DECLARACIÓN REAL DECRETO 1065/2007, DE 27 DE JULIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DECLARACIÓN REAL DECRETO 1065/2007, DE 27 DE JULIO"

Transcripción

1 MINISTERIO DE ECONOMÍA Y HACIENDA D c l r n t Agnci Tributri Tléfono: ANUAL DE OPERACIONES CON TERCERAS PERSONAS REAL DECRETO , DE 7 DE JULIO Espcio rsrvdo pr l tiqut idntifictiv (si no dispon d tiquts, hg constr continución sus dtos idntifictivos) APELLIDOS Y NOMBRE, RAZÓN SOCIAL O DENOMINACIÓN ROS LLUCH, ABEL dl rprsntnt Tléfono.... Modlidd d prsntción: Imprso Soport Nº Idntifictivo: X Pág. 1 Fch y firm Espcio rsrvdo pr l Administrción Fch: 8001 Firm: Fdo: DDª. ROS LLUCH, ABEL Crgo o mplo: TITULAR Dclrción complmntri o sustitutiv Si l prsntción d st dclrción tin por objto incluir dtos qu, dbindo hbr figurdo n otr dclrción dl mismo jrcicio prsntd ntriormnt, hubirn sido compltmnt omitidos n l mism, mrqu con un X l csill Dclrción complmntri por inclusión d dtos. Cundo l prsntción d st dclrción tng por objto nulr y sustituir compltmnt otr dclrción ntrior dl mismo jrcicio n l cul s hubirn consigndo dtos inxctos o rrónos, indiqu su cráctr d dclrción sustitutiv mrcndo con un X l csill corrspondint. Dclrción complmntri por inclusión d dtos... Dclrción sustitutiv Númro idntifictivo d l dclrción ntrior Rsumn d los dtos incluidos n l dclrción Númro totl d prsons y ntidds rlcionds n ls hojs intriors o soport..... Import totl nul d ls oprcions rlcionds n ls hojs intriors o soport... Númro totl d inmubls rlciondos n l hoj nxo d rrndminto d locls d ngocio o soport... Import totl d ls oprcions rlcionds n l hoj nxo d rrndminto d locls d ngocio o soport Agnci Tributri Hoj Rsumn. Ejmplr pr l Administrción

2 dl dclrnt Hoj nº Nº Idntifictivo A Dclrdo J COMERCIAL MAR, SCP E GARRIDO GARCIA, FRANCESC A BERNA, SA 17 A 5 A 4.600,00 800, , , , ,00.410,00.10, , , , , ,00 610,00 A HENO, SA 17 B 6.00, , ,00.460,00 1. Consign n st csill l sum dl d st hoj ,00 Ejmplr pr l Administrción

3 dl dclrnt Hoj nº 011 Nº Idntifictivo B Dclrdo P BRU SALA, BEATRIU N LOPEZ PEREZ, OSCAR B BLUE, SL 43 B 43 C , , , ,00.640,00.430,00 Consign n st csill l sum dl d st hoj ,00 Ejmplr pr l Administrción

4

5 MINISTERIO DE ECONOMÍA Y HACIENDA D c l r n t Agnci Tributri Tléfono: ANUAL DE OPERACIONES CON TERCERAS PERSONAS REAL DECRETO , DE 7 DE JULIO Espcio rsrvdo pr l tiqut idntifictiv (si no dispon d tiquts, hg constr continución sus dtos idntifictivos) APELLIDOS Y NOMBRE, RAZÓN SOCIAL O DENOMINACIÓN ROS LLUCH, ABEL dl rprsntnt Tléfono.... Modlidd d prsntción: Imprso Soport Nº Idntifictivo: X Pág. 1 Fch y firm Espcio rsrvdo pr l Administrción Fch: 8001 Firm: Fdo: DDª. ROS LLUCH, ABEL Crgo o mplo: TITULAR Dclrción complmntri o sustitutiv Si l prsntción d st dclrción tin por objto incluir dtos qu, dbindo hbr figurdo n otr dclrción dl mismo jrcicio prsntd ntriormnt, hubirn sido compltmnt omitidos n l mism, mrqu con un X l csill Dclrción complmntri por inclusión d dtos. Cundo l prsntción d st dclrción tng por objto nulr y sustituir compltmnt otr dclrción ntrior dl mismo jrcicio n l cul s hubirn consigndo dtos inxctos o rrónos, indiqu su cráctr d dclrción sustitutiv mrcndo con un X l csill corrspondint. Dclrción complmntri por inclusión d dtos... Dclrción sustitutiv Númro idntifictivo d l dclrción ntrior Rsumn d los dtos incluidos n l dclrción Númro totl d prsons y ntidds rlcionds n ls hojs intriors o soport..... Import totl nul d ls oprcions rlcionds n ls hojs intriors o soport... Númro totl d inmubls rlciondos n l hoj nxo d rrndminto d locls d ngocio o soport... Import totl d ls oprcions rlcionds n l hoj nxo d rrndminto d locls d ngocio o soport Agnci Tributri Hoj Rsumn. Ejmplr pr l Intrsdo

6 dl dclrnt Hoj nº Nº Idntifictivo A Dclrdo J COMERCIAL MAR, SCP E GARRIDO GARCIA, FRANCESC A BERNA, SA 17 A 5 A 4.600,00 800, , , , ,00.410,00.10, , , , , ,00 610,00 A HENO, SA 17 B 6.00, , ,00.460,00 1. Consign n st csill l sum dl d st hoj ,00 Ejmplr pr l Intrsdo

7 dl dclrnt Hoj nº 011 Nº Idntifictivo B Dclrdo P BRU SALA, BEATRIU N LOPEZ PEREZ, OSCAR B BLUE, SL 43 B 43 C , , , ,00.640,00.430,00 Consign n st csill l sum dl d st hoj ,00 Ejmplr pr l Intrsdo

Para consultas llamar al: 800-4722

Para consultas llamar al: 800-4722 I. Documntos ncsrios pr solicitr un préstmo hipotcrio ASALARIADOS Crt d trbjo originl Copi d cédul d idntidd prsonl Copi d l fich d Sguro Socil Copi d los dos últimos tlonrios d chqu Solicitud complt firmd

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Para la lectura del instructivo tenga en cuenta la descripción de las partes de la siguiente manera:

Para la lectura del instructivo tenga en cuenta la descripción de las partes de la siguiente manera: CONOCIMIENTO DEL CLIENTE Person Jurídic Fech de elorción: Nov de 2015 Código: IN-J.04-2 Págin 1 de 7 Versión: 1 OBJETIVO Estlecer el correcto diligencimiento de l informción requerid en el formto único

Más detalles

Impuesto sobre Sucesiones y Donaciones Adquisiciones "mortis causa"

Impuesto sobre Sucesiones y Donaciones Adquisiciones mortis causa STE MODELO SE REPRODUCE A EFECTOS MERAMENTE INFORMATIVOS. PARA SU DESCARGA, IMPRESIÓN Y CUMPLIMENTACIÓN DEBE ACUDIRSE A LA WEB DE LA AGENCIA TRIBUTARIA RELACIÓN DE BIENES QUE INTEGRAN EL CAUDAL HEREDITARIO.

Más detalles

GERENCIA SECTORIAL DE REGISTRO Y CONTROL CIRCULAR TRAMITES DE PRODUCTOS COSMETICOS A PARTIR DEL 01/09/2010

GERENCIA SECTORIAL DE REGISTRO Y CONTROL CIRCULAR TRAMITES DE PRODUCTOS COSMETICOS A PARTIR DEL 01/09/2010 Instituto Ncionl de Higiene "Rfel Rngel" Ciudd Universitri UCV, Los Chgurmos, Crcs - Republic Bolivrin de Venezuel Cod. 1041 RC-C-009/2010 CARACAS, 26/07/2010 GERENCIA SECTORIAL DE REGISTRO Y CONTROL CIRCULAR

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

CONSEJERÍA DE ECONOMÍA Y HACIENDA IMPUESTO SOBRE SUCESIONES Y DONACIONES

CONSEJERÍA DE ECONOMÍA Y HACIENDA IMPUESTO SOBRE SUCESIONES Y DONACIONES CÓDIGO TERRITORIAL E H CONSEJERÍA DE ECONOMÍA Y HACIENDA T ALÓN DE CARGO PAGINA 1 FECHA DEVENGO 02 DÍA MES AÑO SUJETO PASIVO (A) Espcio reservdo pr l etiquet identifictiv 05 06 07 08 FAX 15 16 FECHA NACIMIENTO

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA C.V.E.: BOPBUR-2013-04928 Por acurdo dl Plno dl Ayuntaminto d Brivisca d fcha 29 d mayo d 2013, s adoptó l Acurdo dl tnor litral siguint: Antcdnts d

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

PROCEDIMIENTO DEVOLUCIONES CARTERA INSTITUCIONAL

PROCEDIMIENTO DEVOLUCIONES CARTERA INSTITUCIONAL OBJETIVO ALCANCE PUNTOS DE INTERÉS Pr relizr ls devoluciones se dee verificr que los dineros están consigndos en l cuent de l Universidd y que l mtrícul del estudinte se encuenr pgd en su totlidd. Relizr

Más detalles

Debe marcar con una X el tipo de trámite que realiza.

Debe marcar con una X el tipo de trámite que realiza. Debe marcar con una X el tipo de trámite que realiza. X Indicar la nacionalidad del solicitante. JUAN LOPEZ LOPEZ MEXICANA 100 Anotar el apellido materno. Asentar el nombre o nombres completos del o los

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Multiplicación algebraica

Multiplicación algebraica Versión01 Multiplicciónlgeric Por:SndrElviPéreMárque Lsopercioneslgericscomolmultipliccióndivisiónnecesitndelgunosconocimientosprevios, por ejemplo: ls regls de los signos, de los eponentes, por lo que

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Código Nombre Municipio. DNI/NIE/Pasaporte Núm. identificación. Fecha de nacimiento Lugar de nacimiento País Nacionalidad

Código Nombre Municipio. DNI/NIE/Pasaporte Núm. identificación. Fecha de nacimiento Lugar de nacimiento País Nacionalidad . Historil cdémico Educción secundri pr ls persons dults Dtos del centro Código Nombre Municipio Dtos del lumno DNINIEPsporte Núm. identificción Fech de ncimiento Lugr de ncimiento Pís Ncionlidd Dtos cdémicos

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar)

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar) IMPUESTO SOBRE SOCIEAES (Cierre fiscl ejercicio 2013) (Ajustes y conceptos considerr) (13) LIMITACIÓN A LAS AMORTIZACIONES FISCALMENTE EUCIBLES EN EL IMPUESTO SOBRE SOCIEAES Novedd introducid por l Ley

Más detalles

Lectura del informe técnico del sr. Intendente Principal de la Policía Local Apertura sobres C Oferta económica.

Lectura del informe técnico del sr. Intendente Principal de la Policía Local Apertura sobres C Oferta económica. Expediente: 2403/2014 Asunto: Contrato renting 2 vehículos policía local Día y hora de la reunión: 13 de octubre de 2014 Lugar de celebración: Salón de Sesiones de la Casa Consistorial Asistentes: Presidente:

Más detalles

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 Introducción Este documento tiene como objetivo describir el instrumento trvés del cul se especificn, desde

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF?

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF? 1 Bloque 1 Problem 1. Un niño es conectdo, después de un espirción norml, un bols conteniendo 2 litros de 8% He, 92% O 2. Respir de l bols hst que l mezcl es complet, y en ese momento l concentrción de

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

MANUAL DE USO PARA LA GESTIÓN ON LINE DE SU PÓLIZA COLECTIVA

MANUAL DE USO PARA LA GESTIÓN ON LINE DE SU PÓLIZA COLECTIVA IMPRIMIR PORTAL SANITAS EMPRESAS MANUAL DE USO PARA LA GESTIÓN ON LINE DE SU PÓLIZA COLECTIVA Snits pone su disposición el portl de Empress, un herrmient on line muy útil que le permitirá gestionr todos

Más detalles

PROCEDIMIENTO PARA EL RECONOCIMIENTO DE CRÉDITOS POR ACREDITACIÓN PROFESIONAL

PROCEDIMIENTO PARA EL RECONOCIMIENTO DE CRÉDITOS POR ACREDITACIÓN PROFESIONAL PROCEDIMIENTO PARA EL RECONOCIMIENTO DE CRÉDITOS POR ACREDITACIÓN PROFESIONAL (Aprobado por Consejo de Gobierno de 11 de febrero de 2011) En consonancia con lo aprobado en el artículo 6 del Real Decreto

Más detalles

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO 1. DATOS INFORMATIVOS. SILABO 1.1. Asigntur : Métodos Estdísticos. 1.2. Código : 28-205 1.3. Áre : Formtivo 1.4. Fcultd : Ciencis de l Slud 1.5 Ciclo : Tercero 1.6 Créditos : 03 1.7 Totl de hors : 04 Teorí

Más detalles

SOLICITUD DE POLIZA POR RESPONSABILIDAD CIVIL PARA INVESTIGACIONES Y/O ENSAYOS

SOLICITUD DE POLIZA POR RESPONSABILIDAD CIVIL PARA INVESTIGACIONES Y/O ENSAYOS SOLICITUD DE POLIZA POR RESPONSABILIDAD CIVIL PARA INVESTIGACIONES Y/O ENSAYOS INSTRUCTIVO: a) Por favor, complete los datos solicitados en el formulario y adjunte toda información complementaria que se

Más detalles

MINISTERIO DE EMPLEO Y SEGURIDAD SOCIAL TESORERÍA GENERAL DE LA SEGURIDAD SOCIAL. tc. 17/11 RECONOCIMIENTO DE DEUDAS CON LA SEGURIDAD SOCIAL

MINISTERIO DE EMPLEO Y SEGURIDAD SOCIAL TESORERÍA GENERAL DE LA SEGURIDAD SOCIAL. tc. 17/11 RECONOCIMIENTO DE DEUDAS CON LA SEGURIDAD SOCIAL MINISTERIO tc. 17/11 RECONOCIMIENTO DE DEUDAS CON LA SEGURIDAD SOCIAL INSTRUCCIONES PARA LA CUMPLIMENTACIÓN DEL MODELO GENERALES - El documento deberá cumplimentarse a máquina o con letras mayúsculas,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

INSTRUCCIONES PARA CUMPLIMENTAR EL FORMULARIO ELECTRÓNICO PROGRAMA DE ESTUDIOS DE POSTGRADO EN ECONOMÍA Y FINANZAS 2006-2008

INSTRUCCIONES PARA CUMPLIMENTAR EL FORMULARIO ELECTRÓNICO PROGRAMA DE ESTUDIOS DE POSTGRADO EN ECONOMÍA Y FINANZAS 2006-2008 INSTRUCCIONES PARA CUMPLIMENTAR EL FORMULARIO ELECTRÓNICO PROGRAMA DE ESTUDIOS DE POSTGRADO EN ECONOMÍA Y FINANZAS 2006-2008 INSTRUCCIONES GENERALES Le tentmente ests instrucciones ntes comenzr cumplimentr

Más detalles

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+

Más detalles

A. Escudo y logotipo: Según la configuración "A" (ver epígrafe 1.12). El Escudo se imprimirá sin tinta, con golpe en seco. El logotipo en negro.

A. Escudo y logotipo: Según la configuración A (ver epígrafe 1.12). El Escudo se imprimirá sin tinta, con golpe en seco. El logotipo en negro. 2.11. Sobres tarjetón y carta. Ministros y Vicepresidentes. Papel: Suecia ntiqua 1777 doble cara, color lanco natural, gramaje 100g/m2. Formatos: Sobre tarjetón 115 x 161 mm. Sobre carta 110 x 220 mm..

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10 GUÍA DEL USUARIO Mdidor d luz d bolsillo Modlo LT10 Introducción Grcis por slccionr l Modlo LT10 d Extch. Est instrumnto s mbrc compltmnt probdo y clibrdo y con uso propido l provrá muchos ños d srvicio

Más detalles

MINISTERIO DE EDUCACIÓN - ARGENTINA ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1

MINISTERIO DE EDUCACIÓN - ARGENTINA ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1 ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1 SITUACIÓN El nálisis de tres suelos rroj los resultdos que se detlln continución: SUELO 1 Crcterístics generles: Precipitciones medis nules: 1200 mm Tempertur

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Nº ACTA:TRMASBU ACTA DE LA COMPETICION.

Nº ACTA:TRMASBU ACTA DE LA COMPETICION. Nº ACTA:TRMASBU ACTA DE LA COMPETICION. NOMBRE DE LA COMPETICION. TROFE REYES MASTER FECHA DE LA CELEBRACION. 3 ENERO 2015 NOMBRE DE LA ENTIDAD ORGANIZADORA. DELEGACIÓN PROVINCIAL DE LUGAR DE CELEBRACION.

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

Torres de Hanoi. Descripción del problema. Entrada. Salida

Torres de Hanoi. Descripción del problema. Entrada. Salida Torres de Hnoi Descripción del problem Se tienen tres torres y un conjunto de N discos de diferentes tmños. d uno tiene un perforción en el centro que les permite deslizrse por ls torres. Inicilmente,

Más detalles

BASES QUE HAN DE REGIR EL CONCURSO DE DISEÑO DE LOGOTIPO TOLEDO CAPITAL ESPAÑOLA DE LA GASTRONOMÍA 2016

BASES QUE HAN DE REGIR EL CONCURSO DE DISEÑO DE LOGOTIPO TOLEDO CAPITAL ESPAÑOLA DE LA GASTRONOMÍA 2016 AYUNTAMIENTO DE TOLEDO BASES QUE HAN DE REGIR EL CONCURSO DE DISEÑO DE LOGOTIPO TOLEDO CAPITAL ESPAÑOLA DE LA GASTRONOMÍA 2016 1.- OBJETO DEL CONCURSO. Con motivo de la declaración de la ciudad de Toledo

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

En adelante, podrá ser también denominado el Distribuidor.

En adelante, podrá ser también denominado el Distribuidor. En Miami, a de octubre de 2015. REUNIDOS: A.- DE UNA PARTE: D. MIGUEL J. LAZARO MONREAL, mayor de edad, con Número Identificación 16.007.824.P, que interviene en nombre y representación, como Presidente

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

III.- OTRAS DISPOSICIONES Y ACTOS

III.- OTRAS DISPOSICIONES Y ACTOS AÑO XXXII Núm. 170 3 de septiembre de 2013 23655 III.- OTRAS DISPOSICIONES Y ACTOS Corrección de errores de la Orden de 26/08/2013, por la que se convocan subvenciones para el desarrollo de actividades

Más detalles

FOLLETO EXPLICATIVO. Fondo Profuturo SB1, S.A. de C.V. Sociedad de Inversión Especializada de Fondos para el Retiro. Sociedad de Inversión Básica 1.

FOLLETO EXPLICATIVO. Fondo Profuturo SB1, S.A. de C.V. Sociedad de Inversión Especializada de Fondos para el Retiro. Sociedad de Inversión Básica 1. Sociedd de Inversión Especilizd de Fondos pr el Retiro. Sociedd de Inversión Básic 1. 1.1 Dtos de l Sociedd de Inversión. L Sociedd se constituyó como Fondo Profuturo 1 S.A. de C.V., Sociedd de Inversión

Más detalles

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO.

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO. Nombre y pellidos : Mteri: MATEMATICAS PENDIENTES) Curso: º ESO ª entreg Fech: INSTRUCCIONES: Pr est primer entreg deberás trbjr losejercicios del l que quí te djuntmos pr ello debes yudrte de tu cuderno

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Ejercicios SQL Empresa

Ejercicios SQL Empresa Ejercicios SQL Empresa La siguiente base de datos almacena información sobre los empleados, clientes, productos, pedidos y departamentos de una empresa: CLIENTES (cliente_no, nombre, localidad, vendedor_no*,

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

Mecánica estadística de Maxwell-Boltzman. (resumen)

Mecánica estadística de Maxwell-Boltzman. (resumen) Mcánica stadística d Maxwll-oltzman (rsumn) Química Física dl stado Sólido U M 2 0 0 4 0 5 Luis Sio Contnidos Mcánica stadística (Maxwll-oltzman) Colctivo canónico Cálculo d las robabilidads Función d

Más detalles

TELÉFONO DE CONTACTO. Número

TELÉFONO DE CONTACTO. Número STE MODELO SE REPRODUCE A EFECTOS MERAMENTE INFORMATIVOS. PARA SU DESCARGA, IMPRESIÓN Y CUMPLIMENTACIÓN DEBE ACUDIRSE A LA WEB DE LA AGENCIA TRIBUTARIA MINISTERIO DE HACIENDA Declarante Agencia Tributaria

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

Manual de usuario de la empresa

Manual de usuario de la empresa Versión del sistem: 1.0 Fech de lierción: 1 de ferero del 2017 Sistem desrrolldo por L.I. Víctor Rciel Moreno Luis, pr PIRSSA S.A. de C.V. Mnul de usurio de l empres ferero 1 El siguiente mnul descrie

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción A Reserv 1, Ejercicio 4, Opción B Reserv, Ejercicio 6, Opción A Reserv, Ejercicio 4, Opción

Más detalles

Manual gráfico de los descriptores nutricionales ALTO EN

Manual gráfico de los descriptores nutricionales ALTO EN Mnul gráfico de los descriptores nutricionles ALTO EN Ministerio de Slud - 2015 2 Descriptor nutricionl 1 2 3 4 5 Elementos del descriptor Ls crcterístics de este descriptor serán ls siguientes: Símbolo

Más detalles

P I E N S A Y C A L C U L A

P I E N S A Y C A L C U L A Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Editorial Universidad Don Bosco. Colección Cuadernos de Cátedra. Apartado Postal 1874, San Salvador, El Salvador. Autor: Luis Alonso Arenívar

Editorial Universidad Don Bosco. Colección Cuadernos de Cátedra. Apartado Postal 1874, San Salvador, El Salvador. Autor: Luis Alonso Arenívar I I c i t á tm M n m t r r v í n r Dp A o is Alons dr t á c sd o n sco r d Cu Don Bo idd Univrs c i s á B s nci i C d to Lu Editoril Univrsidd Don Bosco Colcción Cudrnos d Cátdr Aprtdo Postl 1874, Sn

Más detalles

CERTIFICADO DE EFICICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES

CERTIFICADO DE EFICICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES RTIIO IIINI NRÉTI IIIOS XISTNTS INTIIIÓN L IIIO O L PRT QU S RTII: Nombre del edificio VIVIN-PISO irección VNI L VIOT NUMRO 12, SLR 1, PLNT 3, PURT 14 UI OSOR (Santa ruz de Tenerife) Municipio UI OSOR

Más detalles

Protocolo de Prueba de Portales de Internet. Cómo probar

Protocolo de Prueba de Portales de Internet. Cómo probar Protocolo de Prueb de Portles de Internet. Cómo probr Elbordo por: Cecili Mrdomingo R. El presente documento pretende profundizr en cunto cómo deben probrse tods ls disposiciones presentds en l Norm Técnic

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

SUBVENCIONES PARA LA MOVILIDAD DE ESTUDIANTES UNIVERSITARIOS SÉNECA Cuaderno del becario

SUBVENCIONES PARA LA MOVILIDAD DE ESTUDIANTES UNIVERSITARIOS SÉNECA Cuaderno del becario SUBVENCIONES PARA LA MOVILIDAD DE ESTUDIANTES UNIVERSITARIOS SÉNECA Cuaderno del becario Curso académico 2012-2013 ÍNDICE 1. DOCUMENTOS PARA LA GESTIÓN DE LAS BECAS 1.1. Documentos para el alta Compromiso

Más detalles

sumas = 58 = 48 = 73 = 59 =

sumas = 58 = 48 = 73 = 59 = Operaciones aritmeticas sencillas sumas 93 + 67 + 91 + 28 + 50 + 94 = 58 = 48 = 73 = 59 = 89 + 20 + 58 + 95 + 2 + 95 = 57 = 100 = 54 = 72 = 57 + 7 + 14 + 10 + 19 + 72 = 62 = 19 = 1 = 9 = 80 + 89 + 29 +

Más detalles

Tema 22. El lema de bombeo para LR

Tema 22. El lema de bombeo para LR Tem 22 Lem de omeo pr LLC Dr. Luis A. Pined IBN: 970-32-2972-7 Cómo podemos decir si un lenguje es lire del contexto? Definir un GLC o diseñr un AP pr el lenguje Pero que tl si el lenguje se descrie por

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

ANEXO 10 - Ejercicio de Planificación

ANEXO 10 - Ejercicio de Planificación ANEXO 10 - Ejrcicio Plnificción En l Mr Mium s sá rlizno un jrcicio plnificción con l fin sgurr un mnjo susnbl los rcursos y l consrvción los srvicios cológicos involucros. Pr llo s h runio l mjor informción

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

SOLICITUD DE PENSIÓN DE JUBILACIÓN NO CONTRIBUTIVA Texto Refundido Ley General Seguridad Social (RDL 1/1994, de 20 de junio)

SOLICITUD DE PENSIÓN DE JUBILACIÓN NO CONTRIBUTIVA Texto Refundido Ley General Seguridad Social (RDL 1/1994, de 20 de junio) SEGURIDAD SOCIAL SOLICITUD DE PENSIÓN DE JUBILACIÓN NO CONTRIBUTIVA Texto Refundido Ley General Seguridad Social (RDL 1/1994, de 20 de junio) I. DATOS DEL INTERESADO 1. Datos personales (Antes de cumplimentar

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

REGISTRO MUNICIPAL DE SOLARES Y EDIFICACIONES RUINOSAS

REGISTRO MUNICIPAL DE SOLARES Y EDIFICACIONES RUINOSAS FINCA Nº 1048 FOLIO Nº 137 1) CLASE DE INMUEBLE INCLUIDO (1) :. Debido a (2) : Solar sin edificar. 2) CIRCUNSTANCIAS: 2.1) Nombre de la finca: Calle o plaza: Cardenal Lluch. Número actual y anteriores:

Más detalles

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es Sesión.- Si un progresión geométric tiene primer término y el quinto término es entonces l rzón r es igul : Unidd I Progresiones y series. D. Progresión geométric..- L poblción de un ciudd h umentdo de

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

El Antiguo Testamento

El Antiguo Testamento Lección1 El Antiguo Testmento Dios Revel Su Grn Pln Fmilirizándose Con El Antiguo Testmento Inspirción Dtos Básicos de l Bibli Este libro que llmmos Bibli es el más importnte de todos los libros. Es el

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.

Más detalles