SUCCESSIONS. Si dividim cada dos termes consecutius de la successió de Fibonacci, obtenim:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SUCCESSIONS. Si dividim cada dos termes consecutius de la successió de Fibonacci, obtenim:"

Transcripción

1 SUCCESSIONS Pàgia REFLEXIONA I RESOL Quates parelles de coills? Quates parelles de coills es produira e u ay, começat amb ua parella úica, si cada mes qualsevol parella egedra ua altra parella, que es reproduïx al seu tor des del sego mes? Razoado del modo que se propoe, llegamos a que el úmero de parejas, mes a mes, es:,,,,, 8,,,,, 89, Así, el úmero total de parejas al fial del año es de (la que había al pricipio y otras uevas). La successió de Fiboacci i el úmero F Si dividim cada dos termes cosecutius de la successió de Fiboacci, obteim: 8,,,,, Comprova, calculat quociets ous, que el úmero a què s aproxime és el úmero auri. 89,7 ;,88 ;, Se aproxima al úmero áureo f +,80 Uitat. Successios

2 Ua represetació gràfica Observa aquesta composició feta amb quadrats: r r t è è 8è 7è 9è El costat dels quadrats primer i sego és. A partir del tercer, el costat de cada u dels quadrats següets que es va format és igual a la suma dels costats dels dos que el precedixe. Qui és el costat del 8é? I el del 9é? Observa també els rectagles que es forme successivamet: : : : Els quociets etre les seues dimesios forme la successió que hem estudiat e l apartat aterior. S aproxime, per tat, al úmero F. Açò vol dir que aquests rectagles s assemble, cada vegada més, a rectagles auris. Comprova-ho per als quatre rectagles següets: : 8 : : : El lado del 8.º cuadrado es y el lado del 9.º cuadrado es. 8 8 :,;,;,9 ;,7 Se aproxima al úmero áureo f +,80 Uitat. Successios

3 UNITAT Pàgia. Digues el criteri pel qual es forme les successios següets i afig dos termes a cada ua: a), 8,, 8,, b), 8, 7,,, c), 0, 00, 000, 0 000, d) 8; ; ; ; 0,; e),,, 7,, 8, f) 8,,,, 7, 9, g),,,,,, h) 0,,,, 8, a) Cada térmio, a partir del segudo, se obtiee sumádole al aterior: a 8, a 7. b) Cada térmio es el cubo del lugar que ocupa: b, b 7. c) Cada térmio, a partir del segudo, se obtiee multiplicado por 0 el aterior: c , c d) Cada térmio, a partir del segudo, se obtiee multiplicado por (dividiedo etre ) el aterior: d 0,, d 7 0,. e) Cada térmio, a partir del tercero, se obtiee sumado los dos ateriores: e 7 9, e 8 7. f) Cada térmio, a partir del tercero, se obtiee restado los dos ateriores: f 7, f 8. g) Cada térmio es el úmero del lugar que ocupa, co sigo positivo si es impar, y egativo si es par: g 7 7, g 8 8. h) Cada térmio, a partir del segudo, se obtiee restádole 7 al aterior: h, h 7. Pàgia. Forma ua successió recurret,, amb aquestes dades: a, a, +,,, 8,,,,,. Escriu els quatre primers termes de les successios que tee com a terme geeral: + ( ) b ( ) c ( ) d ( )( ) e + ( ) a, a 8, a, a 8 b, b, b, b c, c, c 8, c d 0, d 0, d, d e 0, e 8, e 0, e 8 Uitat. Successios

4 . Costruïx ua successió la llei de recurrècia de la qual siga +. Si tomamos, por ejemplo, a, etoces quedaría: a +, a +, a + 0, a 0 +, a +, a ,. Dóa el terme geeral de les successios següets que o sigue recurrets: a), 8,, 8,, b), 8, 7,,, c), 0, 00, 000, 0 000, d) 8,,,, e),,, 7,, 8, f) 8,,,, 7, 9, g),,,,,, h) 0,,,, 8, a) + ( ) b) b c) c 0 d) d 8 ( ) e) Es recurrete f) Es recurrete g) g ( ) h) h 0 7 ( ) Pàgia. Quies de les successios següets só progressios aritmètiques? E cada ua digues-e la diferècia i afig-hi dos termes més: a), 7,,, 9, b),,, 9,, 8, c),,,, 8, 9, d) 0, 7,,,, e) 7,;,8;,;,; ; f) 8;,;,8;,7;,; a) Es ua progresió aritmética co d ; a, a 7 7. b) No es ua progresió aritmética. c) No es ua progresió aritmética. d) Es ua progresió aritmética co d ; d, d 7 8. e) Es ua progresió aritmética co d,; e 9,; e 7 7,8. f) Es ua progresió aritmética co d,9; f,; f 7 7,.. E la successió a), troba el terme a 0 i la suma dels 0 primers termes. a 0 a + 9 d (a S 0 + a 0 ) 0 ( + 79) 0 80 Uitat. Successios

5 UNITAT. E la successió d), troba el terme d 0 i la suma dels 0 primers termes. d 0 d + 9 ( ) (d S 0 + d 0 ) 0 (0 07) E la successió e), troba el terme e 00 i la suma dels 00 primers termes. e 00 e + 99 (,) 7, 8, (e S 00 + e 00 ) 00 (7, ) E la successió f), troba els termes f 8, f 7 i la suma f 8 + f f + f 7. f 8 f + 7, , 8, f 7 f +, , 0, E la suma pedida hay 0 sumados. (f (8, + 0,) 0 S + f 7 ) 0, Pàgia. Quies de les successios següets só progressios geomètriques? E cada ua digues-e la raó i afig-hi dos termes més: a),, 9, 7, 8, b) 00; 0; ;,; c),,,,, d),,,,,, e) 90, 0, 0, 0/, 0/9, a) Es ua progresió geométrica co r ; a, a b) Es ua progresió geométrica co r ; b,, b,. c) Es ua progresió geométrica co r ; c, c 7. d) Es ua progresió geométrica co r ; d 7, d e) Es ua progresió geométrica co r ; e, e Calcula la suma dels 0 primers termes de cada ua de les progressios geomètriques de l exercici aterior. a) a 0 a r a S 0 0 r a r Uitat. Successios

6 b) b 0 b r 9 00 ( ) 9 b 00 S 0 0 r b 8 99,80 r c) c 0 ; S d) d 0 ; S 0 0 e) e 0 e r 9 90 ( ) e S 0 0 r e 7,99 r 8. E quies de les progressios geomètriques de l exercici aterior pots calcular la suma dels seus ifiits termes? Troba-la. Podemos calcular la suma de sus ifiitos térmios e las progresioes geométricas co r < : b b) S r e e) S , r ( ) Pàgia 9. Calcula: (0 + ) (0 + ) 0. Calcula: ( ) ( ) Calcula: Uitat. Successios

7 UNITAT. Calcula: ( ) + ( ) + ( ) + + ( 0) ( ) Pàgia Represeta la successió i assiga u valor al límit. 0 8 a, a, a,; a,7; a,,, a 0,, ; a 00,0; ; a 000,00, lím 0. Represeta la successió b + i assiga u valor al límit. 8 b,; b 0; b 0,7; b ; b 0,7; b 0; b 7,; b 8 ; b 9,; b 0 8,, 0 b 00 0, lím b +@ Uitat. Successios 7

8 Pàgia 9. Estudia el comportamet d aquestes successios per a termes molt avaçats i idica el límit: a) b) b + c) c d) d a) a 0,8; a 00,8; a 000,8, lím +@ b) b 0,; b 00,87; b 000,987, lím b c) c 0 0; c 00,7 0, lím d) d 0,999; d 00,999999, lím d. Digues, raoadamet, quies de les successios següets tee límit: a) b) b ( ) + c) c ( ) d) d ( ) a) a 0 0,0; a 00 0,000; a 000 0,00000, lím 0. b) b 0 0,7; b 0,7; b 00 0,9; b 0 0,9, Los térmios pares so positivos y tiede a ; los térmios impares so egativos y tiede a. La sucesió o tiee límite. c) c, c, c, c , c 00 00, Los térmios impares so egativos y tiede los térmios pares so positivos y tiede a +@. La sucesió o tiee límite. d) d ; d 0,; ; d 00 0,000; d 0 0,0009, lím d 0. Pàgia. Obtí els huit primers valors de (termes de la successió) i de S (sumes parcials) e cada ua de les progressios següets. Calcula e cada ua el lím S : a), 0, 0, b), 0, 0, c) 7, 7, 7, d) 7, 7, 7, e) 0; ;,; f) 0; ;,; a) a, a 0, a 0, a 8, a,; a,8; a 7 0,; 8 a 8 0,08. 8 Uitat. Successios

9 UNITAT S ; S 7; S 9; S 0; S 0,; S 07,8; S 7 07,99; S 8 08,98. Como r 0, < ; lím S 08, ) r b) b ; b 0; b 0; b 8; b,; b,8; b 7 0,; b 8 0,08. S ; S 7; S 9; S 87; S 90,; S 88,9; S 7 89,; S 8 89,7. Como r 0, < ; lím S 89,8 r 7 + a c) c 7; c 7; c 7; c 7; c 7; c 7; c 7 7; c 8 7. S 7; S 0; S 7; S 0; S 7; S 0; S 7 7; S 8 0. b S o tiee límite. d) d 7; d 7; d 7; d 7; d 7; d 7; d 7 7; d 8 7. S 7; S ; S ; S 8; S 8; S 0; S 7 9; S 8. lím S +@. e) e 0; e ; e,; e 7,8; e 0,7; e,88; e 7 9,898; e 8,8808. S 0; S ; S,; S,8; S 7,; S 99,99; S 7 9,90; S 8,9908. Como r, > ; lím S +@. f) f 0; f ; f,; f 7,8; f 0,7; f,88; f 7 9,898; f 8,8808. S 0; S ; S,; S,88; S,8; S 9,07; S 7 0,8; S 8,9998. S o tiee límite. Uitat. Successios 9

10 Pàgia EXERCICIS I PROBLEMES PROPOSATS PER A PRACTICAR Criteri per a formar successios Descriu el criteri amb què es forme aquestes successios i afig tres termes a cada ua: a),,,,, b),,,,, c),, 0, 7,, d) 0,, 8,,, e),,, 0,, a) Cada térmio lo obteemos dividiedo etre el lugar que ocupa el térmio: a, a 7, a b) Cada térmio es la raíz cuadrada del lugar que ocupa: a, a 7 7, a 8 8 c) Cada térmio es el cuadrado del lugar que ocupa más uidad: a 7, a 7 0, a 8 d) Cada térmio es el cuadrado del lugar que ocupa meos uidad: a, a 7 8, a 8 e) Cada térmio, a partir del segudo, se obtiee sumádole al lugar que ocupa el térmio aterior: a, a 7 8, a 8 Escriu els cic primers termes de les successios els termes geerals de les quals só aquests: a) + b) b 0 c) c d) d + e) e f) f ( ) a) a,; a,0; a,00; a,000; a, b) b 0; b ; b ; b ; b 7 c) c ; c ; c ; c ; c d) d ; d ; d ; d ; d 8 0 Uitat. Successios

11 UNITAT e) e ; e ; e ; e ; e 0 f) f ; f 0; f ; f 0; f Escriu el terme geeral d aquestes successios: a),,,, b),,,, c) 0,,,,, d),;,0;,00;,000; 0 7 a) b) b ( ) c) c d) d Costruïx dues successios les lleis de recurrècies de les quals sigue les següets: a) a 0 a a + b) a a a) 0,,,,,,,, b),,,,,,,, 8 8 Busca ua llei de recurrècia per a defiir les successios següets: a), 7,,, 7, b),,,,, a) a, a 7, par > b b) b, b, b par > b Progressios aritmètiques De les successios següets, digues quies só progressios aritmètiques i escriu-e el terme geeral: a),;,;,;,8; ; b) ;,;,;,8;,; c),,, 7,, d),,, 8,, a) Es ua progresió aritmética co a, y d,., + ( ),,. b) Es ua progresió aritmética co b y d 0,. b + ( ) ( 0,) 0, +,. c) y d) o so progresioes aritméticas. Uitat. Successios

12 7 De les successios següets, idica quies só progressios aritmètiques: a) b) b 8 c) c d) d e) e + f) f a) ( ) + Es ua progresió aritmética co d. b) b b [( ) )] + + Es ua progresió aritmética co d. c) c, c, c, c, c c? c c. No es ua progresió aritmética. 8 8 ( ) d) d d Es ua progresió aritmética co d. Es ua progresió aritmética co d. f) f 0, f, f 8, f, e) e e + ( + ) + +. f f? f f. No es ua progresió aritmética. 8 Calcula els termes a 0 i a 00 de les següets progressios aritmètiques: a),, 0,,, b),, 8,, 8, 7 c),,,,, a) a 0 a + 9d a 00 a + 99d b) a 0 a + 9d 9 a 00 a + 99d Uitat. Successios

13 UNITAT c) a 0 a +9d a 00 a + 99d Calcula la suma dels primers termes de les següets progressios aritmètiques: a),, 9,,, b) ;,9;,8;,7;,; c) c d) d a) a ; a a + d + 7 (a S + a ) ( + 7) 97 b) b ; b b + d 0,, (b S + b ) ( +,) 9 c) c ; c 98 (c S + c ) ( + 98) 0 9 d) d ; d ( 9 (d S ) + d ), Progressios geomètriques 0 De les successios següets, quies só progressios geomètriques? Escriu tres termes més e cada ua i també el seu terme geeral. a),, 8,,, b) ; 0,; 0,0; 0,00; c),, 9,,, d),,,,, a) Es ua progresió geométrica co a y r. a, a 7, a 8 ; ( ) b) No es ua progresió geométrica; b, b 7 9, b 8, b. Uitat. Successios

14 c) Es ua progresió geométrica co c y r 0,. c 0,0000; c 7 0,00000; c 8 0,000000; c 0, 0, d) Es ua progresió geométrica co d y r. d 8; d 7 8 ; d 8 ; d ( ) ( ). Calcula la suma dels primers termes de les següets progressios geomètriques i troba la suma dels ifiits termes e els casos que siga possible: a) a, r b) a 0, r 0 c) a 0, r d) a, r a a S r r a a, r r ( ) a) S, r 0 ( ) b) S, 0 00, 9 r c) S , No se puede calcular porque r es mayor que. ( ) ( ) ( ) a r d) S ( ) a a Pàgia Suma de potècies a) Demostra que: ( ) b) Calcula la suma dels quadrats dels 0 primers ombres parells. c) Calcula la suma dels quadrats de tots els ombres imparells meors que 00. Uitat. Successios

15 UNITAT a) ( ) + ( ) + ( ) + ( ) + ( ) ( ) b) ( ) c) ( ) ( ) Troba la suma següet: ( ) ( ) Límit d ua successió Calcula els termes a 0, a 00 i a 000, e cada successió i idica qui és el límit: a) b) c) d) 7 a) a 0 0, ) ; a 00 0, ) 0; a 000 0, ) 00 lím 0 b) a 0,; a 00,0; a 000,00 lím c) a 0 0,; a 00 0,9; a 000 0,99 lím d) a 0,7; a 00 97; a Uitat. Successios

16 Troba algus termes molt avaçats de les successios següets i idica qui és el límit: a) 0 b) b 00 c) c d) d + a) a 0 0; a 00 90; a lím +@ b) b 0 90; b 00 0; b lím c) c 0 0,; c 00 0,90; c 000 0,99 lím c d) d 0 0,7; d 00 0,98; d 000 0,998 lím d 0, + Estudia el comportamet de les successios següets per a termes molt avaçats i idica qui és el límit de cada ua: a) 0 b) b c) c 0 + d) d ( ) e) e ( ) f) f ( + ) a) a 0 90; a ; a lím +@ b) b 0 70; b ; b lím c) c 0 0; c ; c lím c +@ d) d 0 ; d ; d lím d +@ e) e 0 ; e ; e lím f) f 0 ; f ; f lím Uitat. Successios

17 UNITAT 7 Estudia el comportamet de les successios següets per a termes molt avaçats i idica qui és el límit de cada ua: a) b) b c) c + d) d e) e f ) f g) g ( ) h) h a) a 0 0,0; ) a 00 0,00; ) a 000 0,000 ) lím 0 b) b 0 0,; b 00 0,0; b 000 0,007 lím b 0 c) c 0 0, 7; ) c 00 0, 097; ) ) c 000 0, lím c 0 d) d 0 0,97; d 00 0,09997; d 000 0, lím d 0 e) e 0 0,0; e 00 0,000; e 000 0,00000 lím e 0 f) f 0 ; f 00 0,0; f 000 0,000 lím f 0 g) g 0 ; g 0 ; g 000 ; g 0 00 La sucesió o tiee límite. h) h 0 0,0909; h 00 0,0099; h 000 0,000999; h 00 0, lím h ( ) + PER A RESOLDRE 8 Calcula el é terme e la progressió següet: ;,7;,;,; Es ua progresió aritmética co a y d 0,. Por tato, a a + d 0,,,. Uitat. Successios 7

18 9 Troba el quart terme d ua progressió aritmètica e què d i a a 0 a + d 8 a a 0 d 00 0 Calcula la suma de tots els ombres imparells de tres xifres. Es la suma de los térmios de ua progresió aritmética e la que el primer térmio es 0, el último es 999, y hay 0 sumados: ( ) 0 S 7 00 Quat val la suma dels 00 primers múltiples de 7? Queremos calcular la suma de los 00 primeros térmios de ua progresió aritmética e la que a 7 y d 7. (a S 00 + a 00 ) 00 ( ) 00 0 E ua progressió aritmètica sabem que d, i S. Calcul i a. a +( ) d 8 a +( ) (a + ) (a + ) S 8 a + 8 a 7 (7 + ) 8 (7 ) ± ± 89 7 ± a a 0 / (o vale) 9 Els costats d u hexàgo esta e progressió aritmètica. Calcula ls sabet que el major mesura cm i que el perímetre val 8 cm. Llamamos a los lados a, a, a, a, a y a. Sabemos que a cm y que S 8. Por tato: a a +d 8 a +d 8 a d (a + a ) S 8 8 ( d + ) 8 8 ( d) d 8 d 0 8 d 8 d a 0 8 a Los lados del hexágoo mide cm, cm, 7 cm, 9 cm, cm y cm. 8 Uitat. Successios

19 UNITAT E u cie, la segoa fila de butaques està a 0 m de la patalla i la setea fila està a m. E quia fila ha de seure ua persoa que li agrade veure la patalla a ua distàcia de 8 m? a 7 8 a 7 a + d 0 + d 8 d, (La distacia etre las dos filas cosecutivas es de, metros). Buscamos para que 8 m: a +( ) d 8,8 + ( ), 8 8 8,8 +,, 8, 0, 8 7 La fila 7 está a 8 metros. Escriu els termes itermedis d ua progressió aritmètica sabet que a i a 0 8. a 0 a + 9d + 9d 8 8 d 9 9 Los térmios so: a, a, a, a, a, a, a 7, 0 7 a 8, a 9, a Troba els dos termes cetrals d ua progressió aritmètica de 8 termes sabet que S 8 00 i que a + a 8 8. Teemos que calcular a y a. Sabemos que: (a + a 8 ) 8 S 8 (a + a 8 ) 00 8 a + a 8 a + a 8 8 Restado a la. a ecuació la. a, queda: a 8 8 a a 8 8 a a 8 a + 7d + 7d 8 d Por tato: a a + d + 9 a a + d + a a 7 E ua progressió geomètrica, a 8 i a 0,. Calcula a i l expressió de. a a r 8r 0, 8 r 0,0 8 r ± 0, ± Uitat. Successios 9

20 . er caso: r 0,. caso: r 0, a a r 0,0 a a r 8 ( ) 0,0 a r 8 ( ) 8 ( ) 8 E ua progressió geomètrica de raó r coeixem S. Calcula a i a. a a S r r a a a 78a 79 a r r a 8 a a a r La maquiària d ua fàbrica perd cada ay u 0% del valor. Si va costar milios d euros, e quat es valorarà després de 0 ays de fucioamet? Al cabo de año valdrá 8 ( 0 ) 0,8 Al cabo de años valdrá 8 ( 0 ) 0,8 Al cabo de 0 años valdrá 8 ( 0 ) 0, ,7 0 L de geer depositem 000 e u compte bacari a u iterés aual del % amb pagamet mesual d iteressos. Qui serà el valor dels ostres diers u ay després? U % aual correspo a 0,% mesual. Cada mes els diers es multiplique per,00. Al cabo de mes tedremos 8 000,00 Al cabo de meses tedremos 8 000,00 Al cabo de meses tedremos 8 000,00 08,9 0 Uitat. Successios

21 UNITAT Pàgia La suma dels ifiits termes d ua progressió geomètrica és igual a i a. Calcula a i la raó. a a r 8 a r a /r S 8 r r r r r r r ± r r 8 r 8 a 8 8 Comprova, doat valors gras, que les successios següets tedixe a u úmero i digues qui és aquest úmero: a) b) b + c) c + d) d a) a 0,8; a 00,7; a 000,97 lím, b) b 0,970; b 00,9997; b 000, lím b + c) c 0,000977; c 0, lím c d) d 0 0,9; d 00 0,0999; d 000 0, lím d 0 Calcula el límit de les successios següets: ( ) a) + b) b + + c) c d) d + e) e ( + ) f ) f ( ) + a) a 0 0,78; a 00 0,9798; a 000 0,9980 lím Uitat. Successios

22 b) b 0 0,0; b 00 0,000; b 000 0,00000 lím b 0, c) c 0 9,80; c 00 0,; c 000 9,90 lím c + d) d 0,7; d 00,97; d 000,997 lím d e) e 0 0,797; e 00 07,78; e ,07 lím e + f) f 0 0,70; f 00 0,909; f 000 0,99 lím f Comprova les successios següets si tee límit: a) ( ) b) b + ( ) c) c d) d + + ( ) + ( ) a) a 00,0; a 0,0099; a 000,00; a 00, Los térmios pares tiede a y los impares a. o tiee límite. b) b 0; b ; b 0; b, Los térmios impares so 0 y los pares so. b o tiee límite. c) c 0; c ; c 0; c 0,; ; c 00 0,0 Los térmios impares so cero y los pares tiede a cero. lím c 0. d) d 0; d,; d 0,7; d,; ; d 00,0; d 0 0,99 lím d. Uitat. Successios

23 UNITAT Doades les successios i b, estudia el límit de: + a) + b b) b c) b a) A + b + + A 0 00,0099; A ,000 lím ( + b ) +@ b) B b + B 0 0,990; B 00 0,9999 lím ( b ) c) C ( + ) + ( + ) b C ; C a lím ( ) +@ b + Durat ays depositem e u bac 000 al % amb pagamet aual d iteressos. a) E quat es covertix cada depòsit al fial del ciqué ay? b) Quia quatitat de diers hem acumulat durat aquests ays? a) Al fial del º año: Los primeros 000 se covierte e 000,0, Los segudos 000 se covierte e 000,0 9,7 Los terceros 000 se covierte e 000,0 9,7 Los cuartos 000 se covierte e 000,0, Los quitos 000 se covierte e 000,0 080 b) Sumamos las catidades ateriores: 000, , , , ,0 000(,0 +,0 +,0 +,0 +,0) (*),0 000,0,9,0 (*) Suma de ua progresió geométrica co a,0 y r,0. Uitat. Successios

24 7 Rebem u préstec de 000 al 0% d iterés aual i hem de torar-lo e ays, pagat cada ay els iteressos de la part deguda més la quarta part del capital prestat. Calcula el que hem de pagar cada ay. a , 700 a , 0 a , 00 a , 0 8 Troba el terme geeral de la successió:,,,,, i estudia el límit. / a ; a,; a,99; a,89; ; a 0,078 a 00,009; lím 9 Doades les successios + i b, calcula els límits següets: a) lím ( + b ) b) lím ( b ) c) lím ( b ) d) lím b a) A + b + + lím ( + b ) b) B b + ( ) B 0 ; B 00 0; B lím ( b ) +@ c) C b ( + ) ( ) + + C 0 0; C ; C lím ( b + d) D b D 0,; D 00,0; D 000,00 a lím b Uitat. Successios

25 UNITAT 0 La successió x x + ; x + ; x + x +, és ua progressió aritmètica? Si ho fóra, calcula el ciqué terme i la suma dels cic primers termes. Llamamos a x x + ; a x + ; a x + x +. Veamos si la diferecia etre cada dos térmios cosecutivos es la misma: a a x + (x x + ) x + x + x x a a x + x + (x + ) x + x + x x Por tato, sí es ua progresió aritmética co a x x + y diferecia d x. Así, teemos que: a a + d x x + + x x + x + (a (x S x + + x + a ) + x + ) (x + x + ) x + x + (x + x + ) Troba la suma següet: Llmamos S ( ) Por tato: S 7 ( ) 7 8 QÜESTIONS TEÒRIQUES Siga ua progressió aritmètica amb d > 0. Qui és el límit? Si d > 0, la sucesió se va haciedo cada vez mayor. Por tato, lím +@. Si és ua progressió geomètrica amb r, qui és el límit? Al ir multiplicado por Es decir, lím 0. sucesivamete, los térmios se va aproximado a cero. Uitat. Successios

26 La successió,,,, pot cosiderar-se ua progressió aritmètica i també geomètrica. Quia és la diferècia e el primer cas? I la raó e el sego? Es ua progresió aritmética co d 0. Tambié es ua progresió geométrica co r. E ua progressió geomètrica qualsevol, a, ar, ar, ar,, comprova que: a a a a a a Es verifica també a a 7 a a? Eucia ua propietat que expresse els resultats ateriors. a a a (a r ) a r a a (a r) (a r ) a r a a (a r ) (a r ) a r So iguales a a 7 (a r ) (a r ) a r 8 a a (a r ) (a r ) a r 8 So iguales Propiedad: Si es ua progresió geométrica, se verifica que a p a q a m siempre que p + q m +. ) Podem cosiderar el úmero,9 com la suma dels ifiits termes de la successió: 9 9 9,,,, Calcula la suma i troba el límit. Et pareix raoable el resultat obtigut? ) ,9 + 0,99 + 0,999 +, Si cosideramos la progresió geométrica,,, y sumamos todos sus térmios, queda: 9 9 a S 0 0 r Por tato: + ( ) + Uitat. Successios

27 UNITAT 7 Iveta dues successios el límit de les quals siga ifiit i que, e dividirles, la successió que resulte tedisca a. Por ejemplo: ; b + lím +@; lím b +@ a lím lím + b Pàgia 7 PER A APROFUNDIR-HI 8 Dibuixa u quadrat de costat cm i sobre cada costat u triagle rectagle isòsceles; després dos, després quatre, com idique les figures: a) Forma la successió dels perímetres de les figures obtigudes. Qui és el límit? b) Forma també la successió de les àrees. Qui és el límit?. er paso:.º paso:. er paso: / / / / / / Perímetro 8 cm Perímetro 8 cm Perímetro 8 cm Área + cm Área + cm Área + cm Perímetro 8 cm Paso -ésimo: Área + ( ) cm Uitat. Successios 7

28 a) 8, 8, 8, 8, ; P 8; lím P 8 b),,, ; A + ( ) ; lím A (que es el área del cuadrado de lado ). 9 Els termes de la successió,,, 0, s aomee ombres triagulars perquè es pode represetar així: Calcula a 0 i. a ; a + ; a + + ; a ; ( + 0) 0 0 a ( + ) 0 Els termes de la successió,,,, s aomee ombres petagoals perquè es pode represetar així: Calcula a, a 0 i. Aquests úmeros es pode escriure així: ; + ; + + 7; ; a ; a + ; a ; a Observamos que vamos obteiedo las sumas de los térmios de ua progresió aritmética co a y d. E el paso -ésimo tedremos: ( + ( ) ) ( ) ( + ( )) ( + ) ( ) Por tato: a 7 ; a 0 8 Uitat. Successios

29 UNITAT Utilitza les propietats de les progressios per a simplificar l expressió del terme geeral i calcular el límit de les successios següets: a) b) b ( ) ( + ) + a) ( ) ( ) ( ) + Hallamos el límite: a 0 0,; a 00 0,0; a 000 0,00; lím 0, ( + ) + b) b ( ) ( ) ( ) + ( + ) + b 0 ; b 00 0; b ; lím b +@ + AUTOAVALUACIÓ. Troba el terme a 7 de la successió el terme geeral de la qual és: a Troba el terme huité de la successió defiida així: a, a 7, + + a 8 a a 7 a a 7 a a a a a a a a a a a a 7 a 7 a a 9 a 8 a a 7 Uitat. Successios 9

30 . Troba el terme geeral de les successios: a), 7,,, 9,, b),,, 0, 7,, a) Es ua progresió aritmética de diferecia d y primer térmio a. a + ( )d + ( ) b) El térmio geeral de la sucesió 0,,, 9,,, es ( ). Por tato,,,, 0, 7,, tiee por térmio geeral ( ) Troba la llei de recurrècia per la qual es forme les successios següets: a) 7, 8,,, 8,, b),,,,, 9, 7,, c) 0,,,,,, 0, 7,... a) Cada térmio, a partir del tercero, es la suma de los dos ateriores. Por tato: a 7 a 8 + b) Cada térmio, a partir del cuarto, es la suma de los tres ateriores. Por tato: a a a + + c) Cada térmio, a partir del cuarto, es la suma de los tres ateriores. Por tato: a 0 a a + +. Troba les sumes següets: a) b) , + 000, , c) d) e) a) Es la suma de los oce primeros térmios de ua progresió aritmética de primer térmio a y diferecia d. a a a S + a + b) Es la suma de los quice primeros térmios de ua progresió geométrica de primer térmio a 000 y razó r,. a 000, S r a S 77,8 r, 0 Uitat. Successios

31 UNITAT c) Es la suma de los ifiitos térmios de ua progresió geométrica de primer térmio a 80 y razó r /. a 80 0 r / d) ( + )( + ) ( ) ( ) e) ( + ) ( ) ( + ) 9 9. E ua progressió aritmètica coeixem a i a 8 8,. a) Calcula a + a 00. b) Obtí el valor de a 0. a a + d a 8 a + 8d 8, a 0,, 8 8d d, 8 d 0, a) a + a 00 a + a 8 + 8, 8, pues (a y a 8 equidista de a y a 00 ). b) a 0 a + 9 d, + 9 0, 7. Troba els límits de les successios següets: + b c + + a) a 0 0, a 00 0,0 a 000 0,00 8 lím 0 + b) b 0,8 b 00,0 b 000,00 8 lím + + c) c 0,0 c 00 0,00 c ,000 8 lím +@ Uitat. Successios

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014)

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014) PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO 04-05 Prácticas Matlab Práctica 6 (5- XI-04) Objetivos Represetar ua sucesió de térmios Itroducir el cocepto de serie como suma ifiita de los térmios

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS TEMA 2: POTENCIAS Y RAÍCES CUADRADAS Segudo Curso de Educació Secudaria Oligatoria. I.E.S de Fuetesaúco. Mauel Gozález de Leó. CURSO 2011-2012 Págia 1 de 11 Profesor: Mauel Gozález de Leó Curso 2011 2012

Más detalles

LLOCS GEOMÈTRICS. CÒNIQUES

LLOCS GEOMÈTRICS. CÒNIQUES LLOCS GEOMÈTRICS. CÒNIQUES Pàgina REFLEXIONA I RESOL Còniques obertes: paràboles i hipèrboles Completa la taula següent, en què a és l angle que formen les generatrius amb l eix, e, de la cònica i b l

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

Figuras geométricas y números enteros. Introducción

Figuras geométricas y números enteros. Introducción Revista del Istituto de Matemática y Física Figuras geométricas y úmeros eteros Juaa Cotreras S. 6 Claudio del Pio O. 7 Istituto de Matemática y Física Uiversidad de Talca Itroducció Etre las muchas relacioes

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

TEOREMA DE PITAGORAS

TEOREMA DE PITAGORAS TEOREMA DE PITAGORAS INTRODUCCION El Teorema de Pitágoras lleva este ombre porque su descubrimieto recae sobre la escuela pitagórica. Ateriormete, e Mesopotamia y el Atiguo Egipto se coocía teras de valores

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 =

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 = TEMA 3: PROGRESIONES CONCEPTO DE SUCESIÓN Ua sucesió es u cojuto de úmeros ordeados segú ua ley, de modo que se puede umerar: primero, segudo, tercero,. Los elemetos de ua sucesió se llama térmios y se

Más detalles

Decisiones De Financiamiento A

Decisiones De Financiamiento A Decisioes De Fiaciamieto A Largo Plazo El fiaciamieto a mediao plazo tiee u vecimieto etre u periodo mayor a u año y meor a 5 años. Se puede obteer fiaciamieto a través de préstamos a mediao plazo y a

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

MATEMÀTIQUES ÀREES I VOLUMS

MATEMÀTIQUES ÀREES I VOLUMS materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

RADICALES. Una raíz de índice n es una operación matemática que se define de la siguiente forma:

RADICALES. Una raíz de índice n es una operación matemática que se define de la siguiente forma: Aputes de Matemáticas para º de E.S.O. RADICALES Qué es ua raíz de ídice? Ua raíz de ídice es ua operació matemática que se defie de la siguiete forma: a = b a= b Esto se lee como: la raíz eésima de u

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 3: Sucesiones LibrosMareaVerde.tk

MATEMÁTICAS I 1º Bachillerato Capítulo 3: Sucesiones LibrosMareaVerde.tk MATEMÁTICAS I º Bachillerato Capítulo : Sucesioes www.aputesmareaverde.org.es Autora: Ferada Ramos Rodríguez Ilustracioes: Baco de Imágees de INTEF 0 Sucesioes Ídice. SUCESIONES DE NÚMEROS REALES.. DEFINICIONES..

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles