Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO"

Transcripción

1 Mcroconomía AE Tma 3. LA COMPETENCIA PERFECTA PROBLEMA REUELTO uponga qu cada una d las 144 mprsas qu forman una ndustra prfctamnt compttva tnn una curva d costs totals a corto plazo déntca qu vn dada por la xprsón: ( q) 36q 90q CFT. La curva d dmanda dl mrcado s CT 756 P. 1.- Obtnga l qulbro dl mrcado y rprséntlo gráfcamnt. El mrcado s ncontrará n qulbro cuando la cantdad ofrcda por la ndustra a corto plazo ( I ) s gual a la cantdad dmandada por l conjunto d consumdors qu conforman la dmanda dl mrcado ( ). Para calcular dcho qulbro d mrcado n prmr lugar, dbmos obtnr la curva d ofrta d la ndustra a corto plazo qu postrormnt nfrntarmos a la curva d dmanda dl mrcado para dntfcar así l prco y la cantdad d qulbro dl mrcado a corto plazo. La obtncón d la curva d ofrta d la ndustra a corto plazo xg, n prmr lugar, obtnr la curva d ofrta d una mprsa ndvdual y postrormnt sumar las curvas d ofrta d cada una d las mprsas qu ntgran la ndustra. Paso 1.- Obtncón d la curva d ofrta d una mprsa compttva a corto plazo. La curva d ofrta d una mprsa a corto plazo mustra la rlacón ntr l prco qu la mprsa acpta como dado xógnamnt y la cantdad d producto qu stá dspusta a ofrcr a dcho prco. cha rlacón s obtn d las sgunts condcons: a) las condcons d maxmzacón d los bnfcos a corto plazo: a.1.) Condcón d prmr ordn. El ngrso margnal, s dcr l prco, db gualars al cost margnal. En st caso: p CMg CT ( q) 7q 90 p 7q 90 a.) Condcón d sgundo ordn: El nvl d produccón db stuars n l tramo crcnt d la curva d cost margnal d corto plazo. En st caso, CMg 7 0 b) La condcón qu l ndca s db producr o dtnr su actvdad. Esta condcón ndca qu la mprsa db producr s l prco n l mrcado s mayor o gual al mínmo cost varabl mdo d la mprsa ya qu d sa manra los ngrsos obtndos por la vnta d la produccón Pág. 1

2 Mcroconomía AE prmtrán cubrr al mnos los costs varabls. sta forma, la mprsa obtndría un rsultado conómco mjor qu las pérddas n qu ncurrría s dtn su actvdad, sto s, los costs fjos. En st caso, sta condcón xg qu: p mn CVM La funcón d cost varabl mdo d sta mprsa s: CVM 36q 90 ado qu su rprsntacón gráfca s una rcta con pndnt postva, obsrvamos qu l valor mínmo dl cost varabl mdo s alcanza cuando su produccón s nula, sto s: mn CVM CVM( q 0) 90 Estas trs condcons prmtn dntfcar la curva d ofrta d una mprsa ndvdual a corto plazo qu vn ndcada por la sgunt xprsón: p 90 q, p 90, 7 Paso.- Obtncón d la curva d ofrta d la ndustra a corto plazo. Una vz obtnda la curva d ofrta d una mprsa s procd a sumar hrzontalmnt las curvas d ofrta d las 144 mprsas qu componn la ofrta d la ndutra. ado qu todas las mprsas son déntcas, la curva d ofrta d la ndustra a corto plazo s: I n q 1 nq p ( p 90) 7, p 90, Paso 3.- trmnacón dl qulbro d mrcado Con sta curva d ofrta d la ndustra a corto plazo y la curva d dmanda dl mrcado, 756 P, l qulbro d mrcado s: Pág.

3 Mcroconomía AE I 756 p ( p 90) p Efctos dl mpusto sobr l qulbro dl mrcado a corto plazo Ofrta d la ndustra a corto plazo con mpusto P 1=39 P 0=34 p (corto plazo)= 5 Ofrta d la ndustra a corto plazo sn mpusto (Curva d dmanda dl mrcado) = 756-p 1,=78 0,=88 Pág.3

4 Mcroconomía AE Efctos dl mpusto sobr la mprsa a corto plazo: CMg (n mpusto) CMg (n mpusto) P 1=39 CVM (Con mpusto) CVM (n mpusto) P 0=34 Mn CVME 1 =100 Mn CVME=90 q 1= 1.93 q 0=.- los bnfcos d una mprsa rprsntatva n l nvl d produccón d qulbro a corto plazo ascndn a 100 u.m., calcul la cuantía d los costs fjos. Los bnfcos conómcos s calculan como la dfrnca ntr los ngrsos totals y los costs totals d una mprsa. Para llo, dbrmos calcular prvamnt l nvl d produccón ofrcdo por una mprsa lo qu xg susttur l prco d qulbro n la curva d ofrta ndvdual, sto s: q ( p 34) 7 A partr d st rsultado, s mpon la condcón d qu los bnfcos conómco, n st caso y tal y como ndca l nuncado dl jrcco, s gual a 100 u.m., para calcular l nvl d cost fjo. B º IT CT (34* ) (36* 90* CFT ) 100 CFT 44 u. m. 3.- uponga qu l gobrno stablc un mpusto d 10 u.m. por undad vndda dl bn. Calcul la produccón d qulbro a corto plazo d la mprsa rprsntatva dspués d la Pág.4

5 Mcroconomía AE mdda gubrnamntal. El prco d qulbro dl mrcado ha varado más o mnos qu la cuantía dl mpusto? Explqu su rspusta. El stablcmnto d st mpusto afcta n prmr lugar a la curva d costs d corto plazo y por tanto a la curva d ofrta ndvdual, a la curva d ofrta d la ndustra y al qulbro dl mrcado. Estos rsultados n prsnca d st mpusto por undad vndda son: La nuva curva d costs qu ncluy l mpusto s: CT ( q) 36q 90q CFT 10t La nuva curva d ofrta d una mprsa rqur rcalcular las condcons d maxmzacón d bnfcos y la rgla d crr. Así obtnmos qu las nuvas condcons d maxmzacón d bnfcos son: p CMg p 7q 100 CT ( q) 7q 100 CMg 7 0 El nuvo cost varabl mdo s CVM 36q 100. ado qu s una rcta crcnt, su mínmo s ncuntra para un nvl d produccón nulo, sto s: Mn CVM CVM( q 0) 100 Con todo llo, la nuva curva d ofrta ndvdual s: p 100 q, p 100, 7 A partr d sta curva d ofrta ndvdual, s calcula la nuva curva d ofrta d la ndustra a corto plazo qu ncluy l mpusto: I n q 1 nq p ( p 100) 7, p 100, El qulbro d mrcado tras l stablcmnto dl mpusto srá: Pág.5

6 Mcroconomía AE I 756 p ( p 100) p * El stablcmnto d un mpusto por undad producda provoca un ncrmnto n l prco n una cuantía nfror a la dl mpusto. Admás, provoca qu s rduzca la cantdad d qulbro y la cantdad ofrcda por cada una d las mprsas qu ntgran la ndustra. Esta nuva cantdad ofrcda por cada mprsa s dduc susttuyndo l nuvo prco d qulbro n la nuva curva d ofrta d la mprsa, sto s: q la curva d costs totals a largo plazo d la mprsa rprsntatva s 3 CT ( q) q 4q 38q, calcul la varacón qu xprmnta a largo plazo l prco d qulbro dl mrcado tras l stablcmnto dl mpusto sñalado n l apartado c). Explqu su rsultado. El qulbro al largo plazo vn dtrmnado por la funcón d dmanda dl mrcado y una funcón d ofrta d la ndustra qu, bajo l supusto d prcos d los factors constants, s prfctamnt lástca para un prco gual al mínmo cost mdo d largo plazo. Est prco srá l prco d qulbro mntras qu la cantdad d qulbro dl mrcado srá la cantdad dmandada para s prco. Ants dl stablcmnto dl mpusto, la curva d cost mdo a largo plazo srá: CM CT q q 4q 38 A partr d sta curva d cost mdo d largo plazo, dbmos calcular l valor mínmo d la curva d cost mdo d largo plazo tal y como s ndca a contnuacón: Pág.6

7 Mcroconomía AE CM q 4 0 q ; CM q 0 ( Mínmo) CM ( q ) 4 * Mn CM La curva d ofrta d la ndustra a largo plazo srá prfctamnt lástca gual a: p Mn CM p 34 El prco d qulbro srá: p 34. La cantdad d qulbro srá: ( p 34) 756 * El stablcmnto dl mpusto modfca la funcón d costs totals a largo plazo d la sgunt forma: 3 CT ( q) q 4q 38q 10q q 4q 48q. 3 La nuva curva d cost mdo d largo plazo s: CM CT q q 4q 48 El nuvo cost mdo d largo plazo s: CM q 4 0 q CM ( q ) 4* Mn CM y la corrspondnt curva d ofrta d la ndustra tras l stablcmnto dl mpusto s: Pág.7

8 Mcroconomía AE p Mn CM p 44 El prco d qulbro srá: p 44. La cantdad d qulbro srá ( p 44) 756 * El stablcmnto dl mpusto a largo plazo ncrmnta l prco d qulbro dl mrcado xactamnt n la cuantía dl mpusto. La cantdad d qulbro dl mrcado s rduc y la cantdad ofrcda por cada una d las mprsas s mantn naltrada rspcto a la ants dl stablcmnto dl mpusto 1. Est últmo rsultado nos ndca qu l númro d mprsas a largo plazo s rducrá a raíz dl stablcmnto dl mpusto. Rcurd qu, dado qu todas las mprsas son déntcas, l númro d mprsa s calcula como l cocnt ntr la produccón d qulbro y la ofrtada por cada mprsa, sto s: Númro d mprsas ( tras l mpusto) : n * q Efctos dl mpusto sobr la mprsa a largo plazo: CMg (t) CM (t) P 1=44 CM t=10 CMg P 0=34 q 0, = q 1, = 1 El nuvo nvl d produccón ofrcdo por la mprsa tras l mpusto s dduc d su curva d ofrta dond p=cmg, dond, tras l mpusto, l prco s 44 y l CMg=3q -8q+48. El nuvo nvl d produccón ofrcdo por una mprsa tras l mpusto s d undads, qu concd con l antror. Pág.8

9 Mcroconomía AE Efctos dl mpusto sobr l qulbro dl mrcado a largo y corto plazo P 1, p (Larg o plazo) = t P 0 p (corto plazo) P=44 (ofrta d la ndustra a largo plazo con mpusto) Ofrta d la ndustra a corto plazo con mpusto Ofrta d la ndustra a corto plazo sn mpusto P= 34 (Ofrta d la ndustra a largo plazo sn mpusto) (Curva d dmanda dl mrcado) = 756-p 1, 1, 0 Pág.9

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

INFLACIÓN, DESEMPLEO Y OFERTA AGREGADA

INFLACIÓN, DESEMPLEO Y OFERTA AGREGADA INFLACIÓN, DESEMPLEO OFERTA AGREGADA Estas notas stán basadas n Sornsn, P. y Whtta-Jacobsn, H. (2005): "Introducng Advancd Macroconomcs: Growth and Busnss Cycls". E. Mc Graw-Hll Curso: MACROECONOMÍA AVANZADA

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

IX - Economía internacional monetaria

IX - Economía internacional monetaria IX - conomía ntrnaconal montara Mrcado d dvsas y xpctatvas Supongamos qu dsamos adqurr una crta cantdad d monda xtranjra, ntrgando una cantdad dtrmnada d monda naconal, multplcada por l tpo d camo nomnal.

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT

ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT. ANÁLISIS DISCRIMINANTE INTRODUCCIÓN A LA MODELIZACIÓN LOGIT Conocda la dstrbucón d un conjunto d ndvduos ntr dos o más grupos, s busca ntndr la naturalza d

Más detalles

División 5. Ejemplo de síntesis de un mecanismo articulado de barras

División 5. Ejemplo de síntesis de un mecanismo articulado de barras Vrsón 0 CAITUL MECANISMS vsón 5 Ejmplo d síntss d un mcansmo artculado d barras UTN-F Cátdra: Elmntos d Máqunas. rofsor: r. Ing. Marclo Tulo ovan Vrsón 0. sumn En sta dvsón s dscrbrá l uso d la mtodología

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

Palabras clave: Infraestructura pública, efectos desbordamiento, función de costes, productividad.

Palabras clave: Infraestructura pública, efectos desbordamiento, función de costes, productividad. Hacnda Públca Española / Rvsta d Economía Públca, 165-(2/2003): 25-51 2003, Insttuto d Estudos Fscals Captal públco, actvdad conómca prvada y fctos dsbordamnto: Un análss por Comundads Autónomas d los

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT

ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT ANÁLISIS DISCRIMINANTE CON METODOLOGÍA LOGIT. ANÁLISIS DISCRIMINANTE INTRODUCCIÓN A LA MODELIZACIÓN LOGIT Conocda la dstrbucón d un conjunto d ndvduos ntr dos o más grupos, s busca ntndr la naturalza d

Más detalles

5) dx. 9) x. dx 11) 4x dx. x e 27)

5) dx. 9) x. dx 11) 4x dx. x e 27) .. Antidrrivadas: Evalú las intgrals siguints: Wilfrdo Saravia Maradiaga UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS,

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

3.4. Competencia en precios con restricciones de capacidad - Solución de Edgeworth

3.4. Competencia en precios con restricciones de capacidad - Solución de Edgeworth - Solucón de Edgeworth Matlde Machado 3.4. Competenca en precos con Benes homogéneos demanda a la Bertrand Tenen el msmo coste margnal c y nngún coste fjo Cada empresa tene capacdad k D(c) Las empresas

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

2ª Colección Tema 2 La oferta, la demanda y el mercado

2ª Colección Tema 2 La oferta, la demanda y el mercado Cuestones y problemas de Introduccón a la Teoría Económca Carmen olores Álvarez Albelo Mguel Becerra omínguez Rosa María Cáceres Alvarado María del Plar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

DOCUMENTO DE TRABAJO 223

DOCUMENTO DE TRABAJO 223 3 RCIOS NIVL CTIVI CONÓMIC N UN CONOMÍ BIRT: L OFRT L MN GRG CON TIO CMBIO FIJO Walo Mnoza Bllo ro Hrrara Catalán OCUMNTO TRBJO 3 http://www.pucp.u.p/conoma/pf/3.pf RCIOS NIVL CTIVI CONÓMIC N UN CONOMÍ

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 013-014 Iñak Agurre Jaromr Kovark Javer Arn Peo Zuazo Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema 3. Monopolo 1. Los costes de

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia Coleccón de problemas de Poder de Mercado y Estratega Curso 3º - ECO- 016-017 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Poder de Mercado

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

DOCUMENTO DE TRABAJO 220

DOCUMENTO DE TRABAJO 220 L MCROCONOMÍ D UN CONOMÍ BIRT N L CORTO LZO: DL MODLO MUNDLL - FLMING L DMND GRGD Walo Mnoza Bllo ro Hrrra Catalán Frro, 3 DOCUMNTO D TRBJO http://www.pucp.u.p/conoma/pf/ddd.pf L MCROCONOMÍ D UN CONOMÍ

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Parte I: Mercados de Bienes

Parte I: Mercados de Bienes José L. Zofío Grupos 14/15 MICROECONOMÍA II Lcencatura: Admnstracón y Dreccón de Empresas Curso 2007-08 (2º semestre) Códgo 14474 Curso 2007/2008 1 Parte I: Mercados de Benes Tema 1. Mercados perfectamente

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN Anass d acas y amna 34 ANEJO I A. ELEMENOS DE VIGA DE EULER ERNOULLI LIRES DE ROACIÓN La toría d vgas d Eur-rnou s robabmnt uno d os robmas modo más sms d a formuacón rstrngda d a astcdad na. La rstrccón

Más detalles

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos Mnstro d Fomnto Scrtaría d Estado d Infrastructuras, Transport y Vvnda Drccón Gnral d Arqutctura, Vvnda y Sulo Documnto d Apoyo al Documnto Básco DB-HE Ahorro d nrgía Códgo Técnco d la Edfcacón DA DB-HE

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

10. Decisión Bayesiana.

10. Decisión Bayesiana. 8/05/07 0. Dsón Baysana. 0. robabldad ondonada. robabldad total. Torma d Bays. 0. Intrprtaons dl onpto d probabldad. 0.3 Modfaón d las rnas dl dsor. 0.4 Valor montaro sprado on nformaón mprfta. Valor d

Más detalles

Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico

Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico Tma 7 El modlo IS-LM / O.A.-D.A: un marco gnral para l análisis macroconómico (Curva IS La rcta IS, rcog los pars d puntos, tipos d intrés y producción r )los cuals l mrcado d bins stá n quilibrio.,, para

Más detalles

ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS

ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS ELEMENTOS FINITOS DE DIFERENTES ÓRDENES PARA PROBLEMAS DE ELASTICIDAD PLANA Y MEZCLAS DE SUS MALLAS Sbastán Toro *, Vctoro Sonzogn, Carlos Numan * GIMNI, Unvrsdad Tcnológca Naconal, F.R. Santa F. Lavas

Más detalles

ANÁLISIS DE SISTEMAS ELECTRÓNICOS REALIMENTADOS

ANÁLISIS DE SISTEMAS ELECTRÓNICOS REALIMENTADOS ANÁLISIS DE SISTEMAS ELECTÓNICOS EALIMENTADOS DESANECIMIENTO J.M. Mlá d la oca P. EDITOIAL MIL 6 CAACAS Esta obra s ncuntra rvsón; cualqur obsrvacón qu UD tnga s l agradc comuncarla al autor. jmmladroca@hotmal.com

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS

ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS Vcnt T. GONZÁLEZ CATALÁ Dpartamnto d Cnca Empraral d la Unvrdad d Alcalá d Hnar. Rafal MORENO RUIZ Dpartamnto d Fnanza y

Más detalles

ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS

ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS ANÁLISIS ESTOCÁSTICO DE LA RENTABILIDAD DE LA INVERSIÓN EN OBLIGACIONES CLÁSICAS Rafal Morno Ruz, Vcnt T. Gonzálz Catalá, Olga Gómz Pérz-Cacho y Eduardo Trgo Martínz RESUMEN En t trabao analza la rntabldad

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

II! ... ~lf~~ CAPÍTULO1: QuÉ ESLA CIENCIAECONÓMICA? PREFACIO ACERCA DEL AUTOR PARTE 1 ," =. -- ENTREVISTAAL PROFESORDANIEL GALlNDO MIHLE

II! ... ~lf~~ CAPÍTULO1: QuÉ ESLA CIENCIAECONÓMICA? PREFACIO ACERCA DEL AUTOR PARTE 1 , =. -- ENTREVISTAAL PROFESORDANIEL GALlNDO MIHLE ' ~ ::J!!~ ~~~ "":::.e.!' ~lf~~ o ~ İ," -- -- PREFACO ACERCA DEL AUTOR PARTE PROFESOR DANEL GALlNDO MHLE ENTREVSTAAL PROFESORDANEL GALlNDO MHLE CAPÍTULO: QuÉ ESLA CENCAECONÓMCA? DEFNCONES DE ECONOMíA Y

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K.

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K. SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann = K 11 aann difrncia s cro; ntoncs s múltiplo d

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado n Economía y Mastría n T. y P. Económica Avanzada FACES UCV Microconomía I Prof. Angl García Banchs contact@anglgarciabanchs.com Clas/Smana Toría dl uilibrio dl mrcado d bins Balancar l ingrso

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Tema 2. Líneas de Transmisión Terminadas

Tema 2. Líneas de Transmisión Terminadas Tma. ínas d Transmsón Trmnadas,. Introduccón. Rflxón.3 Ondas staconaras.4 Impdanca d ntrada.5 Dsadaptacón n la cara y n l nrador.6 Rspusta transtora José A. Prda, Dpto. Innría d Comuncacons, Unvrsdad d

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong Dtrmnacón dl Cocnt d Rsttucón () d una plota d pn-pon Rsumn Víctor Garrdo Castro Unrsdad d Vña dl Mar arrdo@um.cl ; arrdostr@mal.com 3() 4668 El prsnt artículo prsnta una orma xprmntal para l cálculo dl

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

La tasa de interés y sus principales determinantes

La tasa de interés y sus principales determinantes La tasa d ntrés y sus prncpals dtrmnants 1. INTRODUCCIÓN Rchard Roca * Uno d los tmas qu domna l dbat académco d los últmos años s sobr las tasas d ntrés. Los mprsaros sñalan qu todavía sta muy alta y

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

CONTROL PREDICTIVO DE TANQUES ACOPLADOS

CONTROL PREDICTIVO DE TANQUES ACOPLADOS CONTROL PREDICTIVO DE TANQUES ACOPLADOS J.R. Llata, J. P. Ora, E.G. Saraba, J. Arc, A. Robls Dpartamnto d Tcnología Elctrónca Ingnría d Sstmas Automátca E.T. S. Ingnros Industrals Tlcomuncacón. Unvrsdad

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Introducción a la técnica de Bond-Graph

Introducción a la técnica de Bond-Graph Capíítullo T1 Introduccón a la técnca d Bond-Graph 1.1 INTRODUCCIÓN En un sstma físco cualqura, la nrgía pud almacnars, dspars o ntrcambars. Cuando postrormnt s unn dos sstmas, aparcn dstntos flujos d

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

Encuesta de ocupación hotelera

Encuesta de ocupación hotelera Encusta d ocupacón hotlra Mtodología Fbrro 2017 INE. Insttuto Naconal d Estadístca Mtodología 1. rsntacón 2. Objtvos 3. Undad stadístca 4. Ámbto d la ncusta 5. fncón d varabls 6. Marco d la ncusta y dsño

Más detalles

Tema 3: ESTIMACIÓN DEL MODELO

Tema 3: ESTIMACIÓN DEL MODELO Introduccón a la Economtría Tma 3: ETIMACIÓ DEL MODELO Tma 3: ETIMACIÓ DEL MODELO 3. Estmacón mínmocuadrátca. a l modlo d rgrsón lnal smpl: + + u E[ / ] + u,..., (3.) rprsntamos por los stmadors (, tamén,

Más detalles

GENERADORES DE BARRIDO DE TENSIÓN

GENERADORES DE BARRIDO DE TENSIÓN GENERADORES DE BARRDO DE TENSÓN RUTO DE BARRDO TRANSSTORZADO ON ORRENTE ONSTANTE El funconamnto d t crcuto dfn como, la carga un condnador lnalmnt a partr d una funt d corrnt contant. Excpto para valor

Más detalles

INGENIERÍA ENERGÉTICA

INGENIERÍA ENERGÉTICA INGENIERÍA ENERGÉTICA PROGRAMACIÓN DE LA GENERACIÓN DE ENERGÍA ELÉCTRICA Programacón de la generacón MERCADO DIARIO Es el mercado en el que tenen lugar las transaccones de compra y venta de energía para

Más detalles

Tema 2: Derivadas, Técnicas de Derivación

Tema 2: Derivadas, Técnicas de Derivación www.slctivia-cranaa.cm Tma : Drivaas, Técnicas Drivación..- Drivaa una unción n un punt: Sa la unción inia n un ntrn, cims qu la unción s rivabl n l punt si ist l límit cuan la unción tin a. rivabl n Si

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

Encuesta de Ocupación en Albergues (EOAL)

Encuesta de Ocupación en Albergues (EOAL) Encusta d Ocupacón n Albrgus (EOAL) Antproycto Enro 205 IE. Insttuto aconal d Estadístca IE. Insttuto aconal d Estadístca ÍICE ROYECTO TÉCICO... 3 Introduccón... 3. Obtvos... 3 2. Lgslacón y marco d rfrnca

Más detalles

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor Unvrdad Naconal dl Nordt Facultad d Ingnría Dpartamnto d Fíco-uímca/Cátdra Fíca II FÍSICA II Guía D Problma Nº5: Tranmón dl Calor 1 PROBLEMAS RESUELTOS 1 - Una barra d cobr d cm d dámtro xtror tn n u ntror

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles

Segui buscando en la Red de Bibliotecas Virtuales de CLACSO http://biblioteca.clacso.edu.ar

Segui buscando en la Red de Bibliotecas Virtuales de CLACSO http://biblioteca.clacso.edu.ar La maroonomía d una onomía abrta n l orto plazo: l modlo Ttulo Mundll-Flmng rrra Catalán, Pdro - utor/a; uamán gular, Rardo - utor/a; Mndoza, utor(s) Waldo - utor/a; Lugar CISP-PUCP dtoral/dtor 23 Fha

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

Resumen TEMA 6: Momentos de inercia

Resumen TEMA 6: Momentos de inercia EMA 6: Momntos d nrca Mcánca Rsumn EMA 6: Momntos d nrca. Dfncons Sstma matral d puntos matrals d masa m, =, 2,...,. a) Momnto d nrca rspcto d un plano π md (d = dstanca d la masa m al plano π) π =Σ 2

Más detalles

Oferta de trabajo y fiscalidad en España. Hechos recientes y tendencias tras el nuevo IRPF

Oferta de trabajo y fiscalidad en España. Hechos recientes y tendencias tras el nuevo IRPF Ofrta d trabajo y fscaldad n España. Hchos rcnts y tndncas tras l nuvo IRPF José Mª Labaga * y José Félx Sanz Rsumn En st trabajo s ntntan xplcar algunos hchos qu caractrzan, n rlacón con la fscaldad drcta,

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e NOMBRE P 6º I 8 FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Pro : Srgio Winbrgr MATEMÁTICA A Lico: Nº NOCT. Rsolvr : a 44 b d 8. 4. 5 5 c 6. 6 Rsolvr : a 5 5 4 b 5 > 4 El númro n "El númro

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial José Luis Zofío Organización Industrial II Licnciatura: Economía (2º smstr) Código 570 Part I: El análisis dl quilibrio parcial Tma 3.El monopolio. 3. Análisis dl quilibrio. 3.2 Discriminación d prcios

Más detalles

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2 13. Consdere un mercado en el que hay dos consumdores con las sguentes funcones de utldad: U 1 (x 1,y 1 = 4x 1 (x 1 + y 1 ; U (x,y = ax (x + y con 4 > a >0 donde x, =1,, es la cantdad del ben x consumda

Más detalles