UNIVERSIDAD DE CONCEPCIÓN
|
|
|
- Francisco Gómez Ayala
- hace 8 años
- Vistas:
Transcripción
1 .5. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es clro que si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f ( x )cos x dx, =,,,3,... Si f SC[-,] es u fució impr, etoces () f( x) = b sex, (CM) SERIE DE FOURIER DE SENOS (SFS) = co () b = f ( x )se x dx, =,,3,... Si f SC[,], etoces podemos costruir u SFC, si hcemos l extesió pr de f [-,]; y podemos costruir u SFS, pr l mism f, si hcemos l extesió impr de f [-,]. Ejemplo 7. Dd l fució f(x)=x, <x<, hllr ls SFS y SFC de f(x). SO: ) SFC: Hcemos l extesió pr de f sobre [-,], que deotmos por f p. extesió periódic de f p sobre todo 3, l deotmos por F p, como lo muestr l Fig.5 Figur 5. Extesió pr de u fució defiid e [,]. f p pr b = ; = x dx= ; x xdx = cos = ( ) 3, f ( x x x p x ) cos cos cos 3 cos = x (CM). 7 Prof. Dr. Rúl F Jiméez
2 b) SFS: Hcemos l extesió impr de f sobre [-,], que deotmos por f i. Por F i deotmos l extesió - periódic todo 3 de f i. Ver Fig. 6 Figur 6. Extesió impr de u fució defiid e [,]. 8 f i impr = ; b = x xdx 3, 3,,,.. 5 se, = 6,,,.. f x x x se se se 3 se x se x i = x se x (CM) EJERCICIOS 6.. Hllr el desrrollo e SFC de l fució f(x)=sex, <x<. Hllr el desrrollo e SFC de l fució f(x)=e x, <x< 3. Hllr el desrrollo e SFS de l fució f(x)=e x, <x<. Hllr el desrrollo e SFS de l fució f(x)=cosx, <x< y usr este resultdo pr demostrr que = SF DE FUNCIONES DE PERIODO ARBITRARIO. E l Itroducció vimos l ecesidd de poder expresr u fució f:[,] x fx ( ) = c se, = 75 3 e l form Prof. Dr. Rúl F Jiméez
3 dode los coeficietes c debe elegirse cuiddosmete. No somos udces, si os pltemos el mismo problem pr f e l form: x fx ( ) = c cos. = Si embrgo, el problem más importte es: Qué fucioes vlores reles puede escribirse e l form x x (3) fx ( ) = + cos + b se? = Cosideremos el espcio de ls fucioes SC[-,], >. Sbemos (por ejercicio ddo) que x x x x (),cos,se,cos,se,... form u cojuto OG. Más ú, tl como e el cso =, ests fucioes so u bse pr SC[-,]. Por lo tto, ls series socids CM e dicho espcio. uego, por simple cmbio de escl sustituyedo x/ por x, teemos ls SF e SC[-,] de l form (3) co coeficietes ddos por: (5) x fx dx b x = ( )cos ; =,,,.. fx dx = ( )se =,,.., Co los mismos rgumetos teriores, teemos SF e el espcio SC[,b]: x (6) fx b b x ( ) = + cos + se b co (7) = b x fx b b dx b b x = fx b b dx = ( )cos ; ( )se (pr, l fórmul vle pr =,,,..;pr b, l fórmul vle pr =,,3,..) E muchs pliccioes del áre de l igeierí prece fucioes τ- periódics. Defiiedo ω =, obteemos τ (8) fx ( ) = + cosωx+ bseωx co τ τ (9) = f ( x )cos ωxdx ; b = f ( x )se ωxdx. τ τ 76 Prof. Dr. Rúl F Jiméez
4 x, x< 3 Ejemplo 8. Hllr l SF de l fució f( x) = x, 3 x SO: Aplicdo ls fórmuls directmete, obteemos = f( x)cos xdx; b = f( x)sexdx. Pero, del gráfico de F= extesió -periódic de f, result: = F( x)cos xdx; b = F( x)sexdx b, = 3,,,... Pero, e [-,], F(x) x = xcos xdx, =,,,.. uego, = xdx =, = (( ) ), =,,.. fx ( ) = + (( ) )se x. EJERCICOS 7., < x <. Hllr el desrrollo e SF de l fució f(x)= x, < x<, < x < SF coverge e [-8,8]. y trzr l gráfic l cuál l. Hllr u SF que sólo coteg térmios seo y que CP l fució x- pr <x<..7. DESIGUADAD DE BESSE e IDENTIDAD DE PARSEVA. DEFINICION 5. Si g(x) es u proximció de f(x) e [,b], etoces el error cudrático medio (ecm) de est proximció, está ddo por gx ( ) f( x) dx. b b (3) [ ] Supogmos que g(x) es u poliomio trigoométrico de l form: p gx ( ) = + pcos x+ qse x p cosx+ q sex 77 Prof. Dr. Rúl F Jiméez
5 Mostrremos que pr cd, eligiedo los coeficietes de Fourier de f,,...,, b, b,..., b, obteemos el ecm míimo (E ), l proximr f SC[-,] por g(x). E efecto, cosideremos el error cudrático totl : [ ( ) ( )] gx fx dx = p p x q x f x d cos... cos ( ) x p cos... ( ) ( )cos... ( ) = + p x+ p f x p f x x+ + [ f x ] Omitimos los térmios de l form pmcosm xqsse sx pues su itegrl sobre [-,] es ul. Itegrdo los térmios p, p,... y grupdo, [ ( ) ( )] 78 Prof. Dr. Rúl F Jiméez dx. p gx fx dx= = [ fx ( )] dx+ p f( x) dx + p p f( x)cos xdx q q f( x)sexdx. Miimicemos est expresió: El térmio e p es u fució cudrátic e p (prábol covex). Por lo tto, el míimo se lcz dode l derivd (co respecto p ), se ul. Es decir, p f( x) dx= p f x dx = ( ) Aálogmete pr p : p f( x)cos xdx = p = f( x)cosxdx y sí sucesivmete...p,..., p ;... q b. Por lo tto, los coeficietes de Fourier de f d el E. uego, E = [ s( x) f( x) ] dx, dode s N (x) es l -ésim sum prcil de l SF de f. uego, tomdo p =, p =,...etc. E = [ f( x) ] + + b b Como el error cudrático totl es positivo, etoces E, y sí obteemos l expresió: b... b f ( x ) d x, (3) [ ] coocid como DESIGUADAD DE BESSE..
6 Est desiguldd implic que b + + = coverge (se trt de u serie de térmios positivos cuys sums prciles form u sucesió cotd). De hecho, lím E =, lo que equivle firmr que: f SC f x dx= + + b (3) [, ], [ ( )] expresió coocid como IDENTIDAD DE PARSEVA. EJERCICIOS 8. Se f(x)=-x, <x<, - periódic. sex ) Hllr el error cudrático totl l proximr f por S =se x y evlúe pr =,,3. b) Gráficmete, muestre que y=sex e y=3sex d errores cudráticos totles myores que y=sex, l proximr f e [,]. c) Gráficmete, muestre que y=sex+sex e y=sex+/sex d errores cudráticos totles myores que y=sex+sex, l proximr f e [,]. d) Usdo l idetidd de Prsevl muestre que = CONVERGENCIAS EN DE AS SERIES DE FOURIER Covergeci Putul. Teorem. " Se f SC( ), - periódic y tl que f(x)=½[f(x + )+f(x - )] e todo x 3. Etoces l SF de f(x) CP f(x ) e cd x dode f(x) teg derivd por l izquierd y por l derech". NOTA: E prticulr y f ' SC( ) etoces SF coverge f(x) e cd x. Covergeci Uiforme. Teorem 5. " Se f C( ), - periódic y tl que f ' SC( ). Etoces l SF CU (y tmbié coverge bsolutmete) f(x) e cd itervlo cerrdo de. NOTA: Observr que pr que exist CU se exige que f(x) se cotiu (pues todos los térmios de l SF so cotiuos), co sólo f ' SC( ). Esto sigific que f ' podrí o existir e lguos putos y si embrgo l SF coverge uiformemete. = 79 Prof. Dr. Rúl F Jiméez
7 NOTA: Co u pequeñ restricció podemos exteder este resultdo pr icluir fucioes discotius. E efecto, " Si f SC( ), f ' SC( ), - periódic, etoces l SF CU e culquier itervlo cerrdo de que o coteg putos de discotiuidd de f(x)". 3 Covergeci e Medi. Teorem 6. " Si f SC( ) y es - periódic, etoces l SF CM f(x)". NOTA: E cd uo de los resultdos teriores, podemos cmbir - periódic por τ- periódic, τ> rbitrrio. 8 Prof. Dr. Rúl F Jiméez
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n
. SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
Introducción a las SUCESIONES y a las SERIES NUMERICAS
Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U
Sucesiones y series de Funciones
Sucesioes y series de Fucioes U sucesió de fucioes es u plicció que cd úmero turl hce correspoder u fució f. Supodremos e lo que sigue que ls fucioes f so fucioes reles defiids e u itervlo I. Usremos el
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES
E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!
Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de
Capítulo 3. Integrales impropias Introducción
Cpítulo 3 Itegrles impropis 3.. Itroducció Extederemos l oció de itegrl csos e los cules f puede o ser cotd e [,b] y itegrles sobre itervlos ifiitos Defiició 3.. ( Itegrl impropi de primer especie). Se
La integral de Riemann
Cpítulo 6 L itegrl de Riem Vmos dr u defiició precis de l itegrl de u fució defiid e u itervlo. Este tiee que ser u itervlo cerrdo y cotdo, es decir [,b] co < b R, y l defiició que dremos de itegrl solo
Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.
Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región
APÍTULO L itegrl.5 efiició de l itegrl. Sums de Riem.5. Aproimció del áre de u regió E est secció precismos lgus ides epuests previmete, co respecto l problem de ecotrr el áre de l regió bjo l gráfic de
A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.
CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre
Cálculo II (05) Semestre -0 TEMA 5 SERIES NUMÉRICAS Semestre -0 José Luis Quitero Julio 0 Deprtmeto de Mtemátic Aplicd U.C.V. F.I.U.C.V. CÁLCULO II (05) José Luis Quitero Ls ots presetds cotiució tiee
LÍMITES DE SUCESIONES. EL NÚMERO e
www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.
Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
α β la cual puede presentar
5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
Raíces Reales y Complejas
Ríces Reles y Complejs Rmó Espioz Armet AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Durte el siglo XVIII, Euler, d Alembert y Lgrge probro, idepedietemete, que todo poliomio de grdo 1 teí u ríz sobre el cmpo
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
2. Sucesiones, límites y continuidad en R
. Sucesioes, límites y cotiuidd e R. Sucesioes de úmeros reles { } =,,...,,... es u sucesió: cd turl correspode u rel. Mtemáticmete, como u fució sig cd elemeto de u cojuto u úico elemeto de otro: : N
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
9. Sucesiones y series de funciones
9. Sucesioes y series de fucioes Aálisis de Vrible Rel 2014 2015 Resume Estudiremos sucesioes y series de fucioes, y los coceptos de covergeci putul y covergeci uiforme de ests. Relcioremos estos co todos
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El
Sucesiones y series de funciones
Cpítulo 10 Sucesioes y series de fucioes Expoemos este tem siguiedo el cpítulo 11 de [Apostol1], completdo co lgus prtes del cpítulo 7 de [Brtle-Sherbert]. E cd cso iremos ddo l refereci decud. 10.1. Sucesioes
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER
F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales
Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos.
PRÁCTICA SERIES Práctics Mtlb Objetivos Práctic 7: Covergeci Series de Térmios Positivos Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
Guía ejercicios resueltos Sumatoria y Binomio de Newton
Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv
Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)
FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos
Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales
SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u
CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS
Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números
PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co
- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones Riemann integrables
- Ferdo Sáchez - Deprtmeto de Mtemátics - Uiversidd de Extremdur Cálculo II Fucioes Riem itegrbles Deprtmeto de Mtemátics Uiversidd de Extremdur 8 6 F El cálculo de áres de cojutos puede hcerse sbiedo
FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)
FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes
EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*
EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes
Las reglas de divisibilidad
Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites
Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales
Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs
1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.
Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
Cálculo de volúmenes II: Método de los casquetes cilíndricos
Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr
Matemáticas II Hoja 2: Matrices
Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
Una introducción a la medida e integral de Lebesgue. Roberto Quezada Batalla Departamento de Matemáticas, UAM-I
U itroducció l medid e itegrl de Lebesgue Roberto Quezd Btll Deprtmeto de Mtemátics, UAM-I 2 Ídice geerl 1. L Itegrl de Riem 5 2. L medid de Lebesgue 17 2.1. Itroducció.............................. 17
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
1. Serie de Potencias
. Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada
ANÁLISIS MATEMÁTICOS
ANÁLISIS MATEMÁTICOS TEMA. FUNCION REAL DE VARIABLE REAL..... Itroducció..... Domiio..... Limites...6.4. Cotiuidd...9 TEMA : DERIVADAS..... Itroducció..... Sigos de l derivd..... Formuls priciples de derivds....4.
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
ESQUEMA DE LOS CONJUNTOS NUMÉRICOS
Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos
SERIES DE FOURIER Y PROBELMA DE LA CUERDA VIBRANTE. Complementos de análisis. I.P.A. Trabajo final Profesor: Federico de Olivera
SERIES DE FOURIER Y PROBEMA DE A CUERDA VIBRANTE Complemetos de aálisis. I.P.A. Trabajo fial Profesor: Federico de Olivera César Roqueta Febrero de 9 Ídice. Defiició de serie de Fourier de ua fució Defiició
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
Notas de Análisis I. Gabriel Larotonda. Parte 6: Integrales en R
Nots de Aálisis I Gbriel Lrotod Prte 6: Itegrles e R. Itegrles Vmos empezr est secció recordrddo l ide de áre e el plo. Todos teemos presete que ddo u rectágulo culquier R e el plo, su áre o superficie
Ejemplos 1. Encontrar el área de la región limitada por la curva y = 6 x x 2 y el eje x. Solución
Cálculo de Áres Ejemplos. Ecotrr el áre de l regió limitd por l curv = 6 el eje. (6)(6) / A d 4 8 9 7 A ()( 8) A = 5/6 uiddes cudrds. Ecotrr el áre de l regió etre l curv = e el eje etre = = A = e d e
el blog de mate de aida CSI: sistemas de ecuaciones. pág
el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
1.3.6 Fracciones y porcentaje
Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:
Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones
Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos
CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES
CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES ISBN: 978-84-69-79-6 Pedro J. López Cello Idice geerl Itroducció. Fucioes reles de vrile rel. Fucioes
PROPIEDAD FUNDAMENTAL DE LOS RADICALES
Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
