Raíces Reales y Complejas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Raíces Reales y Complejas"

Transcripción

1 Ríces Reles y Complejs Rmó Espioz Armet AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

2 Durte el siglo XVIII, Euler, d Alembert y Lgrge probro, idepedietemete, que todo poliomio de grdo 1 teí u ríz sobre el cmpo de los úmeros complejos Este resultdo se comezó llmr el teorem fudmetl del álgebr Si embrgo, e 1799 Guss mostró e su tesis doctorl que ess demostrcioes teí errores y dio l primer demostrció correct de este resultdo Teorem 1 (Teorem Fudmetl del Algebr) Todo poliomio x ( ) [ x] de grdo 1 tiee u ríz e Otr demostrció del teorem fudmetl del álgebr fue dd por Argd e 1806 El mismo Guss dio otrs dos demostrcioes e 1816 y u últim e 1849 Ls demostrcioes de Argd y Guss permitiero clrificr l oció de úmero complejo Desfortudmete, tods ls demostrcioes utiliz coceptos y resultdos de álisis, los cules está fuer de los propósitos de este libro, por lo que o dremos igu demostrció El teorem fudmetl del álgebr segur l existeci de ríces complejs, pero o os dice cómo ecotrrls U resultdo muy útil pr buscr ríces reles es el siguiete Teorem Si (x) es u poliomio co coeficietes reles y r, s so dos úmeros reles tles que (r) y (s) tiee sigos opuestos, etoces existe u ríz rel etre r y s Este resultdo es ituitivmete cierto, si embrgo pr demostrrlo formlmete es ecesrio utilizr propieddes de fucioes cotius, por lo que omitiremos l prueb

3 Ejemplo 1 Cosideremos el poliomio (x)= x 4 10x +1 Observ que (0)=1 y (1) = 8, por lo que (x) tiee u ríz rel e el itervlo [0, 1] Se x ( ) [ x] y se M el míimo comú múltiplo de los deomidores de los coeficietes de (x) Por lo tto el poliomio b(x)= M(x) tiee coeficietes eteros Además r es ríz de (x) si y sólo si r es ríz de b(x) Por lo que el problem de ecotrr ríces rcioles de u poliomio co coeficietes rcioles se reduce l problem de ecotrr ríces rcioles e u poliomio co coeficietes eteros Teorem 3 Si ( x) = x + x + + x es u poliomio de grdo co coeficietes eteros y si r = p/q es u ríz rciol de (x), dode p y q so primos reltivos, etoces p 0 y q Demostrció Por hipótesis 1 p p p = q q q , por lo tto p p q pq q = 0 3

4 De hí que p = q( p pq p ) y por lo tto q p Como mcd(p, q) = 1, se sigue que q Tmbié se puede observr que p( p + p q+ + q ) = q y por lo tto pq 0 y de hí que p 0 Corolrio 1 Si ( x) = x + x + + x es u poliomio co coe ficietes eteros y si etoces r y r 0 r es u ríz rciol de (x), Ejemplo Hllr tods ls ríces del poliomio (x)=6x 4 x 3 +5x x 1 Solució Busquemos primero ríces rcioles Si p/q es u ríz, etoces por el teorem terior p ( 1) y q 6, por lo tto los cdidtos ser ríz so: ±1, ±1/, ±1/3, ±1/6 4

5 Ahor bie, Por lo tto (1) = 8 > 0 Por otr prte (0) = 1 < 0, por lo que debe hber u ríz rel etre 0 y 1 (l cul podrí ser rciol) Observemos que / Por lo tto 1/ es ríz del poliomio, demás (x)=(x 1/)(6x 3 +x +6x +) = (x 1)(3x 3 + x +3x + 1), por lo que de hber otr ríz rciol p/q ést deberí de cumplir que p 1 y q 3, por lo que los cdidtos ser ríz so: ± 1 y ± 1/3 Y vimos que 1 o puede ser ríz, por lo que podemos descrtr este úmero Después de ispeccior lguos cdidtos llegmos que 6 6 1/ Por lo tto 1/3 es otr ríz Además ls otrs ríces debe ser ríces del poliomio 6x +6 = 6(x + 1), el cul tiee i y i como ríces E coclusió ls ríces de (x) so: 1/, 1/3,i y i 5

6 Ejemplo 3 Demostrr que si p es primo etoces p es irrciol Demostrció Cosideremos el poliomio x p Los cdidtos ser ríces rcioles so ± 1, ± p El lector puede comprobr fácilmete que iguo de estos úmeros es ríz del poliomio, por lo que o existe u úmero rciol r tl que r = p, y por lo tto p es irrciol El siguiete teorem estblece que si u úmero es ríz de u poliomio co coeficietes reles, etoces el cojugdo de dicho úmero tmbié es ríz del poliomio Teorem 4 Si ( x) = x + x + + x es u poliomio co coeficietes reles y r es ríz de (x), etoces r tmbié es ríz de (x) 6

7 Demostrció Por hipótesis: ( r) = r + r + + r+ = Ahor bie, utilizdo propieddes del cojugdo de u úmero complejo y el hecho de que los coeficietes del poliomio so úmeros reles, teemos que ( r) = r + r + + r+ = 0 = r 1r r 1 0 = r 1r r 1 0 = r 1r r 1 0 = Ejemplo 4 Ecotrr ls ríces del poliomio x 4 6x 3 +5x + 30x 50, sbiedo que u ríz es 3 i Solució Utilizdo divisió sitétic: i 3 i i i i 0 7

8 Además, por el teorem terior, 3 + i tmbié es ríz, lo cul podemos verificr co divisió sitétic: 1 3 i i 3 + i 3 i i El último cociete correspode l poliomio x 5, el cul tiee dos ríces: ± 5 Por lo tto ls ríces del poliomio so: 3 i,3 + i, 5 y 5 E el siglo XVI el mtemático itlio Gerolmo Crdo obtuvo u fórmul pr ls solucioes de l ecució cúbic co coeficietes complejos: x 3 + bx + cx + d =0 Posteriormete, su discípulo Ludovico Ferrri obtuvo u fórmul pr ls solucioes de l ecució cuártic: x 4 + bx 3 + cx + dx + e =0 Durte los siglos XVI, XVII y XVIII hubo itetos ifructuosos pr hllr u fórmul que permitier ecotrr ls solucioes de u ecució poliomil de grdo cico, hst que e 184 el jove mtemático oruego Niels Herik Abel probó que ést o podí resolverse por medio de rdicles, es decir, o existí u expresió ivolucrdo solmete ls opercioes de sum y multiplicció, sí como ríces -ésims, que permitier ecotrr ls solucioes de u ecució poliomil de grdo cico e térmios de los coeficietes del poliomio Poco después el jove frcés Evristo Glois ecotró codicioes ecesris y suficietes pr que u ecució poliomil pued resolverse por rdicles Recordemos que u poliomio p(x) K[x] de grdo myor que cero, es irreducible e K[x], si todo divisor de p(x) es de l form λ o λp(x) pr λ k, λ 0 8

9 Teorem 5 Si p(x) es irreducible e [ x], etoces grdo p(x)=1 Demostrció Por el teorem fudmetl del álgebr, existe r tl que p(r) = 0, por lo tto, por el teorem del fctor (x r) p(x) Como p(x) es irreducible, debe existir λ tl que p(x)= λ(x r) y de hí que grdo p(x) = 1 Corolrio Todo poliomio x ( ) [ x] de grdo > 0, puede ser escrito e l form x = λ x r1 x r x r ( ) ( )( ) ( ) dode λ, λ 0 y r 1,, r so ls ríces de (x) Además est fctorizció es úic excepto por el orde e el que prece los fctores Teorem 6 p(x) es irreducible e [ x] si y sólo si grdo p(x)=1 o p(x)= x + bx + c, dode b 4c < 0 Demostrció Supogmos que p(x) es irreducible e [ x] Por el teorem fudmetl del álgebr, existe z tl que (z)=0 Si z, etoces x z [ x] y demás, por el teorem del fctor, (x z) p(x) Como p(x) es irreducible, se sigue que p(x)= λ(x z) pr lgú λ y por lo tto p(x) tiee grdo uo Si z, etoces z z, demás por el teorem 4 p( z ) Se ( ) = ( )( ) = ( + ) + = (Re ) + b x x z x z x z z x zz x z x z por lo tto bx ( ) [ x] Ahor bie, por el lgoritmo de l divisió px ( ) = xbx ( ) ( ) + rx ( ), 9

10 dode r(x)=0 o grdo r(x) < ; e otrs plbrs r(x)= ux + v, dode uv, Observemos que 0= p(z)= (z)b(z)+ r(z) y b(z)=0 por lo que r(z) = 0 y por lo tto uz + v = 0 Como z, est ecució implic que u = v = 0 y de hí que r(x) = 0 E coclusió p(x)= b(x)q(x) Pero como p(x) es irreducible, etoces q(x)= pr lgú y por lo tto p(x)= b(x)= x + bx + c dode b =Re z y c = z Observemos demás que b 4c =4 (Re z) 4 z =4 [(Re z) z ] < 0, pues Im z 0 Recíprocmete, si grdo p(x) = 1 etoces p(x) es irreducible por el teorem??, y si p(x)= x + bx + c, co b 4c < 0, etoces p(x) o tiee ríces reles, por lo tto p(x) es irreducible e [ x] Corolrio 3 Todo poliomio x ( ) [ x] de grdo > 0, puede ser escrito e l form ( x) = λ( x r) ( x r )( x + bx+ c ) ( x + b x+ c ) 1 k dode λ, λ 0, r1,, r k so ls ríces reles de (x) y los bscs j j so úmeros reles tles que b 4c < 0 pr tod j =1,,s Además = k +s j j 10

11 Ejemplo 5 Fctorizr el poliomio x 4 6x 3 +5x + 30x 50 como producto de poliomios irreducibles e () [ c] ; (b) [ c] ; (b) [ c] Solució E el ejemplo 4 vimos que ls ríces de este poliomio so Por lo tto su fctorizció e [ x] es: 3 i,3 + i, 5 y 5 ( x 3 + i)( x 3 i)( x 5)( x+ 5) y su fctorizció e [ x] es: ( x 6x+ 10)( x 5)( x+ 5) Por último, x 5 es irreducible e [ x] e [ x] es:, por lo que l fctorizció del poliomio ( x 6x+ 10)( x 5) 11

12 Ejercicios 1 Ecuetr ls ríces del poliomio: 15x x + 1 x 4 e [ x] Ecuetr ls ríces del poliomio: 16 x 3 +8 x 7 x +1 e [ x] 3 Muestr que i y i so ríces dobles del poliomio y ecuetr l otr ríz x 5 3ix 4 + x 3 6ix + x 3i 4 Ecuetr tods ls ríces del poliomio: x 3 +6 x 4x + 160, sbiedo que u ríz es 3i 5 Ecuetr tods ls ríces del poliomio: x 5 3 x 4 +4x 3 4x +4 sbiedo que tiee 1 + i como u ríz doble 6 Supoiedo que cd ríz de multiplicidd m es cotd m veces, demuestr x ( ) x de grdo 1 tiee exctmete ríces que todo poliomio [ ] 7 Demuestr que todo poliomio ( ) u ríz rel x e [ x] de grdo impr tiee l meos 1

13 8 Cosider el poliomio ( x) = x + x e [ x] Demuestr que si r1, r so ls ríces de (x) etoces = ( r + r ) 1 1 = rr Cosider el poliomio 3 ( x) = x + x + x+ e [ x] 1 0 Demuestr que si r1, r, rso 3 ls ríces de (x) etoces = ( r + r + r ) 1 3 = rr + rr + rr = ( rrr ) Ecuetr ls ríces r 1, r y r 3 del poliomio x 3 +x +3x + sbiedo que r 1 = r + r 3 11 Ecuetr ls ríces r 1, r y r 3 del poliomio 3x 3 +x 19x +6 sbiedo que r 1 + r = 1 1 Ecuetr ls ríces r 1, r y r 3 del poliomio x 3 7x 4x + 16 sbiedo que r = rr

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

PROBLEMAS DE VARIABLE COMPLEJA. 1.-Demuestre que el inverso aditivo de todo número complejo z es único

PROBLEMAS DE VARIABLE COMPLEJA. 1.-Demuestre que el inverso aditivo de todo número complejo z es único PROBLEMAS DE VARIABLE COMPLEJA -Demuestre que el iverso ditivo de todo úmero compleo es úico Solució Supogmos que existe más de u iverso ditivo de Se esos iversos distitos Etoces * * * * = + + = + + =

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS)

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) ATENCIÓN Se eser que el estudite, o solo coozc ls defiicioes y teorems que rece e est list, sio que se cz de resoder stisfctorimete culquier

Más detalles

TEMA 8: LÍMITES Y CONTINUIDAD

TEMA 8: LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN 1.1. Límite fiito de u fució TEMA 8: LÍMITES Y CONTINUIDAD Decimos que: lim f ( x) L, si x / x ' x f ( x') L x Decimos que: lim f ( x) L, si x / x ' x f ( x') L x 1.2. Límite ifiito

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

PROPIEDAD FUNDAMENTAL DE LOS RADICALES

PROPIEDAD FUNDAMENTAL DE LOS RADICALES Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

Polinomios de Taylor

Polinomios de Taylor Poliomios de Tylor Itroducció Los poliomios so de ls ucioes más bues que hemos usdo lo lrgo de uestros cursos de álisis. Este cliictivo reside e el hecho de que so ucioes cotius co iiits derivds cotius;

Más detalles

LÍMITES DE SUCESIONES. EL NÚMERO e

LÍMITES DE SUCESIONES. EL NÚMERO e www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites

Más detalles

La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática.

La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática. Álgebr y Geometrí Alític Año UNIDAD Nº : Ceros de Poliomios Uidd Nº 3: CEROS de POLINOMIOS Poliomio: defiició. Iguldd de poliomios. Fució poliómics. Ceros o ríces de poliomio. Ríces de u poliomio de er.

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

POTENCIA DE UN NÚMERO NATURAL. a, es igual al producto de n veces el número Natural

POTENCIA DE UN NÚMERO NATURAL. a, es igual al producto de n veces el número Natural LICEO DE CERVANTES PP. AGUSTINOS BOGOTÁ ÁREA DE MATEMÁTICAS ASIGNATURA: Mtemátics DOCENTE: Elky F. Ortiz GRADO: QUINTO FECHA: CALIFICACIÓN DESCRIPCIÓN: Guí - Tller de potecició, Rdicció y logritmció. ESTUDIANTE:

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

UNIVERSIDAD DE CONCEPCIÓN

UNIVERSIDAD DE CONCEPCIÓN .5. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es clro que si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f ( x )cos x dx, =,,,3,... Si f SC[-,] es

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Área de Matemáticas. INTERVALOS Un intervalo es un subconjunto de números reales, existen los siguientes tipos de intervalos INTERVALOS CERRADO

Área de Matemáticas. INTERVALOS Un intervalo es un subconjunto de números reales, existen los siguientes tipos de intervalos INTERVALOS CERRADO Istitució Eductiv S Vicete de Púl Cieci, Tecologí y Sociedd e Armoí Áre de Mtemátics AREA: Mtemátics PROFESOR: Crlos A. Márquez Ferádez Mil: kmrfer@gmil.com Grdo: GUIA Nº TEMA: INTERVALOS Y DESIGUALDADES

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

1. Determinar razonadamente si el número λ 3 2 n

1. Determinar razonadamente si el número λ 3 2 n SOLUCIONES DE LA 8ª OME Determir rzodmete si el úmero λ es irrciol r todo etero o egtivo SOLUCIÓN Suogmos que es r Etoces es múltilo de y es múltilo de ero o de co lo que o uede ser u cudrdo erfecto Suogmos

Más detalles

Radicación en R - Potencia de exponente racional Matemática

Radicación en R - Potencia de exponente racional Matemática Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de M t emátic

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

10. Series de potencias

10. Series de potencias 0. Series de potecis Aálisis de Vrible Rel 204 205 Resume Se verá e este tem u tipo especil de serie de fucioes: ls series de potecis. Veremos que ests tiee us propieddes muy prticulres, que ls hce prticulrmete

Más detalles

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando: Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + ) LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS

PROBLEMAS Y EJERCICIOS RESUELTOS PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e

Más detalles

Aprendizajes esperados:

Aprendizajes esperados: Deprtmeto de Mtemátics Profesor: Guillermo Corbcho C. cüâxut wx äxä wx `tàxåöà vtá Octvos Básicos NOMBRES: PUNTAJE / 30 NOTA: Apredizjes esperdos: Aplicr regl de los sigos e l multiplicció y divisió de

Más detalles

Qué valores de x satisfacen las siguientes ecuaciones?

Qué valores de x satisfacen las siguientes ecuaciones? Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de Mtemátic

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

Capítulo 3. Integrales impropias Introducción

Capítulo 3. Integrales impropias Introducción Cpítulo 3 Itegrles impropis 3.. Itroducció Extederemos l oció de itegrl csos e los cules f puede o ser cotd e [,b] y itegrles sobre itervlos ifiitos Defiició 3.. ( Itegrl impropi de primer especie). Se

Más detalles

EXPONENTES ( POTENCIAS Y RAÍCES )

EXPONENTES ( POTENCIAS Y RAÍCES ) EXPONENTES ( POTENCIAS Y RAÍCES Cursos ALBERT EINSTEIN - ONLINE Clle Mdrid Esqui c/ Av L Triidd LAS MERCEDES 9977 990 www. -eistei.co ALGEBRA es l prte de l teátic que estudi l ctidd e su for ás geerl,

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

Tema 3: Progresiones.

Tema 3: Progresiones. Tem : Progresioes. Ejercicio. Los dos primeros térmios de u progresió geométric so 50 y 00. Clculr r, 6 y. Solució: 00 r 00 50 r r, 50 50, 00, 60, 4 4, 58, 5 4 ; 6, 08 6 TÉRMINO GENERAL: 50, - Ahor lo

Más detalles

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS TEMA ECUACIONES INECUACIONES Y SISTEMAS CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver 4 5 6 (+7) =

Más detalles

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30 Fcultd de Cotdurí y Admiistrció. UNAM Fctorizció Autor: Dr. José Muel Becerr Esios MATEMÁTICAS BÁSICAS FACTORIZACIÓN CONCEPTO DE FACTORIZACIÓN U fctor es cd uo de los úmeros ue se multilic r formr u roducto.

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos

Más detalles

Introducción a las SUCESIONES y a las SERIES NUMERICAS

Introducción a las SUCESIONES y a las SERIES NUMERICAS Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana INVESTIGCIÓN & DESRROLLO No. Vol. : 7 79 ISSN -6 RESUMEN EL ÁLGEBR LINEL Y EL PROBLEM DE MÁXIMOS Y MÍNIMOS Stigo Relos Pco Uiversidd Privd Bolivi srelos@upb.edu Recibido el 5 juio ceptdo pr publicció el

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

TEMA 2: EXPRESIONES ALGEBRAICAS

TEMA 2: EXPRESIONES ALGEBRAICAS Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

Capítulo 3. Potencias de números enteros

Capítulo 3. Potencias de números enteros Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se

Más detalles

Matemáticas Propedéutico para Profesional. Fracciones Algebraicas

Matemáticas Propedéutico para Profesional. Fracciones Algebraicas Uiversidd Tec Mileio: Profesiol Mtemátics Propedéutico pr Profesiol Mtemátics Propedéutico pr Profesiol Tem. Opercioes co frccioes lgebrics, rdicles úmeros complejos. Opercioes: Frccioes Algebrics Simplificció.

Más detalles

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales. POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2

Más detalles

Cálculo del ph de disoluciones de ácidos

Cálculo del ph de disoluciones de ácidos álculo del ph de disolucioes de ácidos Si se disuelve e gu u ácido H, de cocetrció y costte : H H H O H OH Pr clculr ls cocetrcioes de ls especies e el equilibrio, pltemos:.m. [.. [ [OH L expresió de l

Más detalles

Radicales MATEMÁTICAS I 1

Radicales MATEMÁTICAS I 1 Rdicles MATEMÁTICAS I. POTENCIAS DE EXPONENTE FRACCIONARIO. RADICALES..- Cocepto de rdicció Ddo u úero rel R y N, l ecució x tiee: Si es ipr, y culquier úero, u úic solució que se deot por. Si es pr y

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles