1 Ejemplos de Aproximaciones de Integrales con Sumas de Riemman

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Ejemplos de Aproximaciones de Integrales con Sumas de Riemman"

Transcripción

1 Ejmplos d Aproximacios d Itgrals co Sumas d Rimma Esta Ru Hurtado Cruz UNAM. Itrodució Estos jmplos d aproximacios d sumas d Rima s usaro l curso d Calculo II, durat l smstr 003- d la Facultad d Cicias d la UNAM. Ejmplo suitrvalos. Dmostrar qu x3 dx = cosidrado particios Solució. Cosidrmos la partició P={a, a +, a +, a + 3,..., a + k,..., a + = } como a + = tocs = a qu s la amplitud d los itrvalo d sta partició. tocs x3 dx = = = fx k x k = [a 3 + 3a k + 3ak + k 3 3 ] a 3 + 3a k + 3ak + k 3 3 = a3 + +3a +3 a a = a a3 + 3 a + a + a a + k a a a + a + 3 a a a + 3 a3 a++ + a +

2 = a a3 + 3 a a a + + a3 + a + + = a a a a + a a 3 + a =a 3 a + 3 a 3a a +a 3 3 a +3a 3 a + 3 a+ 3 a a 3 + a = a Ejmplo x dx = a cosidrado particios suitrvalos. Dmostrar qu Solució. Cosidrmos la partició P={a, aq, aq,..., aq k,..., aq = } como aq = tocs q = por lo qu si tocs q a xk = aq k aq k = aq k q la cual 0 si x dx = fx k x k = aq k q aq k = a q k aq k q = aq k q k q = a = q a q q k q k q q q = q q + q a q q q = q + a q a = q a q k k q = a = q q a q q q = a = q + a q a q = a

3 Ejmplo 3 Dmostrar qu Sxdx = Cos + Cosa cosidrado particios suitrvalos. Solució. Cosidrmos la partició P={a, a +, a +, a + 3,..., a + k,..., a + = } como a + = tocs = a qu s la amplitud d los itrvalo d sta partició. tocs Sxdx = fx k x k = = [Sa + + Sa Sa + ] Multiplicado por s otmos s s [ s s Sa + k ] [Sa + + Sa Sa + ] Sa + + s Sa s Utilizado la idtidad trigoomtrica Sx Sy = Cosx y Cosx + y y simpr qu o sa multiplo d π s oti s Cosa + Cosa Cosa + Cosa Cosa + Cosa + = Sa + s Cosa + Cosa Cosa + 3 Cosa Cosa + Cosa Pusto qu a + =, la itgral s covirt l limit s Cosa + Cosa + + = s Cosa + Cos + =Cosa Cos 3

4 Ejmplo Dmostrar qu Cosxdx = S Sa cosidrado particios suitrvalos. Solució. Cosidrmos la partició P={a, a +, a +, a + 3,..., a + k,..., a + = } como a + = tocs = a qu s la amplitud d los itrvalo d sta partició. tocs Cosxdx = fx k x k = = [Cosa + + Cosa Cosa + ] Multiplicado por s otmos s s [ s Cosa + k ] [Cosa + + Cosa Cosa + ] s Cosa + + s Cosa s Cosa + Utilizado la idtidad trigoomtrica S α S β = S α + β + S α β y l co d qu S α = S α s Sa+ 3 +S a +Sa+ 5 +S a Sa S a 5 + Sa S a S + + a+ +S a s S a + S + = S Sa Ejmplo 5 Dmostrar qu x xdx = a cosidrado particios suitrvalos. Solució. Cosidrmos la partició P={a, a +, a +, a + 3,..., a + k,..., a + = } como a + = tocs = a qu s la amplitud d los itrvalo d sta partició.

5 tocs x dx = fx k x k = a+k = a k = a k a k = 0 = a [ ] [ k = a ] a como = a y y = a a = = 0 = y = a = tmos qu a [ ] = a [ a a ] a Usarmos l co d qu α = Logα Por lo qu a = Log a = a asi pus a [ a a a ] [ a ] [ = a a a = a a a ] = a a Ejmplo Mdiat la dfiició, calcul x + dx cosidrado particios suitrvalos. Solució. Cosidrmos la partició P={a, a +, a +, a + 3,..., a + k,..., a + = } como a + = tocs = a qu s la amplitud d los itrvalo d sta partició. tocs 5

6 x + dx = + + [a + k + ] = fx k x k = a + k + a + k + = a + = a + + a + = a a a =a a + a + + a = a a + a + a = aa + a + = aa + + =a 3 a + 3 a 3a a +a 3 3 a +3a 3 a + 3 a+ 3 a a 3 + a = a Ejmplo 7 Mdiat la dfiició, calcul 5 x dx cosidrado particios suitrvalos. Solució. Cosidrmos la partició P={, +, +, + 3,..., + k,..., + = 5} como + = tocs = 5 = 3 qu s la amplitud d los itrvalo d sta partició. tocs x dx = = = fx k x k = + k [ ] +k+k = Si + = 5 = 3 = 3 por lo qu

7 =+ + + =+8+9= = =

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen. Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su

Más detalles

MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos

MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro

Más detalles

al siguiente límite si existe: . Se suele representar por ( x )

al siguiente límite si existe: . Se suele representar por ( x ) UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005.

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005. MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 0 de Febrero de 005. Tenéis 3 horas para hacer estos ejercicios. Podéis usar una versión de los apuntes como están en la red, sin ninguna anotación. No

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4)

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4) . INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (._CvR_T_06, Rvisió: 5-0-06, C, C3, C4).. DERIVADA DE UNA FUNCIÓN. Dfiició: f f ( ) f ( ) lim, si l límit ist. 0 Notció: f ', f ( ) E.g.:

Más detalles

Formulas de Newton-Cotes

Formulas de Newton-Cotes Formulas de Newton-Cotes. Usando las reglas del Trapecio, Punto Medio, Simpson y las formulas de Newton-Cotes abiertas con n =,, aproxime el valor de las siguientes Integrales. Construya una tabla para

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

TEMA 1: CALCULO DIRECTO DE LÍMITES

TEMA 1: CALCULO DIRECTO DE LÍMITES INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6 Uidad 1 Itegrales Múltiples 1.2 Itegral de ua fució de dos variables como volume Volumees Cuado deimos volume aceptaremos el hecho de que si se trata de u cubo de lado a etoces V cubo) = a 3 y si se trata

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

Tema 7. Integrales múltiples

Tema 7. Integrales múltiples Tema 7 Integrales múltiples 7.. efinición. En esta sección estudiamos el cálculo de la integral de una función real de dos variables denominada integral doble. Se puede utilizar el esquema del tema anterior

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

Formulas Matemáticas

Formulas Matemáticas B A C a TRIGONOMETRÍA Radian Grados sen a cos a tag a 0 2π 0 0 1 0 π/6 30º 1 / 2 3 / 2 3 / 3 π/4 45º 2 / 2 2 / 2 1 π/3 60º 3 / 2 1 / 2 3 π/2 90º 1 0 π 180º 0-1 0 3π/2 270º -1 0 sen a = B / C cos a = A

Más detalles

Auxiliar 6: Interpolación Mediante Spline Cúbicos

Auxiliar 6: Interpolación Mediante Spline Cúbicos Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre Otoño 27 Cálculo Numérico MAA-2 Profesor: Gonzalo Hernández Auxiliar: Gonzalo Ríos Fecha:

Más detalles

1. Derivada de la función compuesta

1. Derivada de la función compuesta Cátedra de Matemática Matemática Facultad de Arquitectura Universidad de la República 213 Segundo semestre Ya nos hemos encontrado con la idea de que las propiedades del cálculo de integrales y del cálculo

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +

Más detalles

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

3º B.D. opción Social-Económico Matemática III. Parábola.

3º B.D. opción Social-Económico Matemática III. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

Selectividad Matemáticas II junio 2015, Andalucía (versión 3)

Selectividad Matemáticas II junio 2015, Andalucía (versión 3) Selectividad Matemáticas II junio 05, Andalucía (versión 3) Pedro González Ruiz 7 de junio de 05. Opción A Problema. Se quiere construir un depośito abierto de base cuadrada y paredes verticales con capacidad

Más detalles

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: prieto@ula.ve 1. Teoremas sobre funciones derivables Problema 1 Determine si la función dada satisface las hipótesis del Teorema de Bolzano sobre el

Más detalles

Señales y Sistemas. Análisis de Fourier.

Señales y Sistemas. Análisis de Fourier. Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1 Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

Sobre la integral de línea en un álgebra de dimensión real 2 que no son los complejos

Sobre la integral de línea en un álgebra de dimensión real 2 que no son los complejos Culcyt// Itgrls Sor l itgrl d lí u álgr d dimsió rl qu o so los compljos Eliflt Lópz Gozlz, Víctor M Crrillo S, Srgio Trrzs Porrs Rsum: Cosidrmos u álgr d Bch A comuttiv uitri d dimsió rl qu o so los úmros

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β

Más detalles

1. Empleando sustitución universal, calcular: dx.

1. Empleando sustitución universal, calcular: dx. Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral 1. Empleando sustitución universal, calcular: a) b) 1 sen(x) + cos(x) dx. 1 3 + 5cos(x) dx. c) d) sen(x) 1 sen(x) dx. dx 8 4sen(x)

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA I

INTEGRALES. EL PROBLEMA DEL ÁREA I INTEGRALES. EL PROBLEMA DEL ÁREA I Ejercicio : En este ejercicio vamos a practicar el cálculo de la integral indefinida haciendo uso de la integral inmediata: (f(x)) n f (x)dx n = (f(x))n+ + K (K constante)

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

Integración por Partes III. Método Tabular

Integración por Partes III. Método Tabular Integración por Partes III Método Tabular I.) INTEGRALES NO CÍCLICAS El método tabular te va a permitir desarrollar cierto tipo de integrales sin tener que utilizar todos los pasos de la integración por

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema 3 Contenidos de los preliminares Algunas primitivas Una primitiva por cambio de variable Igualdades notables Ecuaciones bicuadradas Construcción de un polinomio de segundo grado a

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Unidad Temática Cálculo de primitivas

Unidad Temática Cálculo de primitivas Unidad Temática 5 5.1 Análisis Matemático (Ingeniería Informática) Departamento de Matemática Aplicada Facultad de Informática Universidad Politécnica de Valencia Contenidos 1 Integración Primitiva Integración

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS CÁLCULO AUTOMÁTICO DE INTEGRALES DEFINIDAS La integral de una función definida puede obtenerse en DERIVE tecleando el icono Cálculo integral,, También puede obtenerse

Más detalles

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio: Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x

Más detalles

Práctico 7 - Desarrollo de Taylor. 1. Polinomio de Taylor. Universidad de la República Cálculo 1 Facultad de Ingeniería - IMERL Segundo Semestre 2016

Práctico 7 - Desarrollo de Taylor. 1. Polinomio de Taylor. Universidad de la República Cálculo 1 Facultad de Ingeniería - IMERL Segundo Semestre 2016 Universidad de la República Cálculo Facultad de Ingeniería - IMERL Segundo Semestre 206 Práctico 7 - Desarrollo de Taylor. Polinomio de Taylor. El polinomio de Mc Laurin de orden 4 asociado a una cierta

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Preguntas Total Puntuación obtenida

Preguntas Total Puntuación obtenida 1 SEGUNDO PARCIAL DE MATEMÁTICAS. GRADO DE INGENIERÍA CIVIL Preguntas 1 2 3 4 5 6 7 8 9 10 Total Puntuación obtenida Observaciones 1. Las preguntas 1-6 son eliminatorias. Sólo se corregirá el examen completo

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN AGOSTO 6 TITULO DE LA PRACTICA: Solución d la tranformada d la laplac por mdio dl torma fundamntal ASIGNATURA: Matmática III HOJA: DE: UNIDAD TEMATICA: Tranformada d Laplac FECHA DE REALIZACIÓN: d Agoto

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

Selectividad Matemáticas II junio 2012, Andalucía

Selectividad Matemáticas II junio 2012, Andalucía Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos

Más detalles

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria. Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy.

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy. BLOQUE II Itegració múltiple Ejercicio 44 Calcula el volume limitado por la superficie z = x3y y los cuatro lados verticales del rectágulo = [, ] [0, ]. Ejercicio 45 Sea = {(x, y) R : 0 x, x y x }. Calcular

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

Series de Fourier en varias variables. García Hernández Samuel Reporte de proyecto semestral.

Series de Fourier en varias variables. García Hernández Samuel Reporte de proyecto semestral. Introducción. Series de Fourier en varias variables. García Hernández Samuel Reporte de proyecto semestral. Esta pequeña introducción motivaremos un poco el estudio de las series de Fourier en varias variables.

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

BI_UII Más ejemplos de construcción de una segunda solución a partir de otra ya conocida (secc ) 469

BI_UII Más ejemplos de construcción de una segunda solución a partir de otra ya conocida (secc ) 469 BI_UII Más jmplos d onstruión d una sgunda soluión a partir d otra a onoida (s..6.) 69 Apéndi BI_UII Más jmplos d onstruión d una sgunda soluión a partir d otra a onoida. (s..6.) Ejmplo BI. Sindo soluión

Más detalles

3º B.D. opción Físico-Matemática Matemática II. Parábola.

3º B.D. opción Físico-Matemática Matemática II. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Ejercicios Trigonometría Plana Material para el alumno. Recopilado y preparado por los profesores Isabel Arratia

Más detalles

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello 1. Enunciados 1.1. Primer ejercicio Sea f(x := e x, x R. 1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello a Asegurar que existe probando que la función f es absolutamente

Más detalles

Teoría de la Integración

Teoría de la Integración Licenciatura en Matemáticas y Física Universidad de Antioquia 1 Introducción 2 3 Introducción Para toda persona con formación matemática superior, es conocida la teoría de la integración de Riemann. Sin

Más detalles