1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
|
|
- María Luz Sevilla Olivares
- hace 5 años
- Vistas:
Transcripción
1 .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim f = lim b L( ) = b L(5) LH lim f = b L(5) = b = lim f = lim lim = lim = L(5) L Por lo tato f s cotiua = a = y b =. L(5) L( ) < L(5) b) Para stos valors, f = =, s drivabl = f (). > L Esto s: L( ( )) () L(5) L(5 ) L(5) LH f f f = lim = lim = lim = L(5) LH 5 = lim = L(5) 5 L(5) f f L( ) f = lim = lim = lim L( ) () L L LH LH lim lim = = lim = Como f ( ) f ( ) / f () f o s drivabl =. Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
2 .- Dada la fució f =, allar l poliomio d Maclauri d grado y la prsió dl rsto d Lagrag corrspodit. Utilizar s rsultado para obtr l valor aproimado d, acotado l rror comtido dica aproimació. Solució: S plata la siguit aproimació poliómica: f ( θ ) f = P R = f() f () co < θ < (*)! f = f() = f = f () = f = f ( θ ) = / / ( ) ( θ ) Es dcir: = = / / ( θ)! 8( θ) Etocs, f() = P () = = y l rror qu s comt al acr sta aproimació: (*) / / Error = R () = 8( θ) = 8( θ) < 8.- Dada la fució f = : a) Hallar su domiio d dfiició. b) Calcular sus asítotas. c) Dtrmiar los putos d cort co los js coordados. d) Estudiar su crcimito-dcrcimito. ) Estudiar su cocavidad-covidad. f) Co la iformació obtida los apartados atriors, rprstar d mara aproimada la gráfica d dica fució. Solució: a) D = { } b) lim f = = = lim f y ± lim f = = = = asítota vrtical (por la izquirda) = = = asítota orizotal o ay asítota oblicua. Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
3 c) f = > D No corta l j OX. Si = f() = = corta l j OY (,). d) f = > ( ) D f crcit D ( ) ) f = = = = ( ) ( ) ( ) ( ) =. (, ) f > f cócava (, /) f > f cócava ( /, ) f < f cova f =, s puto d iflió. Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
4 L.- Dada la fució f = : a) Calcular sus asítotas. b) Estudiar crcimito, dcrcimito y trmos rlativos. c) Aalizar cocavidad, covidad y putos d iflió. d) Dibujar d forma aproimada la fució. Solució: L > L y f = =. L < f ( ) = f, por lo tato s simétrica rspcto al j OY. a) D = { } lim f = = asítota vrtical. lim f = y = asítota orizotal. No ay asítota oblicua. ± b) Por sr la fució simétrica s ará l studio l itrvalo (, ). / L, crcit / f f > f = = = > /, f < f dcrcit Es dcir, máimo rlativo. / 5/6 5 6 L, 5/6 f f c) > f = = = > 5/6, f < f Es dcir, d) 5/6, 5 6 5/ puto d iflió. Y 5 6 5/ 5/6 X Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
5 5.- La curva y = f ti a la rcta y = como asítota oblicua ( > ). f Calcular la asítota orizotal d la curva y = ( > ). Solució: f lim = () y = por sr asítota oblicua. Etocs: lim f = () () f f f lim A LA lim L lim lim f = = = = () = lim f A y = = = s asítota orizotal. [ ] 6.- Sa la fució si a si < < f =. si b Calcular l valor d los parámtros a y b para qu f sa cotiua. Solució: < f s cotiua (por sr poliomio). (,) f s cotiua (valor absoluto). > f s cotiua b b. E = : f () = lim f = lim ( ) = f s cotiua a = a=±. lim f = lim a = a = a E = : 8 f () = b 8 lim f = lim = b b (baldi a= ) = lim = lim f = lim a (baldi a=) = lim = f s cotiua 8 = b = 6 b 8 = b = b Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla 5
6 Etocs, si a = y b = 6, o a = y Obsrvació: ) Para los valors b = 6 y b = f s cotiua. b =, b > f s cotiua tambié sos putos. ) Para los valors obtidos d los parámtros a y b, la rprstació aalítica d la fució cotiua f sría ua d las siguits: Si a = y b = 6, Si a = y b =, si si si < si < < f = = si < < si 6 si 6 si si si < < si < < f = = si si 7.- a) Hallar l dsarrollo sri d potcias d la fució idicado dód s válido. b) Calcular, si drivar, f (). f = arctg Solució: (*) ( ) / f = = = = = = 8 = = = (,) Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla 6
7 (*) Suma d sri gométrica, r = covrgt Es itgrabl l itrvalo [ ], (,) : = = < (,). π f f() = (,) f = (,) E l puto = f. E l puto = : f y s cotiua. π π cod. covrgt suma cotiua = = = π f =, = ( ] b) El dsarrollo sris d potcias obtido s la sri d Taylor d la fució f. f Esto s, l coficit d s ) (), por lo tato: ( )! ) f () =! ( ) Etocs, si = : f ()! = f () = =! 8.- Dada la fució f = : a) Hallar su domiio d dfiició. b) Calcular las asítotas. c) Aalizar l crcimito-dcrcimito. d) Rprstar aproimadamt. Solució: a) D = { } b) lim f = y lim f = = asítota vrtical cuado ±. lim f = y lim f = y = asítota orizotal cuado. Por lo qu o ay asítota oblicua cuado, pro pud istir cuado : f lim = asítota oblicua., f = = = = (,), f < f dcrcit (,), f < f dcrcit c) Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla 7
8 (, ), f > f crcit Por lo tato l puto, ay u míimo rlativo. d) Y X 9.- Sa la fució f = si L. Estudiar la cotiuidad (idicado si = l tipo d discotiuidad), drivabilidad y difrciabilidad d la fució f los putos = y =. Solució: Cotiuidad:: E = : f lim f = lim = = L lim f = lim = = L( ) Salto ifiito, discotiuidad ivitabl. E = : f () = Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla 8
9 lim f = lim = = L( ) lim f = lim = = L Es cotiua. Drivabilidad: E = como o s cotiua o s drivabl. E = : (*) f( ) f() f = lim lim = = L( ) (*) f( ) f() f = lim = lim = L( ) No s drivabl. Difrciabilidad:: E = y = al o sr drivabl o s difrciabl. ( LH ) / / lim = lim = lim = lim = L L / (*) ( LH ) / / lim = lim = lim = lim = L L / f =, idicado.- a) Hallar l dsarrollo sri d potcias d / l itrvalo abirto dod s válido. b) Calcular, si drivar, f () y f (). Solució: a) Dsarrollamos la fució mdiat l biomio d Nwto: / / / f = ( ) = ( ) = / <, = = b) El dsarrollo obtido s la sri d Taylor corrspodit a f, s dcir ) f (), por lo tato: =! / f () Si = : = f () = =! Y como todos los térmios dl dsarrollo so potcias pars d f () =. Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla 9
10 .- Hallar l dsarrollo sri d potcias d f L( ) s válido. Solució: =, idicado dód (*) = = f = L f = = = = (*) Suma d ua sri gométrica d razó r =. Covrgt, por tato, / r = < (, ) Lugo, f = (, ) = Y s itgrabl [, ], (, ) = : f f() =, ( ) = f = L, ( ) Si f cotiua =± L covrgt suma cotiua = Lugo, f = L, ( ) =.- Dada la fució f =, ( ) a) Rprstarla aproimadamt, aalizado prviamt su domiio, asítotas y crcimito-dcrcimito. b) Dsarrollar f sri d potcias, idicado l campo d covrgcia. c) Calcular la suma d la sri. = Solució: a) D = { } Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
11 lim f = = asítota vrtical lim f = y = asítota orizotal. Lugo o ay asítota oblicua. ± < f > f crcit f = D f f dcrcit > < y 5 b) D dos modos: - - b.) Sa (*) g = = (,) = (*) Suma d ua sri gométrica d razó r =, covrgt, por tato, / r = < Y s drivabl (,) : g = = f = = (,) ( ) = = Si = f Si = f o s covrgt = Etocs f = = ( ) (,) = b.) f (*) = = ( ) = (,) = (*) Dsarrollo dl biomio d Nwto. Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
12 Nota: (,) = = = = c) = f = = (**) = 8 (**) Como mos visto l apartado b), f = = (,) ( ) = Javir Bilbao; Olatz García; Migul Rodríguz; Cocpció Varla
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:
ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:
Prácticas Matlab ( 1) Práctica 7. Objetivos
PRÁCTICA SERIES DE POTENCIAS Prácticas Matlab Práctica 7 Objetivos Estudiar la covergecia putual de ua serie de potecias. Estimar gráficamete el itervalo de covergecia de ua serie de potecias. Aproimar
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:
Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular
Sistemas de ecuaciones diferenciales lineales
695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS
Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación
Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:
IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía
TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.
MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido
Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)
Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
REPRESENTACIÓN DE FUNCIONES
Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS
Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )
ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos
Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función
ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x
ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)
UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,
Funciones de variable compleja
Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =
Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor
Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos
8 Funciones, límites y continuidad
Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto
Problemas de Asíntotas de funciones
www.vaasoftware.com/gp 1) Determinar las asíntotas verticales de la siguiente función y estudiar la posición de la 1 + 5 ) Determinar las asíntotas verticales de la siguiente función y estudiar la posición
MATE1214 -Calculo Integral Parcial -3
MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud
Análisis del caso promedio El plan:
Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1
IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial
IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el
3. Volumen de un sólido.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con
Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
MODULO PRECALCULO QUINTA UNIDAD
www.mateladia.org MODULO PRECALCULO QUINTA UNIDAD Límites Cotiuidad y Derivada.... y cotiuó Alicia:
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación
LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+
IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode
5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras
1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224
Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..
SUCESIONES Y SERIES DE FUNCIONES
CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.
IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h
PRÁCTICA DERIVACIÓN NUMÉRICA Prácticas Matlab Objetivos Práctica 5 Aproximar uméricamete la derivada de ua fució a partir de valores coocidos de la fució. Comados de Matlab eps Es el epsilo máquia, su
Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.
Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I
Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07
álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést
Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0
Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada
Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A
OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga
Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.
CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
Opción A Ejercicio 1 opción A, modelo Septiembre 2011
IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
Ejercicios de Análisis Matemático Sucesiones y series de funciones
Ejercicios de Aálisis Matemático Sucesioes y series de fucioes. Estudia la covergecia uiforme e itervalos de la forma Œ; a y Œa; CŒ dode a >, de la sucesió de fucioes ff g defiidas para todo > por: f./
INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS
Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +
LÍMITES DE FUNCIONES. CONTINUDAD
LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
TEMA 4. APLICACIONES DE LA DERIVADA.
7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads
Tema 6. Sucesiones y Series. Teorema de Taylor
Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A
(finitas o infinitas)
Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.
Transformador VALORES NOMINALES Y RELATIVOS
Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
3.1 DEFINICIÓN DE PENDIENTE DE RECTA
Cap. La derivada. DEFINICIÓN DE PENDIENTE DE RECTA TANGENTE.. VELOCIDAD INSTANTÁNEA. DEFINICIÓN DE DERIVADA. FORMA ALTERNATIVA.5 DIFERENCIABILIDAD.6 DERIVACIÓN.6. FÓRMULAS DE DERIVACIÓN.6. REGLAS DE DERIVACIÓN.6.
PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O
PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros
Análisis Estadístico de Datos Climáticos
Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,
12 Representación de funciones
Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )
Prueba A = , = [ 7.853, 8.147]
PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
CARACTERÍSTICAS DE UNA FUNCIÓN
. DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.
DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones
DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Problemas de Sucesiones
Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]
(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):
0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir
IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)