INDICADORES DE DESEMPEÑO
|
|
|
- José Manuel Carmona Caballero
- hace 7 años
- Vistas:
Transcripción
1 INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION ENERO 5 DE 9 UNIDADES INDICADORES DE DESEMPEÑO Encuentr los elementos de l elipse dd su ecución cnónic o estándr. Otiene l ecución cnónic de l elipse con se en lgunos prámetros ddos. Construe l ecución cnónic de l elipse prtir de su ecución generl. Reliz con interés ls ctividdes etrclse uscndo l superción personl. Vlor el trjo en equipo fvoreciendo el prendizje colectivo. LA ELIPSE En el curso inmeditmente nterior iniciste el estudio de ls figurs cónics pudiste nlizr entre ells l circunferenci l práol; te diste cuent que recien el nomre de cónics porque se otienen prtir de un plno que intercept un cono en diverss posiciones. Ahor ien, entrs en este primer período relizr el estudio de otr de ls figurs cónics como lo es LA ELIPSE sus plicciones. Espero mucho interés mucho entusismo de tu prte pr que pueds recoger mu uenos frutos l finlizr tu último ño escolr en est querid institución... Ánimo delnte!. DEFINICIÖN: L elipse es el lugr geométrico de los puntos del plno cu sum de distncis dos puntos fijos llmdos focos es siempre constnte e igul, donde es l distnci del centro de l elipse cd uno de los vértices principles de ell. ELEMENTOS: Los elementos principles de l elipse son: Centro: Es el punto medio de los dos focos sus coordends se denotn por (h, k). Distnci focl: Es l distnci entre los dos focos; l distnci focl mide c, donde c represent l distnci del centro cd uno de los focos. Eje focl: Es l líne que ps por los dos focos. Vértices ó vértices principles: Son los puntos donde el eje focl cort l elipse. Eje mor ó eje principl: Es el segmento de rect que une los vértices principles de l elipse. L longitud del eje mor es igul, donde es l distnci del centro de l elipse cd uno de estos vértices.
2 Eje menor ó eje secundrio ó de simetrí de l elipse: Es el segmento de rect que ps por el centro de l elipse es perpendiculr l eje mor. Vértices secundrios ó etremos del eje menor: Son los puntos donde el eje menor cort l elipse. L longitud del eje menor es igul, donde es l distnci del centro de l elipse cd uno de estos etremos. Ecentricidd: Es el vlor c/ se denot por e, es decir, e = c/ siempre es un vlor comprendido entre ; dependiendo del vlor de l ecentricidd l elipse d más chtd o menos chtd. Y X ECUACIONES CANÓNICAS Ó ESTÁNDARES DE LA ELIPSE: En el plno crtesino l elipse puede tomr dos posiciones: Cundo el eje mor es prlelo l eje o cundo es prlelo l eje ; de quí que l elipse teng dos ecuciones cnónics, sí: ( Ecución cnónic de l elipse con eje mor prlelo l eje X. h) ( k) ( h) ( k) Ecución cnónic de l elipse con eje mor prlelo l eje Y. MUY IMPORTANTE!: Siempre en l elipse se cumple que: > = + c NOTA: Cundo el centro de l elipse está en el origen de coordends, signific que h = k =, por lo tnto ls dos ecuciones nteriores tomn ls siguientes forms: Ecución cnónic de l elipse con eje mor sore l eje X centro (, ).
3 3 Ecución cnónic de l elipse con eje mor sore l eje Y centro (, ) Dees tener presente demás que el áre de un elipse es igul : π.. ACTIVIDADES. EL APORTE DE MI PROFE EN CLASE... Presto tod mi tención l solución de los siguiente ejercicios que desrroll mi profesor en l clse.. Dds ls siguientes ecuciones cnónics de un elipse determino todos sus elementos (centro, vértices, etremos del eje menor, focos, longitud del eje mor, longitud del eje menor l distnci focl) sí como su ecentricidd su áre. ( 3) ( ) ( 5) 8 ( 5) En cd uno de los siguientes ejercicios encuentro l ecución cnónic de l elipse de cuerdo ls condiciones dds osquejo l gráfic:. Hllo l ecución de l elipse que tiene su centro en (, ) uno de sus focos es el punto F(5, ) (8, ).. Focos en (±, ); longitud del eje menor 6. Centro en (-, ), vértice en (-, 7); focos en (-, 4). 4. Focos en (6, ) (-, ); longitud del eje mor es. 5. Centro (- 3, 4), distnci focl 8, longitud del eje mor 4 prlelo l eje. c. Dds ls siguientes ecuciones generles de un elipse otengo su ecución cnónic, sí como ls coordends del centro de sus vértices (principles): = Y AHORA MI APORTE INDIVIDUAL EN CLASE
4 4 Dds ls siguientes ecuciones cnónics de un elipse determino todos sus elementos (centro, vértices, etremos del eje menor, focos, longitud del eje mor, longitud del eje menor l distnci focl) sí como su ecentricidd su áre ( ) ( 3).. c. ( 4) 6 9 ( 3) ( ) 5 69 QUE BUENO! EN MI CASA PRACTICO Y AFIANZO MÁS... En cd uno de los siguientes ejercicios encuentro l ecución cnónic de l elipse de cuerdo ls condiciones dds osquejo l gráfic:. Centro (, ), Foco (- 3, ), Vértice (5, ). Centro (, ), distnci focl 4, Vértice (, - 8) c. Centro (3, ), Foco (7, ), Vértice (9, ) d. Centro en el origen, un foco en el punto (, - 4) eje mor 4. e. Centro en (3, 5), un vértice en el punto (3, - ) semieje menor MI TRABAJO EN CLASE CON OTRAS DOS COMPAÑERAS... Dds ls siguientes ecuciones generles de un elipse otengo su ecución cnónic, sí como ls coordends del centro de sus vértices (principles): LEYENDO APRENDO MÁS COSITAS INTERESANTES SOBRE LA ELIPSE... Ls órits de plnets como l Tierr son elíptics donde un foco corresponde l Sol. Tmién le corresponde est figur los comets stélites. Además se cree que este rzonmiento se plic tmién ls órits de los átomos. Deido l resistenci del viento, ls trectoris que relizn los viones cundo hcen vijes circulres se vuelven elíptics. En rquitectur se utilizn con mor frecuenci rcos con form elíptic. En mecánic celeste, un cuerpo sometido l trcción grvittori de otro que gir su lrededor, descrie un órit elíptic. Uno de los focos de l elipse coincide con el cuerpo trctor.
5 MI PREPAREACIÓN PARA LAS PRUEBAS SABER º ES BÁSICA... Seleccion de ls cutro opciones sólo un de ls respuests, l que consideres relcion de mner más estructurd los conceptos mtemáticos con ls condiciones prticulres de l situción prolem: 5. L ecución de l elipse con centro en el origen que ps por los puntos (,) (,3) es: A. + = 4 B. = 4 C. ( /4) + ( /9) = D. ( /9) + ( /4) = ( ) ( 3). Un elipse en el plno crtesino tiene como ecución: del plno crtesino l punto (,3) l ecución de l nuev elipse será:. Al trsldr el origen ( ) ( 3) A. ( ) ( 3) B. ( 3) C. D. ( ) ( ) 9 5 Ls coordends e los focos de l elipse son: A. (-3,) (5,) C., 34) B. (, -) (,6) D. 34,) ( (, 34) ( ( 34,) EL ESTUDIO TIENE SU RAÍZ AMARGA PERO SU FRUTO ES DULCE
LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE
1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd
el blog de mate de aida: MATE I. Cónicas pág. 1
el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).
ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1
ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse
Circunferencia y elipse
GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn
La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a
L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,
ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN
ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN Si hor colocmos l elipse horizontl con centro en el origen, oservremos que no cmin l form ni lgun de sus crcterístics. Si tenímos como ecución
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución
UTalca - Versión Preliminar
1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)
y ) = 0; que resulta ser la
º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0
6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2
UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS
ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.
Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece
TEMA 8 GEOMETRÍA ANALÍTICA
Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l
FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS
FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas
TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr
3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS
Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr
LAS CÓNICAS COMO LUGARES GEOMÉTRICOS
LAS CÓNICAS COMO LUGARES GEOMÉTRICOS Elipse: lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos llmdos focos es constnte. d(x,f) + d(x,f ) = k LAS CÓNICAS COMO LUGARES GEOMÉTRICOS
Ecuación de la circunferencia de centro el origen C(0, 0) y de
CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd
La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005
L Hipérbol Césr Román Mrtínez Grcí [email protected], [email protected] Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es
= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas
TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.
APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
HIPÉRBOLA. En una hipérbola siempre se cumple c a b. excentricidad: e a. 2b a. Lado Recto: LR =
XI. HIPÉRBOLA Lugr geométrico de todos los puntos tles que el vlor soluto de l diferenci de sus distncis dos puntos fijos (focos), es un cntidd constnte y menor que l distnci entre los focos. En un hipérol
La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.
LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.
Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A
Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu
CÓNICAS. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. centro de la circunferencia.
CÓNICAS CPR. JORGE JUAN Xuvi-Nrón L circunferenci, l elipse, l hipérol y l práol se conocen como cónics deido que se pueden otener l cortr un superficie cónic de revolución por un plno que no pse por su
GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:
Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
Teorema de pitágoras Rectas antiparalelas
pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2
Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)
1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).
CÓNICS º BCHILLERTO ) Hll L ecución d lugr geométrico los puntos d plno cu distnci P(,) doble que su distnci Q(-,). d ( R, P) d( R, Q) ( ) ( ) ( ) ( ) ( ) 0 0 0 ) Encuentr l circunferenci circunscrit l
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
VECTORES, PLANOS Y RECTAS EN R 2 Y R 3
Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn
CONTINUIDAD PUNTUAL DE UNA FUNCIÓN REAL.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: Conceptul y ejercitción PERIODO GRADO N FECHA
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
3. ÁLGEBRA VECTORIAL
3. ÁLGEBRA VECTORIAL Ojetivo: El lumno plicrá el álger vectoril en l resolución de prolems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3.2 Cntiddes esclres y cntiddes
* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.
págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores
Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección
9Soluciones a los ejercicios y problemas PÁGINA 196
PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35
SUPERFICIES CUÁDRICAS Ó CUADRÁTICAS.
SUPERFICIES CUÁDRICAS Ó CUADRÁTICAS. Como su nombre lo dice, se trt de superficies que están representds por ecuciones que tienen vribles de segundo grdo. Ests superficies están representds por l ecución
Teorema de Green. 6.1 Introducción
SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )
Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1
GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,
CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid
CURSO DE GEOMETRÍA ANALÍTICA Oscr Crdon Villegs Héctor Escobr Cdvid UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS 016 1 MÓDULO 5 LAS LÍNEAS CÓNICAS EN EL PLANO 5.1 GENERALIDADES DE LAS CÓNICAS
UNIDAD 4 LA ELIPSE, LA CIRCUNFERENCIA Y SUS ECUACIONES CARTESIANAS
UNIDAD 4 LA ELIPSE, LA CIRCUNFERENCIA Y SUS ECUACIONES CARTESIANAS PROPÓSITOS: Refirmr el método nlítico l obtener ls ecuciones de l elipse l circunferenci vnzr en el reconocimiento de forms estructurs,
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
Integrales triples en coordenadas rectangulares. Integrales triples. S n = a
5.5 Integrles triples en coordends rectngulres 859. Evlúe lím erfsd lím : q 4. Conversión un integrl polr Evlúe l integrl q q : q s + + d d. d 43. Eistenci Integre l función f(, ) 5 ( ) sore el disco #
PLACAS DELGADAS MEDIANTE
PLACAS DELGADAS MEDIANTE MÉTODOS CLÁSICOS ANÁLISIS DE ESTRUCTURAS II 4 O DE I.C.C.P. Por R. Gllego Sevill, G. Rus Crlorg A. E. Mrtíne Cstro Deprtmento de Mecánic de Estructurs e Ingenierí Hidráulic, Universidd
EL EXPERIMENTO FACTORIAL
DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls
Z ξ. g(t)dt y proceda como sigue:
Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)
Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES
4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
Retos Matemáticos visuales
Retos Mtemáticos visules Bdjoz, 28 de mrzo de 208 Volumen 5 c Retos Mtemáticos visules Volumen 5 Retos Mtemáticos visules. 28 de mrzo de 208 Tem Prolems visules y otros prolems Un cónic es l curv otenid
153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental
L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES
Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA
Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro
Se traza la paralela al lado a y distancia la altura h a.
Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos
Universidad Nacional de La Plata
Universidd Ncionl de L Plt Fcultd de Ciencis Nturles Museo Cátedr de Mtemátic Elementos de Mtemátic Asigntur: Mtemátic Contenidos de l Unidd Temátic nº Rect Cónics. Rect: Ecución vectoril demás forms de
CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid
CURSO DE GEOMETRÍA ANALÍTICA Oscr Crdon Villegs Héctor Escobr Cdvid UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS 06 MÓDULO 5 LAS LÍNEAS CÓNICAS EN EL PLANO 5. GENERALIDADES DE LAS CÓNICAS
Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:
Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado
Circunferencia Parábola Elipse Hipérbola
INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA Prof. Esther Morles (009) 1 Ls figurs
vectores Componentes de un vector
Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
APUNTES DE MATEMÁTICA. Geometría Analítica
. Plno Crtesino Rects.... Producto Crtesino... 3 3. Distnci... 3 4. Gráfics de línes rects... 4 5. Ecución de l rect... 6 6. Prlelismo perpendiculridd... 8 7. Sistems de ecuciones lineles... 9 8. Distnci
La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ
Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn
