Control #1 MA22A Cálculo en Varias Variables Semestre Otoño 2007 Profesor: Marcelo Leseigneur P. 04 de Abril de 2007 Capelle. = f x dx.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control #1 MA22A Cálculo en Varias Variables Semestre Otoño 2007 Profesor: Marcelo Leseigneur P. 04 de Abril de 2007 Capelle. = f x dx."

Transcripción

1 Universidad de Chile Depto. de Ingeniería Matemática Control # MAA Cálculo en Varias Variables Semestre Otoño 7 Profesor: Marcelo Leseigneur P. Fecha: Auiliar: Renzo Lüttges José Miguel Vera Thomas 4 de Abril de 7 Capelle Pregunta : Considere V = { f C⁰[,], R} el espacio de las funciones contínuas de [,] en R y la norma: f = f d. a) Pruebe que V, es un espacio vectorial normado. b) Demuestre que < f, g > = f g d es un producto interno. c) Considere la sucesión de funciones { f k } definida por: f k = { k / [,/ ] (/, // k ] (// k, ] i) Pruebe que f k es de Cauchy con. ii) Concluya que V, no es Banach. d) Considere ahora f = sup [,] f y g k una sucesión de Cauchy en V. Demuestre que V, es Banach, mostrando que g k es convergente con. Pregunta : Indicaciones: -Si una sucesión de funciones contínuas converge uniformemente, entonces lo hace a una continua. -Recuerde que R, es Banach. a) Para cada =, e y = y, y en R definimos: d, y = { y si = y y si y Verifique que d define una métrica en R, dibuje dos puntos del plano e indique en su gráfico la forma en que la distancia entre estos puntos es medida. Dibuje además la bola unitaria usando la métrica d.

2 b) Sea E = C [,], R. Para cada elemento f E definimos: N f = f f ' = sup f sup f ' [,] [,] N f = f f f ' = f sup f f ' [,] i. Muestre que N y N son normas en E. ii. Son las normas N y N equivalentes? Indicación: -Recuerde que dos normas a y b son equivalentes si eisten y mayores que cero tales que: a b b a E. c) Resuelva uno de los siguientes problemas: y i. Se define en R la métrica d, y= y decir las sucesiones de cauchy convergen.. Demostrar que R, d es completo, es ii. Sean A y B dos conjuntos no vacíos de puntos de R n. Se llama A+B al siguiente conjunto: A+B={a+b / a A, b B}. Pruebe que si A es abierto y B es cualquier conjunto, entonces A+B es abierto. iii. Sea X, d un espacio métrico.. Si A B X, pruebe que A ' B '.. Si A y B son subconjuntos de X, pruebe que A B ' = A' B '. Pregunta 3: a) Encuentre el límite de las siguientes funciones cuando, y,.. f, y = y ⁴ y⁴ ² (en función de R ). f, y = ³ y³ ² y²y⁴ 3. f 3, y = y² ³ y² ⁴ ⁴y⁴

3 b) Relacione las siguientes funciones con su correspondiente superficie, curvas de nivel y gráfico de densidad. (notar que mientras más blanco el color de la función en el gráfico de densidad, mayor es su valor). f, y = ²y² f, y = cosh y e y f 3, y = sen sen y f 4, y = ³ y³ ² A B C D I II III IV R S T U Tiempo 3 horas

4 CÁLCULO EN VARIAS VARIABLES - MAA Pauta Control Problema. Consideremos V = { f C ([, ],R) } el espacio de las funciones contínuas de [, ] en R y la norma: (a) Pruebe que (V, ) es e.v.n. f = f() d Sol. Hay que verificar dos cosas, que V es e.v y que es norma. Claramente suma de contínuas y ponderación por escalar, sigue siendo contínua. Probemos que es norma: f = f() d = Como f es contínua y es positiva, entonces la función tiene que ser la función nula, ya que si eiste un punto donde no vale, entonces eiste una vecindad de este punto donde la función es estrictamente positiva. Por lo tanto en ese pedazo hay área bajo la curva. Lo que sería una contradicción con que f =. La implicancia para el otro lado es directa. λf = λf() d = λ f() d = λ f() d = λ f f + g = f() + g() d f() + g() d = f() d + g() d f + g Por lo tanto (V, ) es e.v.n. (b) Demuestre que, es un producto interno. < f, g > = f() g()d Sol. < f + g, h >= [f() + g()] h()d = f() h()d + g() h()d =< f, h > + < g, h > < λf, g >= λf() g()d = λ f() g()d = λ < f, g > < f, g >= f() g()d = g() f()d =< g, f > < f, f >= f() f()d = f() d >, f. (Por continuidad de f) (c) Considere la sucesión {f k } V, definida por: [, ] f k () = k ( /) + (, + ] k ( +, ] k Pruebe que f k, con es de Cauchy. Concluya que (V, ) NO es Banach. Sol. f m f n = f m() f n () d = f m() f n ()d = m+ n+, si (m < n) Con esto la sucesión f k es de Cauchy.

5 Claramente el límite de f k es la función: { [, f() = ] (, ] La cuál no es contínua f / V, por lo tanto f k no converge en V. Con esto (V, ) no puede ser Banach. (d) Considere ahora f = sup [,] f() y g k suc. de Cauchy en V. La idea es probar que (V, ) es Banach. Por lo tanto pruebe que g k es convergente con. (Hint: Si una sucesión de funciones contínuas converge uniformemente, entonces converge a una función contínua. Además use el hecho que (R, ) es Banach.) Sol. Como g k es de Cauchy cumple que: ɛ > ; m, n > N g m g n < ɛ g m () g n () < ɛ; [, ] Como se cumple para el sup, es para todo. Como g m () es sucesión de Cauchy en R,, se tiene que converge (R es Banach con ). Con esto tenemos que g m converge puntualmente a una función g. Pero sabemos que g m () g n () g m () g(), n g m () g() < ɛ; [, ] g m g < ɛ Con esto g m converge uniformemente a g. Falta ver que g V, pero eso sale de la indicación. Límite uniforme de funciones contínuas es contínuo. g V Así (V, ) es un espacio de Banach.

6 P. a) () i Esclaroque < d( y, ) <, independientedelcaso ( ii) pdq d( y, ) = d( y, ) si d( y, ) = y = y = d( y, ) si d( y, ) = + y + y = + y + y = d( y, ) ( iii) pdq d( y, ) = = y = = y y y d( y, ) = y = y = = y d( y, ) = + y + y = = y = = y contradicción: casoinviable sededuced( y, ) = = y ( iv) separarencasos: seanyz,, \ y = y = z = y = z d( y, ) = y = z + z y z + z y = d( z, ) + d(, z y)

7 y = z y = z d( y, ) = + y + y = + y z + z + y + z + y + y z = y z + z + + z = d( z, ) + d(, z y) = y z d( y, ) = y + y + z + z + y + z + y z = d( z, ) + d(, z y) y z = y d( y, ) y y y z z + y + z + z y + z + z + z + y + z y = d( z, ) + d(, z y) b) ParalaNormaN ( f) () iesclaroque N ( f) ( sumadenormas) ( ii) pdq N ( cf) = cn ( f), cen\ N ( cf) = cf + cf = c( f + f ) = cn ( f) ( iii) pdq N ( f) = f = : N ( f) = f + f = f = f = sup f( ) = f( ) = : f( ) = f ( ) = f + f =

8 ( iv) pdqn ( f + g) N ( f) + N ( g) N ( f + g) = f + g + f + g f + g + f + g = N ( f) + N ( g) ParaN ( f) () iesclaroque N ( f) ( ii) pdq N ( cf) = cn ( f), cen\ enefecto: N ( cf) = cf() + sup cf( ) + cf ( ) ( iii) pdq N ( f) = f = = c f() + csup f( ) + f ( ) = cn ( f) : f( ) = f ( ) = f() = f() + sup f( ) + f ( ) = N ( f) = ( iv) pdqn ( f + g) N ( f) + N ( g) N ( f) = f() + sup f( ) + f ( ) = f() = f( ) + f ( ) = ( edo) f( ) = Aep( ) f() = f( ) = Notarque [,] f( ) + g ( ) + f ( ) + g'( ) f( ) + f ( ) + g ( ) + g'( ) en particularsetieneque: sup f( ) + f ( ) + sup g ( ) + g'( ) sup f( ) + g ( ) + f ( ) + g'( ) sup f( ) + f ( ) + sup g ( ) + g'( ) luegoseconcluyeque: f() + g() + sup f( ) + g ( ) + f ( ) + g'( ) N ( f + g) N ( f) + N ( g) f() + g() + sup f( ) + f ( ) + sup g ( ) + g'( )

9 sonlasnormasequivalentes? veamosque cen\ talque: N ( f) cn ( f) setiene: f() sup f( ) sup f( ) + sup f ( ) = N ( f) : f( ) + f ( ) f( ) + f ( ) sup f( ) + sup f ( ) en particular sup f( ) + f ( ) sup f( ) + sup f ( ) = N ( f) seconcluye: f() + sup f( ) + f ( ) N ( f) N ( f) N ( f) faltademostrar cen\ talque: N ( f) cn ( f) seag ( ): = f( ) + f ( ) () estaedotiene porsolucion: f( ) = Ae ( ) f ( ) = A ( e ) Ae ( ) reemplazandoen(): A ( ) = ge ( ) t A( ) = A() + gtedt () t f( ) = A() e + e gtedt () f() = A() porotra parte: t f( ) = f() e + e gtedt () t e f() + e gt () edt (*)

10 como [,] e e e, setiene: (*) f() + e gt () dt f() + e sup gt () dt f() + e(sup f() t + f ()) t dt en ( f) t en particular:sup f( ) en ( f) () porotrolado: f ( ) = f( ) f ( ) f( ) f( ) f ( ) + f( ) de() y(3): sup f ( ) sup f( ) f ( ) + sup f( ) f() + sup f( ) f ( ) + sup f( ) ( + en ) ( f) (3) N ( f) (+ ) en ( f) esdecir, sonequivalentes.

11 Universidad de Chile Depto. de Ingeniería Matemática Pauta Problema c) MAA Cálculo en Varias Variables Semestre Otoño 7 Profesor: Marcelo Leseigneur P. Fecha: Auiliar: Renzo Lüttges José Miguel Vera Thomas Capelle 6 de Abril de 7 Pregunta : c) Resuelva uno de los siguientes problemas: y i. Se define en R la métrica d, y= y decir las sucesiones de cauchy convergen.. Demostrar que R, d es completo, es Solución: Sea k una sucesión de Cauchy con la métrica d. Para demostrar que converge veremos que es de Cauchy en R,. pdq, N ; n, m N n m. Sea. definimos =. Puesto que k es de Cauchy con d, n m N ; n, mn n m lo cual implica que n, mn n m Luego k es de Cauchy en R,, por lo tanto es convergente y R, d es completo. =. ii. Sean A y B dos conjuntos no vacíos de puntos de R n. Se llama A+B al siguiente conjunto: A+B={a+b / a A, b B}. Pruebe que si A es abierto y B es cualquier conjunto, entonces A+B es abierto. Solución: Sea b B, definimos el conjunto C b = { R n ; = b ; para algún A}. Veamos que C b es abierto. Sea C b e y B, r a donde r a es tal que B b,r a A. Sabemos que r a eiste pues b A y A es abierto. Tenemos entonces y tal que y r a y b b r a y b b r a luego y b B b, r a A, con lo cual y b A, de donde se tiene que y bb = y C b. Con esto C b es abierto. Finalmente escribimos A+B como A B = C b b B

12 iii. Sea X, d un espacio métrico. Solución:. Si A B X, pruebe que A ' B '.. Si A y B son subconjuntos de X, pruebe que A B ' = A' B '..Sea A', esto es B ', A. Pero A B, luego B ', B, con lo cual B '.. Sea A B', esto es: B ', A B {B ', A } {B ', B }. A' B ' A' B '.

13 Universidad de Chile Depto. de Ingeniería Matemática Pauta Pregunta 3 MAA Cálculo en Varias Variables Semestre Otoño 7 Profesor: Marcelo Leseigneur P. Auiliar: Renzo Lüttges José Miguel Vera Thomas Capelle Pregunta 3: Fecha: a) Encuentre el límite de las siguientes funciones cuando, y,. 6 de Abril de 7. f, y = y ⁴ y⁴ ² Solución: (en función de R ) y f, y = ⁴y⁴² y y⁴² Luego si 4 4 ² y⁴ ² y⁴ ² y⁴ 4 = ²y⁴ 4 ² y⁴ y f es continua. Ahora bien, para tenemos, tomando =m y² : f m y², y = m y. Epresión que para = y tomando lim y m² y⁴m² Si la epresión diverge al tomar lim. Luego f no es continua. y depende de m.. f, y = Solución: ³ y³ ² y²y⁴ ³ cos³ sen³ f, = ² ⁴ cos⁴ = cos³ sen³ cos³ sen³ ² cos⁴ luego f continua. 3. f 3, y = Solución: y² ³ f, y = ⁴ y⁴ Luego lim, y, y² ³ y² ⁴ ⁴y⁴ 3 ⁴ y⁴ 3/ 4 y ⁴y⁴ / 4 f, y =. ⁴ y⁴ 4 ⁴y⁴ ⁴y⁴ 3 4 = ⁴y⁴ 4 =, y 4

14 b) Relacione las siguientes funciones con su correspondiente superficie, curvas de nivel y gráfico de densidad. (notar que mientras más blanco el color de la función en el gráfico de densidad, mayor es su valor). f, y = ²y² f, y = cosh y e y C II U A IV S f 3, y = sen sen y f 4, y = ³ y³ ² D III T B I R

Tarea 1 - MA2001. P1. Demostrar que el conjunto {(x, y) R 2 : x + y < 1} no es convexo. (hacer un dibujo de este conjunto). Deducir de ello que:

Tarea 1 - MA2001. P1. Demostrar que el conjunto {(x, y) R 2 : x + y < 1} no es convexo. (hacer un dibujo de este conjunto). Deducir de ello que: Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Primavera 29 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla Tarea 1 - MA21

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5.

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5. Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07- Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Ingeniería Matemática Guía Semana 3 Diferenciabilidad y derivadas. Sean Ω

Más detalles

2.3. Aplicaciones del teorema de Baire a espacios de Banach

2.3. Aplicaciones del teorema de Baire a espacios de Banach 40 CAPÍTULO. COMPLETITUD Y CATEGORÍAS.3. Aplicaciones del teorema de Baire a espacios de Banach En esta sección, veremos algunas aplicaciones del teorema de Baire a espacios vectoriales normados. En particular,

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general?

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general? Índice Funciones de varias variables reales I Espacios normados José Manuel Mira Departamento de Matemáticas Universidad de Murcia Grado en Matemáticas 2013-2014 (18-09-2013) 1 Espacios normados. El espacio

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

Conjuntos Abiertos y Cerrados

Conjuntos Abiertos y Cerrados Conjuntos Abiertos y Cerrados 1. (a) En la prueba de que la intersección de una colección finita de conjuntos abiertos es un conjunto abierto, dónde se uso la hipótesis de que la colección es finita? 2.

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Espacios Metricos, Compacidad y Completez

Espacios Metricos, Compacidad y Completez 46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de

Más detalles

Apuntes del curso. Cálculo en Varias Variables (MA22A)

Apuntes del curso. Cálculo en Varias Variables (MA22A) Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil Matemática Universidad de Chile Apuntes del curso Cálculo en Varias Variables (MA22A) Profesores: Rafael Correa - Pedro Gajardo

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas Problemas Curso 2013-2014 Problemas 1. Sea E un espacio normado. Si a, b son elementos de E, probar: (a) 1 2 (a + b) 2 1 2 a 2 + 1 2 b 2. (b) a max{ a + b, a b }. 2. Demostrar que en un espacio normado,

Más detalles

Tema 10: Continuidad en varias variables.

Tema 10: Continuidad en varias variables. Tema 10: Continuidad en varias variables. José M. Salazar Noviembre de 2016 Tema 10: Continuidad en varias variables. Lección 13. Continuidad en varias variables. Índice 1 Nociones básicas en R n. Funciones

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Espacios Métricos. Jorge Alberto Guccione Juan José Guccione

Espacios Métricos. Jorge Alberto Guccione Juan José Guccione Espacios Métricos Jorge Alberto Guccione Juan José Guccione Índice general Capítulo 1. Espacios métricos 1 1 Definición y ejemplos........................ 1 1.1 Producto de numerables espacios métricos..............

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Teorema de Existencia y unicidad (caso n-dimensional).

Teorema de Existencia y unicidad (caso n-dimensional). Teorema de Existencia y unicidad (caso n-dimensional). Sea U R n un conjunto abierto y V R un intervalo abierto en R. Considere la aplicación v : V U R n diferenciable con derivada continua en una vecindad

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Cálculo Integral Series de potencias. Universidad Nacional de Colombia

Cálculo Integral Series de potencias. Universidad Nacional de Colombia Cálculo Integral Series de potencias Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Series de potencias Una serie de potencias alrededor

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: 4 5 NOTA Condición mínima de aprobación (4 puntos): 5% del eamen correctamente

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt.

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas 1. Halle una función armónica u(z) definida en D tal que { 1 para < θ < π lím u(reiθ

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n,

x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n, COMPLETITUD La noción de completitud que vamos a definir, es una generalización de la conocida en espacios métricos. Como en este caso, el hecho de saber que un cierto conjunto de un e.v.t. es completo

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

El espacio de funciones continuas

El espacio de funciones continuas Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.

Más detalles

Convergencia Sucesiones convergentes

Convergencia Sucesiones convergentes Lección 6 Convergencia Vamos a estudiar la noción de convergencia de sucesiones en un espacio métrico arbitrario, generalizando la que conocemos en R. La definimos de forma que quede claro que se trata

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Qué son esos espacios de Hilbert? Qué son esos espacios de Hilbert? David Hilbert Para relajarnos

Más detalles

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten 1 Conceptos Básicos 1.1 Introducción En este capítulo hacemos una revisión del método de epansiones asintóticas. Se presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

Más detalles

Diferenciciación en R n

Diferenciciación en R n Diferenciciación en R n R. Álvarez-Nodarse Universidad de Sevilla Cómo definir la derivada? Definición Sea A un abierto de R n, a A y f : A R n R m. La derivada parcial i-ésima (1 i n) de f en a se define

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Guía Semana 7 Teorema de la función inversa. Sea f : Ω Ê N Ê N, Ω abierto, una función de clase

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre INDUCCION MATEMATICA DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 Principio de la buena ordenación

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1 CÁLCULO I (26/27). Problemas -6.. Encontrar todos los reales para los que: a) 2 +2 b) 3 < 5 c) 5π 4π d) 4 7 = 4 2 e) 2 f) 3 + 2 > 2 g) 2 < h) + 3 5 2. Precisar si los siguientes subconjuntos de R tienen

Más detalles

Topología del plano complejo

Topología del plano complejo Tema 2 Topología del plano complejo Repasamos algunos conceptos y resultados acerca de las propiedades métricas y topológicas del plano complejo. Todos ellos son bien conocidos, pues como espacio métrico,

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0.

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas 1. Si f n : Ω C analítica y {f n } converge uniformemente en compactos de Ω, entonces

Más detalles

Teorema del punto fijo para funciones contractivas

Teorema del punto fijo para funciones contractivas Teorema del punto fijo para funciones contractivas 1. Definición (función contractiva). Sea (X, d) un espacio métrico. Una función f : X X se llama contractiva (función contractante, contracción) si existe

Más detalles

1. Normas matriciales

1. Normas matriciales Guía álgebra lineal ING 40: Cálculo numérico 203-20 Facultad de Ingeniería y Ciencias Aplicadas Profesor cátedra: Marcelo Tapia Ayudantes de corrección: José Manuel Barberis Ignacia Scarneo Normas matriciales

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Hoja 1. Problemas de Análisis de Variable Real

Hoja 1. Problemas de Análisis de Variable Real Hoja. Problemas de Análisis de Variable Real. Demostrar que 3 + 2 3 + + n 3 = ( 2 n(n + )) 2 para todo n N. 2. Demostrar que n < 2 n para todo n N. 3. Demostrar que la suma de los cubos de cualesquiera

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos

Más detalles

Ejercicios Análisis II

Ejercicios Análisis II Ejercicios Análisis II Ejercicios resueltos del libro Real and Complex Analysis de Walter Rudin Mauricio Bravo Vera mauro.bravo@gmail.com Segundo semestre 2010 Índice general 1. Integración Abstracta

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Una sucesión en A C es una función que asocia a cada i N un punto a i A, y se le denota como {a i }. La sucesión {a i } es acotada si existe un real r tal que a i r para toda i. La

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

Análisis I Apuntes de clase. Preparado por JC Trujillo O.

Análisis I Apuntes de clase. Preparado por JC Trujillo O. Análisis I Apuntes de clase Preparado por JC Trujillo O. Febrero 2014 - Junio 2014 Índice general 1 Estructuras fundamentales del Análisis 5 1 Topología........................................ 5 1.1 Ejemplos....................................

Más detalles

PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y

PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y MA3701 - Optimización, Primavera 018 Profesores: J. Amaya, V. Acuña PAUTA C1 P1.a) Sea C un subconjunto de IR n. Se dice que es un convexo de punto medio si para cada par x, y C se tiene que 1 x + 1 y

Más detalles

Sucesiones. Convergencia

Sucesiones. Convergencia Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 3: ESPACIOS CON PRODUCTO INTERNO. ESPACIOS DE HILBERT. Espacios producto interno. Espacios

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

Problemas de Series de Fourier

Problemas de Series de Fourier Problemas de Series de Fourier 1. Generalidades MMF II: Grupo I http://euler.us.es/~renato/clases.html Definición 1.1 Se dice que un espacio vectorial E es un espacio euclídeo si dados dos elementos cualesquiera

Más detalles

Clase 1: Fundamentos de programación

Clase 1: Fundamentos de programación Clase 1: Fundamentos de programación dinámica Matemática avanzada para macroeconomía Hamilton Galindo II Semestre 2015 Contenido 1 Panorama Qué tipo de problema queremos resolver? Proceso de transformación

Más detalles