Taller Parcial 3 EDO I e st f (t)dt

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Taller Parcial 3 EDO I e st f (t)dt"

Transcripción

1 Taller Parcial 3 EDO I-25. TRANSFORMADA DE LAPLACE Dada una función real f (t), su transformada de Laplace es la función real, en variable s, dada por la integral impropia [ T ] L( f ) s : F(s) e st f (t)dt Lim e st f (t)dt T Si dicha integral diverge, se dice que f no posee transformada de Laplace. Recíprocamente; la transformada inversa de Laplace de una función real F(s), definida para s >, es una función real f (t) tal que L( f ) F; escribiremos en tal caso f L (F). Para funciones continuas, esta correspondencia es biyectiva (ver ejercicio 2). () Propiedades de la transformada de Laplace: Para cualesquiera funciones reales f (t), g(t) con transformadas de Laplace respectivas L( f ) F(s), L(g) G(s), verifica: (a) Linealidad: L( f + cg) F(s) + cg(s), c R. (b) Monotonía: Si f g entonces F G. (c) L(e at f (t)) F(s a). Recíprocamente, L( f (t a)) e as F(s). (d) L(t f (t)) F f (t) (s). Recíprocamente, si Lim t existe, entonces L( f (t)/t) s F(z)dz. s ( (e) L( f t ) (t)) sf(s) f (). Recíprocamente, L f (z)dz F(s) s. (f) ( ) Si f (t) es una función periódica, de periodo w >, es decir f (t) f (t + w) para todo t; muestra que F(s) t w e st f (t)dt ( e ws ) (2) ( ) Si f, g son continuas, f g y F G entonces f (t) g(t). (3) Calcula F(s) para f (t) en cada caso: (a) f (t), t R. (b) f (t) t n, a R constante, n > entero. (c) f (t) e at. (d) f (t) t n e at. (e) ( ) f (t) t n cos(at) y f (t) t n sen(at). Sugerencia (i) Utilice el método de integración por partes y el ejercicio (3.c) para relacionar las transformadas de cos(at) y sen(at). (ii) Calcule la transformada de la función compleja f (t) e ait. (iii) Emplee la identidad de Euler e ait cos(at) + isen(at). (f) f (t) t n cos(at). (g) f (t) t n sen(at). (4) La convolución de f, g se define como ( f g)(t) t f (u)g(t u)du. Muestra que (a) f g g f. (b) L( f g) FG.

2 2 2. SOLUCIÓN DE EDO MEDIANTE TRANSFORMADA DE LAPLACE () A partir del problema de valor inicial y (t) f (t), y() y, deduzca que la transformada Y(s) de y(t) satisface Y(s) s (F(s) y ); luego y(t) L ( s (F(s) + y ) ) t f (z)dz + y (2) Repita el ejercicio anterior para y (t) + ay(t) f (t), y() y. Emplee el ejercicio 4.b para verificar que ( ) y(t) L t (s + a) (F(s) + y ) f (z)e a(t z) dz + y e at (3) Resuelva las siguientes EDO empleando transformada inversa de Laplace: (a) y y e 5t. (b) y + 2y t 3 t. (c) y + 3y 4y t 2 + cos(2t). (4) Resuelva los siguientes sistemas (a) x x 2y + t, y x + y. (b) y + x + y, z + y ; y(), y (), z (). (5) Considere el sistema de EDO de primer orden, x (t) ax(t) + by(t) + f (t), y (t) cx(t) + dy(t) + g(t); x() x, y() y, a, b, c, d R, f, g funciones. Muestre que las transformadas de La place satisfacen ( ) ( ) ( ) a s b X F c d s Y G Resuelva el sistema y halle x(t), y(t). Ayuda Reescriba el determinante de la matriz 2 2 como (s a)(s d) bc α (s A) + β (s B) empleando el método de fracciones simples. 3. RECURSIONES LINEALES Una sucesión { : n N} de números reales está en recursión si existe algún entero k >, y alguna función real f (t,..., t k ) tal que, para todo n N, se tiene +k f (, +,..., +k ) El entero k se llama grado de la recursión. Decimos que la recursión es lineal si f T es una transformación lineal, en cuyo caso siempre existen constantes a,..., a k tales que () +k a + a a k +k, n N El polinomio asociado a una recursión lineal como la anterior, es [ ] k p(z) a j z j z k j Una sucesión geométrica de razón u soluciona la recursión lineal si al definir u n se satisface la igualdad ().

3 3 () Para la sucesión de Fibonacci, c c, , n N; (a) Halle el polinomio característico p(z). (b) Verifique que, si u es una raíz de p(z), la sucesión geométrica u n resuelve la recursión , n N. (c) Muestre que p(z) posee dos raíces reales u, u 2. Hállelas. (d) Tome una combinación lineal cualquiera de las dos soluciones geométricas, digamos Au n + Bun 2 ; n N con A, B R arbitrarios. Muestre que cualquiera de estas combinaciones soluciona la recursión. (e) Consiga la combinación geométrica que soluciona la sucesión de Fibonacci. Es decir, halle los valores de A, B para la condición inicial c c. (f) Muestre que la razón entre los términos sucesivos de la sucesión de c Fibonacci tiende a la sección áurea: Lim n+ n c + 5 n 2. (2) Muestre que una combinación lineal de sucesiones geométricas, digamos m A j u n ; j j n N con A,..., A m R arbitrarios, soluciona la recursión general de la igualdad (), siempre que las razones geométricas u,..., u m sean raíces de p(z). Nótese que estas soluciones pueden ser reales o complejas. (3) Halle la combinación geométrica que resuelve cada una de las siguientes recursiones lineales: (a) +2 2+, c, c 2. (b) +2, c, c. (c) +2, c 2, c. (d) , c c. (e) , c c, c SERIES DE POTENCIAS Una función f (t) es analítica en un punto a si, para algún ɛ > y para todo a t < ɛ; la serie de Taylor de f centrada en a converge a f (t); es decir, f (t) f (n) (a) (t a) n ; t (a ɛ, a + ɛ) n! Una función g(t) se escribe como serie de potencias en (un entorno de) a si existen ɛ > y constantes reales, n,,... etc. tales que g(t) (t a) n ; t (a ɛ, a + ɛ) () Si g(t) (t a) n en un entorno de a, muestra que g(a) c, g (a) c. En general, g (n) (a) (n!), de modo que la serie de potencias de g es su serie de Taylor.

4 4 (2) Si f (t), g(t) son analíticas en a, entonces f + g, f g, c f son analíticas en a; donde c R es constante. (3) ( ) Si f (t), g(t) son analíticas en a y g(a), entonces f /g es analítica en a. (4) Suponga que f (t) a n t n es analíticas en. Muestre que: (a) f (t) es analítica en, y f (t) na n t n (n + )a n+ t n. n (b) f (t),..., f (n) (t),... son todas analíticas en. Halla sus desarrollos como series de potencias. (5) ( ) Sea e z n! zn la función exponencial compleja, definida para cualquier z C. (a) Muestre que la serie anterior siempre converge. Ayuda Use el criterio de Cauchy. (b) Halle el desarrollo en serie de potencias de las funciones trigonométricas cos(z) eiz + e iz, sen(z) eiz e iz 2 2i (c) Verifique la identidad de Euler: e iz cos(z) + isen(z). Las funciones exponencial y trigonométricas reales se pueden definir como restricciones de estas funciones al caso z R. Muestre que estas funciones son todas analíticas en cualquier punto. (6) Muestra que toda función polinómica f (t) c + c t + + t n es (trivialmente) analítica en todo punto. 5. SOLUCIÓN DE EDO LINEALES CON RECURSIONES Y SERIES DE POTENCIAS () Considere la EDO y (t) ay(t), es decir, y ay. Asuma que y(t) t n es analítica en t. (a) Sustituya los valores de la serie en la EDO, y muestre que + a (n+). (b) Mediante inducción, demuestre que para cualquier n N se tiene an n! c. (c) Deduzca que y(t) c (at) n n! ce at. (2) Solucione las siguientes EDO homogéneas usando series de potencias: (a) y y. (b) y + y. (c) y + 2y 3y. (d) y + 2y + 4. (3) Para cualquier EDO lineal, homogénea, de orden m > y centrada en t ; y (m) (t) m a j y (j) (t); y() y,..., y (m ) () y m

5 5 asuma que y(t) es analítica. Muestre que y(t) t n si y solamente si los coeficientes de la serie de potencias satisfacen la siguiente recursión lineal: +m m j (n + j)! (n + m)! a j +j ; n N 6. PROBLEMA DE STURM-LIOUVILLE Sean L > y λ dos números reales. Halla una función real y(t) periódica, de periodo L, tal que y (t) λy(t). () Mediante transformada de Laplace: Si Y(s) es la transformada de y(t), demuestra que Y(s) sy()+y (). Considera dos casos: λ > y λ <, Halla s 2 λ la solución general en cada uno. En cuál de los dos obtienes una solución periódica? (Ayuda: Usa el ejercicio.f de la sección de transformada de Laplace). (2) Mediante series de potencias: Asuma que y(t) t n es analítica. (a) Directamente de la EDO deduzca la recursión de 2do orden +2 λ (n+2)(n+), n N. (b) Separe la recursión en dos casos, n par y n impar. Para n 2k par, demuestre por inducción que C 2k λk (2k)! c. Halle una fórmula similar para el caso impar. (c) Divida el resto del problema en dos casos: λ < y λ >. Para λ <, use el ejercicio 5.b de la sección de series de potencias, para demostrar ( )2 ( ) ( ) que λ kπl, y y(t) A cos kπt L + Bsen kπt L donde A c, B ±(c / λ). (d) Haga un análisis similar para λ µ 2 > y deduzca que estas soluciones no pueden ser periódicas.

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE

ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES Y TRANSFORMADA DE LAPLACE Departamento De Ciencias Naturales y Exactas Universidad De La Costa 20 de Abril del 2018 ECUACIONES DIFERENCIALES CON COEFICIENTES

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica. P MA3002 Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna un

Más detalles

Transformada de Laplace Juan Manuel Rodríguez Prieto

Transformada de Laplace Juan Manuel Rodríguez Prieto Juan Manuel Rodríguez Prieto L{ f (t)}(s) = e st f (t)dt Ejemplo 1: Calcular la transformada de Laplace de f(t)=1 L{ f (t)}(s) = e st f (t)dt L{ 1}(s) = e st 1dt L{ 1}(s) = lim B B e st dt e st B L{ 1}(s)

Más detalles

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo Tema 6 y de Laurent Marisa Serrano Ortega José Ángel Huidobro Rojo Índice 1 2 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 3 Observación Teorema 6.1 Sea f función analítica en D(z 0, R). Existe

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace D.U. Campos-Delgado Facultad de Ciencias UASLP Agosto-Diciembre/218 1 CONTENIDO Definición

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

3. Propiedades de la transformada de Laplace

3. Propiedades de la transformada de Laplace Transformada de Laplace 2. Sea F(s) = L [ f (t)]. Pruebe que, para cualquier constante a positiva, se cumple que L [ f (at)] = ( s ) a F. a En los ejercicios del 2 al 4 pruebe que la función dada es de

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT CÀLCUL CURSO 007/08 Profesor: Juan Alberto Rodríguez Velázquez http://deim.urv.cat/ jarodriguez/ Departament d Enginyeria Informàtica i Matemàtiques PROGRAMA

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 009 Práctica 1: Números complejos Números complejos 11 Exprese los siguientes números complejos en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i),

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios Pontificia Universidad Católica de Chile Facultad de Matemáticas MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios 1. Determine los valores y vectores propios de 0 3 A + I = 1 3 A

Más detalles

Función exponencial compleja

Función exponencial compleja Función exponencial compleja Genaro Luna Carreto * Los números reales y los complejos satisfacen los axiomas de campo, pero los segundos, no satisfacen los axiomas de orden. Sin embargo, a raíz de que

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL

ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL PROFESORES ISABEL FLORES Y ROLANDO REBOLLEDO Ejercicio 1. [15 %] Resolver la ecuación 1) x + 5x + 6x = 25t 2 cos t Solución. Esta ecuación se puede

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

Introducción series de fourier Métodos matemáticos Primavera 2018

Introducción series de fourier Métodos matemáticos Primavera 2018 Introducción series de fourier Métodos matemáticos Primavera 018 Genaro Luna Carreto 15 de Abril 018. :05 pm. 0.1. Funciones periódicas Una función f(t) es llamada periódica si existe tal que t R : f(t)

Más detalles

Escuela de Matemáticas

Escuela de Matemáticas Escuela de Matemáticas Universidad de Costa Rica MA-004: Álgebra Lineal Prácticas Sistemas de ecuaciones lineales, Matrices Determinantes MSc Marco Gutiérrez Montenegro 07 Sistemas de ecuaciones lineales

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden.

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. MATEMÁTICAS ESPECIALES II - 8 PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. Considere el sistema de ecuaciones diferenciales ordinarias (EDOs) de primer orden dx dt = f (t,

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

Sistemas de Ecuaciones Diferenciales Ordinarias.

Sistemas de Ecuaciones Diferenciales Ordinarias. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 2016-17 Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales

Más detalles

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Objetivo Exponer las relaciones de la transformada de Laplace con las ecuaciones diferenciales y lineales de orden n junto con

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS. NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS. NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE ECUACIONES DIFERENCIALES PRIMER EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

Álgebra LSTI Agosto 2016

Álgebra LSTI Agosto 2016 Laboratorio # 1 Ecuaciones Cuadráticas I I.- Resuelve las ecuaciones siguientes. 1) 7) 2) 8) 3) 9) 4) 10) 5) 11) 6) 12) II.- Calcula el discriminante para determinar la naturaleza de las raíces de la ecuación

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Soluciones en series de potencias

Soluciones en series de potencias GUIA 8 Soluciones en series de potencias El Teorema Fundamental de existencia y unicidad de soluciones permite definir una función x = xt) como la única solución de un problema de valores iniciales. Un

Más detalles

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua Apellidos y nombre: Análisis Matemático. Convocatoria de enero. 9--26. Prueba Global. Evaluación Continua Instrucciones: No abandonar el examen durante los primeros 3 minutos. Tiempo para esta parte del

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

Transformada de Laplace

Transformada de Laplace Matemática 4 Segundo Cuatrimestre 2 Transformada de Laplace M. del C. Calvo Dada f G(R ), definimos la transformada de Laplace de f como L(f)(s) = e st f(t) dt para los s R para los cuales converge esta

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Lista sobre Solución por Series.

Lista sobre Solución por Series. UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales para Ingenieía ESCUELA DE MATEMÁTICA Segundo Ciclo del 2015 Lista sobre Solución por Series. Solución de ecuaciones diferenciales

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones.

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones. Álgebra Tema 1: Fundamentos Lógica matemática. Teoría de conjuntos. Tema 2: Combinatoria Combinatoria. Conjuntos parcialmente ordenados. Tema 3: Sistemas de ecuaciones lineales Eliminación gaussiana. Sistemas

Más detalles

Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra

Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Para una función f holomorfa en un entorno de un punto

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 1 CLASE 1 Ecuaciones de variables separables

MATEMÁTICAS ESPECIALES II PRÁCTICA 1 CLASE 1 Ecuaciones de variables separables MATEMÁTICAS ESPECIALES II PRÁCTICA CLASE Ecuaciones de variables separables. Hallar la ecuación de la familia de curvas tales que la pendiente de la recta tangente en un punto cualquiera tome el valor

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Ceros de las funciones holomorfas

Ceros de las funciones holomorfas Tema 9 Ceros de las funciones holomorfas A partir de ahora vamos a ir obteniendo una serie de aplicaciones importantes de la teoría local desarrollada anteriormente. El desarrollo en serie de Taylor deja

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

PLAN INTEGRAL DE ÁREA PICC HME -DBA

PLAN INTEGRAL DE ÁREA PICC HME -DBA Fecha: 30/01/ Página: 1 de 2 1. IDENTIFICACIÓN: AREA: MATEMÁTICAS DOCENTES: Ángela Asprilla-Victoria Callejas 2 PLANEACIÓN: COMPETENCIA COMPONENTE D.B.A (Derechos Básicos de Aprendizaje) PERÍO DO GRADO:ONCE

Más detalles

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales 2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace

Más detalles

a a a a

a a a a JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Circuitos LFSR 3 Matrices 4 Introducción Definición Sea k un entero positivo y a, a 0, a 1,...,

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Relaciones de Recurrencia

Relaciones de Recurrencia Relaciones de Recurrencia Elvio Accinelli Abstract Estas notas no pretenden ser más que una sugerencia para el comienzo del tema Relaciones de Recurrencia. En realidad es el esquema de como pienso abordar

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Ejercicios Variable Real

Ejercicios Variable Real UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE MATEMÁTICAS Ejercicios Variable Real Antonio Córdoba (Manuel Mellado Cuerno) 1º Cuatrimestre del curso 2016-2017 manuel.mellado@estudiante.uam.es 2 Capítulo 1

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Polinomios ortogonales. Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre

Polinomios ortogonales. Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre Polinomios ortogonales Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre Ec. de Legendre de orden α (1 t 2 )x (t) 2tx (t) + α(α + 1)x(t) = 0. α es un parámetro real. Surge al resolver

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles