Superficies Cuadráticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Superficies Cuadráticas"

Transcripción

1 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt Definiión: Superfiies Cudrátis Un superfiie udráti (ó uádri) es l gráfi de un euión de segundo grdo on tres vriles,,. L form generl de l euión es: A B C donde A, B, C,, J son onstntes. D E F G H I J 0 1. Elipsoide. Tiene por euión 1 Ls trs del elipsoide son elipses, es deir, l interseión on plnos prlelos los plnos oordendos es un elipse Si 0 1 elipse Si 0 1 elipse Si 0 1 elipse

2 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt. Hiperoloide de un hoj. Tiene por euión 1 Ls trs del hiperoloide son hipérols en plnos prlelos l plno XZ l YZ, mientrs que en plnos prlelos l XY ls trs son elipses. Si 0 1 Hiperol Si 0 1 Hiperol Si 0 1 Elipse El eje por donde se re el hiperoloide es por el eje u vrile pree en l euión negtiv (en este so eje ). L difereni fundmentl entre el hiperoloide de un hoj el elipsoide es que tiene un vrile on signo negtivo.

3 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt 3. Hiperoloide de dos hojs. Tiene por euión 1 Ls trs de est superfiie son: Pr plnos prlelos XZ, son hipérols l igul que pr plnos prlelos l YZ. si 0 si hiperol hiperol Se difereni de ls otrs superfiies que tiene dos vriles negtivs. 4. Proloides

4 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt si 0 Tiene por euión 1 imposile!!! no h gráfi Ls trs del proloide son: Pr plnos prlelos l XY son elipses, pr plnos prlelos l XZ o l YZ son práols. Si 0 práol Si 0 Si K k práol Elipse, si Círulo Su difereni on ls otrs Cuádris, es que tienen un vrile que no está elevd l udrdo, ls otrs vriles tienen el mismo signo.

5 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt 5. Proloide hiperólio. Tiene por euión Su difereni fundmentl on ls otrs superfiies es que ell tiene en su euión un vrile que no está elevd l udrdo, ls otrs vriles tienen el signos ontrrios. Trs: si si 0 0 práols 0 si 0 Dos rets!! práols

6 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt 6. Conos L superfiie uádri que tiene por Z euión Se denomin Cono. Y Ls trs del ono son: Si 0 Si 0 Dos rets X Dos rets si K k Elipse, Y si? 7. Cilindro irulr reto Cundo un de ls vriles, o no pree en l euión de l superfiie, Entones l superfiie es un Cilindro. Por ejemplo: Es un ilindro en el espio que flt l vrile. Por lo tnto, l gráfi del ilindro se etenderá prlelo l eje En el plno: En el Espio:

7 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt Y 8. Cilindro irulr reto on eje en el eje : Considere l euión: En el plno: En el Espio

8 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt 8. Cilindro prólio: Considere l euión 0, que orresponde un práol en el plno, l vrir se otiene l superfiie En el plno En el espio 9. Cilindro elíptio on eje en el eje : Considere l euión de l elipse otiene l superfiie 4 4 en el plno, l reorrer el eje se

9 Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt En el espio En el plno 10. Cilindro hiperólio on eje en el eje : Considere l euión 1 que orresponde un hipérol entrd en el (0,0) en el plno, l reorrer se otiene l superfiie. En el espio En el plno

10 Fultd Regionl L Plt Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es:

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. SUPERFICIES CUADRICAS 1 SUPERFICIES CUADRICAS En el espio un superfiie uádri es l gráfi de un euión

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N NOMBRE DE LA ASIGNATURA: CALCULO MULTIVARIADO Y VECTORIAL TÍTULO: SUPERFICIES DURACIÓN: DOS CLASES CUATRO HORAS BIBLIOGRAFÍA

Más detalles

ASIGNATURA: CÁLCULO MULTIVARIABLE

ASIGNATURA: CÁLCULO MULTIVARIABLE APUNTES DOCENTES ASIGNATURA: CÁLCULO MULTIVARIABLE PROFESOR: LUZ LILIANA ARDILA RECTAS Y PLANOS EN EL ESPACIO Pr definir l euión de un ret en el espio st onoer un punto de l ret un vetor prlelo l ret,

Más detalles

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS * Se denominn superfiies uádris tods quells superfiies que pueden ser definids medinte un euión de segundo orden.

