemplos que muestran como puede emplearse el Teorema de

Más detalles

INTEGRACIÓN APROXIMADA

INTEGRACIÓN APROXIMADA Humboldt Marine Training INTEGRACIÓN APROXIMADA Preparado por Ing. Boris L. GUERRERO B. Valparaíso, CHILE, 2011. 1 INDICE DE MATERIAS Anexo A.. 3 Método Trapecios. 3 Problema Método Trapecios. 4 1ª Regla

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

Midiendo la Distancia al Sol usando el Tránsito de Venus

Midiendo la Distancia al Sol usando el Tránsito de Venus Midiendo la Distancia al Sol usando el Tránsito de Venus David Rodríguez (Universidad de Chile) Con el tránsito de Venus el 5 de junio de 2012, astrónomos alrededor del mundo están coordinando grupos para

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Estadística I Tema 7: Estimación por intervalos

Estadística I Tema 7: Estimación por intervalos Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

1. Ecuaciones de recurrencia

1. Ecuaciones de recurrencia PRÁCTICA NO 3. ALGORITMOS RECURRENTES 1. Ecuaciones de recurrencia Una ecuación de recurrencia es una expresión finita que define explícitamente una sucesión, en el cual un elemento de la sucesión se determina

Más detalles

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011 Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones:

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones: Capítulo 13 Polinomios de Laguerre 13.1 Definición Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {} n N mediante una cualquiera de las siguientes ecuaciones: = e t dn ( t n e t) =

Más detalles

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema CAPÍTULO 1 Ecuaciones de Movimiento del Sistema El sistema que se construyó y cuyo análisis es del presente capítulo tiene las siguientes constricciones: 1. El carro solo se puede desplazar en la dirección

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo 1 Cuadrivectores Hasta ahora hemos hablado de las transformaciones de Lorentz, y cómo estas afectan tanto a las coordenadas espaciales como al tiempo. El vector que define un punto en el espacio-tiempo

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C Rentas Ciertas MATEMÁTICA FINANCIERA RENTAS CIERTAS I Luis Alcalá UNSL Segundo Cuatrimeste 06 A partir de ahora, utilizaremos capitalización compuesta como ley financiera por defecto, salvo que expĺıcitamente

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

INTRODUCCION- FILTRO DE WIENER

INTRODUCCION- FILTRO DE WIENER FILTRO LMS INTRODUCCION- FILTRO DE WIENER Es un sistema al que le llegan dos señales: x(n) y e(n). A los coeficientes del filtro se les llama w(n), que son los que multiplican a la entrada x(n) para obtener

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

Tomamos como imagen de prueba la figura 4.17 en escala de grises. Figura Imagen de prueba.

Tomamos como imagen de prueba la figura 4.17 en escala de grises. Figura Imagen de prueba. 4.3 PARÁMETRO DE ESCALADO Para el caso del parámetro de escalado se va a proceder de la siguiente forma. Partimos de una imagen de referencia (imagen A), a la cual se le aplican cambios de translación

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles