4.3. La ciudad Lineal Modelo de Hotelling La ciudad Lineal Modelo de Hotelling

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4.3. La ciudad Lineal Modelo de Hotelling La ciudad Lineal Modelo de Hotelling"

Transcripción

1 Modelo de Hotelling Mtilde Mchdo pr bjr ls trnsprencis: Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling Modelo de Hotelling Ejemplos de diferencición horizontl: Ply y vendedores de heldos - En cd extremo de l ply hy un vendedor de heldos. unque venden los mismos heldos los consumidores no son indiferentes entre los dos. Prefieren comprr l vendedor que está más cerc. Hy costes de trnsporte. Reinterpretción de l distnci: Crcterístics de los productos. Ejemplo Cereles y su dulzor. Cereles pueden tener mucho zúcr o poco. Podemos ordenr todos los cereles en un líne de dulzor (ply). Consumidores tienen gustos (loclizciones) diferentes pr el dulzor y si no hy diferencis de precios prefieren comprr los cereles cercnos su gusto. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

2 4.3. L ciudd Linel - Introducción Más ejemplos de diferencición horizontl: Renult Scenic blnco y Renult Scenic rojo Loclizción espcil Frmácis - Regulción de ls Oficins de Frmáci: Precios y Libertd de Entrd Wlter Grcí Fontes y Mssimo Mott Que más homogéneo que el gu? El cso de gus de diseño. Mrgenes lts. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 El modelo:. Ciudd linel es el intervlo [0,]. Los consumidores están distribuidos uniformemente lo lrgo de este intervlo. 3. Hy empress, loclizds cd extremo que venden el mismo bien. L únic diferenci entre ls empress es su loclizción. 4. c coste de unidd del bien 5. t coste de trnsporte por unidd de distnci l cudrdo. Este coste es soportdo por los consumidores cundo eligen un empres o l otr. Represent el vlor del tiempo, gsolin, etc. 6. Los consumidores tienen demnds unitris o comprn unidd o ningun {0,} Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

3 Gráficmente Ms de consumidores dz z x Loclizción de l empres Loclizción de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 Los costes de trnsporte del consumidor x: De comprr en l empres son tx De comprr en l empres son ( x) t s excedente bruto del consumidor - (es decir su máxim disponibilidd pgr) Supongmos que s es lo suficientemente grnde pr que el mercdo esté cubierto, es decir pr que todos los consumidores del intervlo puedn comprr. L utilidd de cd consumidor es por tnto dd por: U s-p-td Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

4 Tommos ls loclizciones de ls empress como dds y compiten en precios.. Derivción de ls curvs de demnd. Problem de optimizción en precios y equilibrio Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 El consumidor indiferente entre comprr en l tiend o se situ en se define como el punto donde Ux ( ) Ux ( ) s p t s p t( ) p + t p + t( ) p + t p + t+ t t t p p + t Comprn Comprn p p + t t Si (p -p ) el consumidor indiferente se mueve hci l derech, es decir ument l demnd de l empres y disminuye l demnd de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

5 Un vez que sbemos cul es el consumidor indiferente podemos definir ls funciones de demnd de ls empress y. p p + t D( p, p) dz z 0 t 0 p p + t p p + t D( p, p) dz z t t L demnd de l empres por ejemplo depende positivmente de l diferenci de precios (p -p ) y negtivmente de los costes de trnsporte. Si ls dos empress colocn el mismo precio p p entonces se reprten el mercdo en prtes igules (el consumidor indiferente se situ en ½). Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 Decimos que el mercdo está cubierto cundo el consumidor indiferente quiere comprr, es decir: p p + t s p t 0 t Los beneficios de ls empress son: ( ) ( ) Π ( p, p ) p c D ( p, p ) p c p p + t t Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 5

6 El problem de l empres, por ejemplo, es: ( ) ( ) Mx Π ( p, p ) p c D ( p, p ) p c p Π p p + t ( p c) p t t CPO: 0 0 p p + t t p + t+ c p p + t+ c 0 p Como el problem es simétrico p p p* * * * p + t+ c p t+ c * p p t+ c Curv de rección de l empres Cundo t0 volvemos ertrnd p*c; Π*0 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling Un vez que tenemos los precios de equilibrio podemos clculr tods ls cntiddes de equilibrio: * * * * D( p, p) D p p D p p * * * * * (, ) (, ) ( ) ( ) p c D t c c * * * * * Π Π + Not: cunto myor es t más diferencido está el bien desde el punto de vist de los consumidores, myor es el poder de mercdo, los clientes que están más cerc están más cutivos porque les sle muy cro irse hst l otr empres. Esto permite umentr el precio de equilibrio y los beneficios. Cundo t0 (no hy diferencición) volvemos ertrnd Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling t 6

7 Observciones: Cd empres sirve medio mercdo D* D* / L prdoj de ertrnd desprece p p >c Un umento de t implic más diferencición de productos. Por lo tnto ls empress compiten con menos vigor y obtienen beneficios myores. t0 volvemos ertrnd Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 s U i p +tx p +t(-x) p t+c p t+c 0 i ½ El consumidor compr l vendedor que le slg más brto incluyendo el coste de trnsporte Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4 7

8 Como cmbin los precios cundo cmbin ls loclizciones de y? Si 0 y hy máxim diferencición Si ˆx Todos los consumidores comprrán l que teng el precio más brto, volvemos ertrnd, p p c y Π Π 0. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 Cso Generl loclizciones endógens: periodos: En el primer periodo ls empress seleccionn loclizción En el segundo periodo ls empress compiten en precios dd su loclizción Se resuelve hci trás. Empezmos por el segundo periodo. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 8

9 Segundo periodo: L loclizción de l empres está en [0,] L loclizción de l empres está (-b) [0,] Not: L máxim diferencición serí con 0; y -b (es decir b0) l mínim diferencición (sustitutos perfectos) serí con -b +b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7. El consumidor indiferente: U ( ) U ( ) p + t( ) p + t( ( b)) p + t + t tx p + t + t( b) t( b) t ( b ) p p + t( b) t p p + t( b) t p p + t b t( b ) t( b ) p ( )( p b b+ ) ( ) ( ) p p ( b + ) p ( p b ) ( ) t( b ) + t b b t b Por tnto si p p l demnd de es +(-b-)/ (( ) ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 9

10 Ls demnds son: ( ) ( ) ( b ) p p D( p, p) + + t b ( b ) p p D( p, p) t( b ) p p b + + b t b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 Interpretción de ls funciones de demnd: si p D( p, p) + consumidores cutivos, su izquierd ( b ) mitd de los consumidores entre y -b b D( p, p) + b si p p p mitd de los consumidores entre y -b ( ) consumidores cutivos, su derech b p p D( p, p) + + t( b ) sensibilidd de l demnd frente l diferenci de precios Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 0

11 Gráficmente p +t(x-) p p 0 -b Mercdo cutivo de Mercdo cutivo de Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling. Encontrr ls funciones de rección ( ) Π ( ) (, ) ( ) + + b p p Mx p c D p p p c p t( b ) Π ( b ) p p CPO: ( p c) 0 p t( b ) t( b ) p ( b ) p + c + + ( t b ) ( t b ) p ( b ) p + c + + t( b ) t( b ) t p t( b ) + ( b ) p + c Función de rección + Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

12 . Encontrr ls funciones de rección ( ) b p p Mx Π ( p c) D( p, p) ( p c) b + + p t( b ) Π CPO: 0 p ( b ) p p b+ + + ( p c) 0 t( b ) t( b ) ( b ) p p + c b t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3. Encontrr ls funciones de rección (cont.) ( ) b p + c b p + c b t( b ) t( b ) ( b ) 3p + 3c b + b ( t b ) 4 3p 3c b ( t b ) 4( t b ) t( 3 + b ) ( b ) p c+ 3 b b c+ t( b ) + y p c+ t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

13 . Encontrr ls funciones de rección (cont.) * b * b p(, b) c+ t( b ) + y p(, b) c+ t( b ) Los precios son máximos cundo l diferencición es máxim (b0; p p c+t) y mínimos cundo l diferencición es mínim (+b (mism loclizción) y p p c) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 3. er periodo, elección simultne de y b Los beneficios son: ( ) ( ) Π * * * ( b, ) p( b, ) c D( b,, p( b, ), p( b, )) Π * * * ( b, ) p( b, ) c D( b,, p( b, ), p( b, )) p ( b, ), p ( b, ), D( b, ), D( b, ) * * * * Se sustituye y nos quedmos con un función solmente de y b. Scmos ls CPO como siempre. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

14 3. er periodo, elección simultne de y b * * b p p b Π ( b, ) c+ t( b) + c t( b) * * b pero p p t( b) 3 lo que simplific: b b b+ Π ( b, ) t( b) b+ t b b 3 b+ 3 6 ( ) ( ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 3. er periodo, elección simultne de y b ( ) ( 3 b+ ) Mx Π (, b) t b 8 Π ( b, ) ( 3 b+ ) 3 b+ CPO: t + t( b) 8 8 t ( b+ )( + b+ ) < 8 ( ) * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

15 3. er periodo, elección simultne de y b Mx Π (, b) t b b ( ) ( 3 + b ) ( ) 8 ( ) Π ( b, ) 3+ b 3+ b CPO: t + t( b) b 8 8 t ( + b )( + b+ ) < b b 8 * * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 Conclusión: Ls empress se colocn en los extremos, eligen máxim diferencición. Pr l empres por ejemplo, un umento de (movimiento hci l derech) : Tiene un efecto positivo (efecto demnd) Tiene un efecto negtivo (efecto competenci) Si los costes de trnsporte son cudráticos el efecto competenci es más fuerte que el efecto demnd y ls empress prefieren máxim diferencición. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 30 5

16 L solución socilmente óptim es l que minimiz los costes de trnsporte y serí /4 y -b3/4. Por tnto desde el punto de vist socil hy demsido diferencición del producto cundo el mercdo es privdo. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 El problem del plnificdor socil: Excedente del consumidor x es: s-t(x-) -p si compr en s-t(x-(-b)) -p si compr en Por cd consumidor el vendedor gn p -c empres p -c empres Los precios son pur trnsferenci entre consumidores y productores, el excedente totl socido l consumidor x es: s-t(x-) -p +p -c s-t(x-) -c si compr en s-t(x-(-b)) -p +p -c s-t(x-(-b)) -c si compr en Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 6

17 Pr sber el máximo socil tenemos que derivr el consumidor indiferente: s t( ) c s t( ( b)) c ( ) ( ( b)) + + ( b) ( b) ( b) ( b) [ b ] ( b) ( b )( b+ ) ( b+ ) mitd de l distnci entre y -b ( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 33 El monopolist tiene que mx el beneficio socil que es lo mismo que minimizr los costes de trnsporte b+ b Min t( z) dz + t( z ) dz + t(( b) z) dz + t( z ( b)) dz b, 0 b+ b comprn comprn 0 -b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 34 7

18 b+ b Min t( z) dz + t( z ) dz + t(( b) z) dz + t( z ( b)) dz b, 0 b+ b comprn comprn ( z) ( z ) ( b z) ( z ( b)) Min + + b, b+ 3 0 b b b b b Min b, b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 35 L CPO: b b b Min b, ( b ) 0 () 0 4b ( b ) 0 () b ()-(): 4 4b 0 b b lo que sustituyiendo en () implic que: * * 3 4 ( ) 0 ;( b ) 4 4 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 36 8

19 L conclusión básic del modelo de Hotelling es el principio de diferencición: ls empress quieren diferencirse lo máximo posible pr disminuir l competenci en precios. Por veces puede que hy fuerzs que se oponen l diferencición y que incluso pueden llevr diferencición mínim: ) Ls empress pueden querer estr donde está l demnd (i.e. en el centro) ) En cso de usenci de competenci en precios (por ejemplo por que los precios están reguldos) puede llevr ls empress loclizrse en el centro y reprtirse el mercdo medis. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 37 9

4.3. La ciudad Lineal Modelo de Hotelling

4.3. La ciudad Lineal Modelo de Hotelling Modelo de Hotelling Mtilde Mchdo pr bjr ls trnsprencis: http://www.eco.uc3m.es/~mmchdo/ Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling El modelo:. Ciudd linel es el intervlo [0,].

Más detalles

4.3. La ciudad Lineal Modelo de Hotelling

4.3. La ciudad Lineal Modelo de Hotelling Modelo de Hotelling Mtilde Mchdo Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling Modelo de Hotelling Considermos un ply. En cd extremo de l ply hy un vendedor de heldos. unque venden

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO 1. Demnd y excedente del consumidor 2. Decisiones de precio y cntidd: rbitrje, elsticidd e ingreso mrginl 3. Preciosúnicos únicos, mximizción del beneficio y optimlidd

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción

Más detalles

ORBITALES HIBRIDOS sp

ORBITALES HIBRIDOS sp ORBITALES HIBRIDOS sp L enseñnz del tem de orbitles híbridos (OH) en l Químic de Enseñnzs Medis está llen de tópicos que trtremos de resolver y clrr. En primer lugr, l form. Aprecen con un lóbulo muy grnde

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Ventaja Comparativa Costo de Oportunidad (C.O.)

Ventaja Comparativa Costo de Oportunidad (C.O.) Modelo Ricrdino or qué comercin los píses? orque son diferentes. Ventj Comprtiv Repsemos el concepto de Costo de Oportunidd (C.O.): L utilizción de un recurso en su mejor uso lterntivo. Ejemplo: Si en

Más detalles

Capítulo 7: El Modelo de OA-DA

Capítulo 7: El Modelo de OA-DA Cpítulo 7: El Modelo de OA-DA Jesús Rodríguez López Universidd Pblo de Olvide Sevill, 2009-2010 Jesús Rodríguez () Cpítulo 7: El Modelo de OA-DA Sevill, 2009-2010 1 / 41 7.1 L ofert gregd L relción de

Más detalles

En el ejemplo simplificado que estamos siguiendo no hay ganancias.

En el ejemplo simplificado que estamos siguiendo no hay ganancias. En el ejemplo simplificdo que estmos siguiendo no hy gnncis. or tnto el slrio que se le pg l trbjdor (único fctor) es exctmente lo que le cuest producir el bien (como en competenci perfect): El costo de

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía Microeconomí: Consumo y roducción 1er curso (1º Semestre) Grdo en Economí rte II. Tem III: Teorí de l demnd (Cp. 4 indyck, Cp. 4 Frnk, Cps. 6, 8 y 14 Vrin) rofesores: Inmculd Álvrez Ayuso (coordindor)

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

MATRICES Y DETERMINANTES CCNN

MATRICES Y DETERMINANTES CCNN NOCIONES BÁSICAS Ls mtrices precen como consecuenci de ordenr los números en form de fils y columns. Ls línes horizontles se llmn fils, mientrs que ls línes verticles se llmn columns. - fil - column Pr

Más detalles

Cuántos gramos hay que coger de cada uno de los tres lingotes?

Cuántos gramos hay que coger de cada uno de los tres lingotes? Consejerí de Educción, Cultur Deportes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simien C/ Frncisco Grcí Pvón, 6 Tomelloso 7 (C. Rel) Teléfono F: 96 9 9. Por un rotuldor, un cuderno un crpet se pgn,6 euros.

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.. CONCEPTO DE FUNCIÓN Ls funciones que hbitulmente utilizmos son funciones reles de vrible rel. f es un función de R en R si cd número rel Dom, le hce corresponder otro número

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 10 de mayo de 2014

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 10 de mayo de 2014 Primer Prcil de Introducción l Investigción de Operciones Fech: 0 de mo de 0 INDICACIONES Durción del prcil: hrs Escribir ls hojs de un solo ldo No se permite el uso de mteril ni clculdor Numerr ls hojs

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010 Primer Prcil de Introducción l Investigción de Operciones Fech: 8 de bril de 00 INDICACIONES Durción del prcil: hrs. Escribir ls hojs de un solo ldo. No se permite el uso de mteril ni clculdor Numerr ls

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª DOSIER SISTEMAS DE ECUACIONES LINEALES - GAUSS MACS. Resuelve estos sistems de ecuciones medinte el método de Guss: b c -ª -ª -ª -ª -ª -ª -ª -ª -ª,, Resuelve estos sistems de ecuciones lineles: b -ª -ª

Más detalles

Integración numérica I

Integración numérica I Tems Regl del rectángulo. Regl del trpecio. Cpciddes Conocer y plicr l regl del rectángulo. Conocer y plicr l regl del trpecio. 1.1 Introducción Como y se h visto, pr clculr el vlor excto de un integrl

Más detalles

FUNCIONES, LÍMITES Y CONTINUIDAD

FUNCIONES, LÍMITES Y CONTINUIDAD FUNCIONES, LÍMITES Y CONTINUIDAD MATEMÁTICAS APLICADAS A LAS CC. SS. II Alfonso González I.E.S. Fernndo de Men Dpto. de Mtemátics I) CONCEPTO DE FUNCIÓN: Un función es un plicción que hce corresponder

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3. págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos

Más detalles

0, , , , ,9 9

0, , , , ,9 9 UNIDAD 1: Los números reles EJERCICIOS Y ACTIVIDADES-PÁG. 1 1. Expres como deciml ls siguientes frcciones y clsific los números decimles obtenidos: 5 0, 71485 es un periódico puro. 7 5 1, 6 es un deciml

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

ENCUENTRO # 5 TEMA: Resolución de problemas de razones y proporciones. DESARROLLO

ENCUENTRO # 5 TEMA: Resolución de problemas de razones y proporciones. DESARROLLO ENCUENTRO # 5 TEMA: Resolución de problems de rzones y proporciones. CONTENIDOS:. Mgnitudes proporcionles (direct e invers). 2. Regl de tres simple. DESARROLLO Ejercicio Reto Cntiddes proporcionles cntiddes

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A = Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26 MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

1. Tipo de interés de mercado para esta referencia el (fecha compra)

1. Tipo de interés de mercado para esta referencia el (fecha compra) EJERCICIO BOLETIN CENTRAL ANOTACIONES RESUELTO EN CLASE Inforción: (http://www.bde.es/bnot/bnot.ht) El Sr. Pérez dquirió el 18.11.05 100 Obligciones del Estdo de l referenci ES0000012791 O EST que pgn

Más detalles