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti 13 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio 1: Hlle l euión norml generl de l irunfereni que tiene por diámetro el segmento de etremos ( - 1,

Más detalles

y a z b 2 = y a z b + c

y a z b 2 = y a z b + c 65 ESTUDIO DEL HIPERBOLOIDE DE UNA HOJA - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri

Más detalles

a) Simetría respecto a los planos coordenados

a) Simetría respecto a los planos coordenados 53 ESTUDIO DEL ELIPSOIDE - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln Cm l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri respet

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

Unidad 2 Apunte Superficies en 3D Links del curso Matemática Aplicada de la Cátedra de Matemática ECC, FAU (UNLP).

Unidad 2 Apunte Superficies en 3D Links del curso Matemática Aplicada de la Cátedra de Matemática ECC, FAU (UNLP). CM ENRICH CREUS CARNICERO Nivel Unidd Apunte Superfiies en 3D 015 Links del urso Mtemáti Aplid de l Cátedr de Mtemáti ECC, FAU (UNLP). Soliitr unirse l grupo 015 Nivel Mtemáti ECC. https://mtemtie.wordpress.om/segundo-no/

Más detalles

Apuntes citados en este material y que, seguramente, necesitarás consultar:

Apuntes citados en este material y que, seguramente, necesitarás consultar: 01 Apuntes itdos en este mteril que, segurmente, neesitrás onsultr: Conoimientos previos Superfiies3D. Aneos Superfiies 3D. 1. Introduión Comenemos lrndo qué epión de l plr superfiie se refiere el tem

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 1 LA ELIPSE Y LA HIPÉRBOLA Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivos espeífios: 1. Reordrás

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

SUPERFICIES CUÁDRICAS Ó CUADRÁTICAS.

SUPERFICIES CUÁDRICAS Ó CUADRÁTICAS. SUPERFICIES CUÁDRICAS Ó CUADRÁTICAS. Como su nombre lo dice, se trt de superficies que están representds por ecuciones que tienen vribles de segundo grdo. Ests superficies están representds por l ecución

Más detalles

GEOMETRÍA ANALÍTICA DEL ESPACIO

GEOMETRÍA ANALÍTICA DEL ESPACIO CAPITULO Espero que l posteridd me jugue on enevoleni no solo por ls oss que he eplido sino tmién por quells que he omitido inteniondmente pr dejr los demás el pler de desurirls René Desrtes. GEOMETRÍA

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

Ejercicios de las Cónicas

Ejercicios de las Cónicas Ejercicios de ls Cónics Ejemplo 1 Ejemplo Otener l ecución crtesin generl de l circunferenci que coincide con el punto (, 3) cuo centro coincide con el origen. Prtiendo de l ecución ordinri ( - h) + (

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

INTEGRALES LECCIÓN 13

INTEGRALES LECCIÓN 13 INTEGRALES LECCIÓN 13 Índie: Cálulo de áres. Ejemplos. Prolems. 1.- Cálulo de áres Si y son dos uniones ontinus en el intervlo [,] tles que, entones el áre de l reión del plno limitd por sus ráis y ls

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica Cundo ls orgniziones de vuelos espiles desen poner en órit un stélite deen lnzrlos on un veloidd proimd de 8 km/s. Pero undo quieren que slg de l órit terrestre deen lnzrlo on un veloidd 8 km/s l tretori

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

ESTUDIO DEL PARABOLOIDE ELÍPTICO. 2 b. 1 - Estudio de la Simetría. a) Simetría respecto a los planos coordenados. Simetría respecto al plano xy.

ESTUDIO DEL PARABOLOIDE ELÍPTICO. 2 b. 1 - Estudio de la Simetría. a) Simetría respecto a los planos coordenados. Simetría respecto al plano xy. 86 ESTUDIO DEL PARABOLOIDE ELÍPTICO 1 - Estudi de l Simetrí ) Simetrí respect ls plns crdends Simetrí respect l pln ( ) Cm l ecución de l superficie se lter si cmims el sign de l vrile, cncluims que l

Más detalles

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Clase 12: Integración de funciones de varias variables con valores reales

Clase 12: Integración de funciones de varias variables con valores reales Clse : Integrión de funiones de vris vribles on vlores reles C.J. Vnegs de junio de 8 eordemos.. L integrl f. fx)dx, pr f represent el áre bjo l gráfi de Similrmente si tenemos un funión de dos vribles:

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA

Más detalles

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES Fse Nionl de l XLV Olimpid Mtemáti Espñol Snt Feliu de Guiols (Giron 7 de mro de 9 PRIMER SESIÓN SOLUCIONES - Hll tods ls suesiones finits de n números nturles onseutivos on n tles que 9 n Primer soluión:

Más detalles

Experiencias Docentes Transformando Cuádricas Regladas

Experiencias Docentes Transformando Cuádricas Regladas Eperienis Doentes Trnsformndo Cuádris Reglds Josef Mrín, Ampro Verdú José Luis Almán Revist de Investigión Volumen II, Número, pp. 03--04, ISSN 74-040 Reepión: 5 Jul ; Aeptión: 0 Jul de oture de 0 Resumen

Más detalles

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTCAS PRMER PARCAL PARTE A) LUGARES GEOMÉTRCOS ) Grfi ls siguientes funiones (tulr e - ): ) Enuentr tres prejs orens e funión (No grfir): B) DSTANCA ENTRE DOS PUNTOS

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Universidad de Antioquia

Universidad de Antioquia Funiones Fultd de Cienis Ets Nturles Deprtmento de Mtemátis Semilleros de Mtemátis Mtemátis Opertivs Tller 6 0 El onepto mtemátio de funión epres l ide intuitiv er de un ntidd (vrile independiente, vlor

Más detalles

Características 1) Es siempre cuadrado (igual cantidad de filas y columnas) 2) Está formado por número que determina un valor 3) Se resuelve

Características 1) Es siempre cuadrado (igual cantidad de filas y columnas) 2) Está formado por número que determina un valor 3) Se resuelve Colegio Ténio Nionl y Centro de Entrenmiento Voionl Arq. Rúl Mrí Benítez Perdomo Segundo urso de l Eduión Medi y Téni - Mtemáti Determinntes mtriz) On x n Es un funión que sign un número un mtriz (es deir

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral. TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís corresponden los espcios cdémicos en los que el estudinte del Politécnico Los Alpes puede profundizr y reforzr sus conocimientos en diferentes tems de cr l exmen de

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

UNIDAD I. El Punto y la Recta

UNIDAD I. El Punto y la Recta SSTEMS E REPRESENTÓN 10 UN SESÓN 3 L Ret: efiniión, trzs y posiiones notles ORE L. LERÓN S. SSTEMS E REPRESENTÓN 10 1.5 L RET Es el eleento geoétrio unidiensionl y puede deterinrse trés de un segento de

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 6:CÓNICAS 1º BACHILLERATO ÍNDICE 1. INTRODUCCIÓN... 1.1. SUPERFICIE CÓNICA... 1.. CURVAS CÓNICAS... 5. CIRCUNFERENCIA... 6.1. ECUACIÓN COMPLETA DE UNA CIRCUNFERENCIA... 6.1.1.

Más detalles

- 1 - Pero también podemos definir. Superficie: generada por el movimiento de una línea (generatriz) a lo largo de una trayectoria (directriz)

- 1 - Pero también podemos definir. Superficie: generada por el movimiento de una línea (generatriz) a lo largo de una trayectoria (directriz) Después de her inicido el estudio de los diferentes Sistems de Coordends en tres dimensiones, del punto l rect en el espcio, siguiendo con nuestro método de nálisis ordremos el estudio de ls figurs en

Más detalles

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B Colegio de Bhilleres Plntel No. 5 Contrers Guí de Estudio pr presentr Emen de Evluión de Reuperión 05B Elborr en hojs blns mno solo los ejeriios propuestos, indindo pr d serie l págin de los mismos. Entregr

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES Fse Nionl de l XLV Olimpid Mtemáti Espñol Snt Feliu de Guiols (Giron) 7 de mro de 9 PRIMERA SESIÓN SOLUCIONES PROBLEMA - Hll tods ls suesiones finits de n números nturles onseutivos on n tles que 9 n Primer

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos:

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos: TRIGONOMETRIA NOCIONES PREVIAS Si onsidermos tres vrills,, tles que puede onstruirse on ells un triángulo (siempre que se umpl que l medid de d vrill se menor que l sum de ls otrs dos mor que l difereni)

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

1. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES

1. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES UNIDAD : Produto etoril y mixto. Apliione.. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire y, que e not por, e define omo: - Si 0 ó 0 ó y on proporionle, entone

Más detalles

Estudio algebraico de las cónicas. CÓNICAS

Estudio algebraico de las cónicas. CÓNICAS Esudio lgerio de ls ónis Esudio lgerio de ls ónis Inroduión CÓNICAS En ese píulo se v efeur un esudio de ess urvs plns uilizndo ls herrmiens que nos hn proporiondo los ems neriores de Álger Linel y Geomerí

Más detalles