[8]. En el caso de la discretización temporal se toma el criterio que utiliza ANSYS [5]. 1. Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "[8]. En el caso de la discretización temporal se toma el criterio que utiliza ANSYS [5]. 1. Introducción"

Transcripción

1 Simposio d Mrología 4 5 al 7 d Ocubr MODELACIÓN NUMÉRICA DE LAS VARIABLES TEMPERATURA Y PRESIÓN EN EL PATRÓN NACIONAL DE FLUJO DE GAS PARA DETERMINAR LOS GRADIENTES GENERADOS DURANTE LA MEDICIÓN Juan José Mrcado Pérz Cnro Nacional d Mrología Dircción d Mrología Mcánica División d Flujo y Volumn 44 5 al 4 x. 384 jmrcado@cnam.mx Rsumn Los parons nacionals ipo campana para mdición d flujo d gas cunan con un lmno snsiivo d mpraura n l inrior d la campana cuya ubicación vin prsablcida por l fabrican dsconocindo si la mpraura punual indicada por l sisma d mdición s la rprsnaiva dl mnsurando nindo como principal dsvnaja l dsconocimino d los gradins érmicos gnrados duran una mdición. Un problma similar ocurr con l lmno snsiivo d prsión. En s rabajo s dduc l modlo físico qu simula l fnómno s ncunra l modlo mamáico dl cual s dmusra la xisncia y unicidad d solución; y finalmn s obin l modlo discro y s rsulv mdian l méodo d lmno finio. S mpla l sofwar ANSYS para simular numéricamn l fnómno y los valors s comparan con los obnidos mdian xprimnación.. Inroducción En s documno s informan los rsulados d los rabajos d modlación numérica d las variabls d prsión y mpraura qu s han ralizado sobr l Parón Nacional d Flujo d Gas con la finalidad d disminuir la incridumbr d mdición. El dsplazamino d la campana s raliza a un nivl d prsión solo ligramn suprior a la prsión amosférica gracias al acoplamino d un conrapso cuya masa s ligramn infrior a la d la campana. Dsd un puno d visa puramn mrológico s sumamn dsabl qu l dsplazamino d la campana s ralic bajo condicions d prsión y mpraura quasiconsans y minimizando los gradins spacials qu sas dos variabls pudan xhibir. En s rabajo s dsarrolla l modlo físico dl sisma (un rmo-fluido) posriormn uilizando l méodo d sub-difrncials [] s sablc la formulación variacional dl modlo acoplado para dmosrar xisncia y unicidad d solución [] una vz hcha la dmosración s oma l modlo variacional global débil l cual s coninuo y los spacios d solución son d dimnsión infinia a s problma no s conoc una manra d rsolvrlo analíicamn por ano s discriza hacindo uso dl méodo d lmno finio nconrando una bas finia d solución; la discrización s spacial como mporal [3] [4] y [8]. En l caso d la discrización mporal s oma l cririo qu uiliza ANSYS [5]. S incluyn los rsulados obnidos d la simulación uilizando l sofwar d ANSYS y s comparan con los rsulados obnidos n forma xprimnal.. Modlo físico d un rmo-fluido La mcánica dl mdio coninuo s susna n una sri d posulados o principios gnrals qu s suponn válidos simpr. Enr ésos s ncunran los dnominados Posulados d consrvación balanc qu son los siguins Consrvación d masa. [6] Balanc dl momnum linal (canidad d movimino). [6] Balanc dl momnum angular (momno d la canidad d movimino). [6] Primra ly d la rmodinámica. [7] Sgunda ly d la rmodinámica. [7] En s rabajo s considra qu l procso d circulación dl fluido (air) s isnrópico dbido a las caracrísicas propias dl problma; so s l fnómno s considra rvrsibl ya qu la canidad d calor ransfrida hacia o dsd l sisma s dsprciabl. Esa s la razón por la cual para nconrar l modlo dl rmo-fluido no s considrará la sgunda ly d la rmodinámica ya qu s saisfac auomáicamn.

2 Simposio d Mrología 4 5 al 7 d Ocubr. Fluidos nwonianos. Balanc d nrgía La fricción n los sismas d circulación d fluidos gnralmn s manifisa con furzas corans las cuals rardan l movimino rlaivo d las parículas dl fluido. La mdida dl movimino rlaivo d las parículas dl fluido sá dada por l gradin d vlocidad [6] L= grad v... Ecuación consiuiva La cuación consiuiva qu caracriza al fluido por sus propidads marials s d la forma T= π I+ µ D. (.) dond Primr principio d la rmodinámica La variación d nrgía qu xprimna s igual al rabajo qu ralizan las furzas qu acúan sobr mas la canidad d calor inrcambiada o rcibida por. du d d = u d = d T D d+ r d q n d T D= ( L+ L ). (.) u = Enrgía inrna La consan scalar µ s llamada la viscosidad cinmáica dl fluido. Sin mbargo n s rabajo s asum qu los cambios d viscosidad cinmáica son dsprciabls... Ecuación d Navir-Sos La cuación consiuiva s complmnada con la cuación d movimino y la condición d incomprsibilidad v + ( grad v) v = div T+b (.3) Usando la idnidad ( v + grad v v = µ v grad π +b div v =. ) dond q = K gradθ rprsna l flujo d calor. T Tnsor d sfurzos (simérico) = Dnsidad du = C & θ y & θ= θ + gradθ v d D = ( grad T v+gradv ) Tnsor simérico d vlocidad K = Conducividad érmica (.6) r = Función scalar spacial qu dscrib l calor gnrado por funs inrnas. div v T = div v rsula.. Ecuación consiuiva (.4) Las cuacions d Navir Sos consiuyn un sisma d cuacions difrncials parcials no linals para la vlocidad v y la prsión π d la forma v + ( grad v) v= υ v grad π +b div v =. la xprsión anrior corrspond a una rprsnación paramrizada d las cuacions d Navir-Sos n las qu µ υ = π π = b = b La cuación consiuiva la conforma la ly d Fourir (conducción d calor). [7] q x = K gradθ x (.7).3 Ecuación d volución (mporal) érmica. Obsérvs qu div K gradθ = K div grad θ ) (.8) Suponindo qu K s consan y susiuyndo la nrgía inrna y l nsor d sfurzos aplicando l orma d localización y dividindo nr la dnsidad rsula ( π I µ D) D K C θ + C gradθ v + = r+ θ. (.5) ( (.9) hacindo

3 Simposio d Mrología 4 5 al 7 d Ocubr µ π υ = p = K = rcordando qu ID = div v= y dividindo nr C v= n [ T ] ( ) = ˆ n [ ] ( ) = v n div v x v v x T (.) nmos dond R θ + ( gradθ v) = + ξ θ C v vlocidad n dond b = b R = r+υ DD ξ = b furzas d curpo por unidad d volumn C π R p = omando Q = y susiuyndo s obin C ˆv s la condición d vlocidad prscria sobr d θ ξ θ + gradθ v = Q (.) v s la condición inicial d vlocidad n..4 Sisma acoplado A coninuación s prsna l modlo físico dl sisma l cual s un sisma acoplado. Srá uilizado n s rabajo para obnr l modlo variacional qu prmi aproximar al sisma d cuacions difrncials qu dscrib al modlo mdian la discrización dl spacio solución. θ = ˆ θ n θ = θ n o.5 Modlo subdifrncial Siguindo l procdimino sugrido por Alducin [] s llga a la formulación primal global fur v ( ) ( ) { υ div gradv u v d { ( ) + grad ( ) ( ) + grad p( ) v = Q n [ T ] ( ) x [ T ] (.) { u v ( x; n) { γu γv θ ξ θ + gradθ Dond ˆ θ s la mpraura sobr d θ s la condición inicial n s una rgión rgular T s un inrvalo d impo [ ] s la fronra d ˆv vlocidad prscria sobr ˆ θ Tmpraura prscria sobr. y la Ecuación (.) s pud rscribir como v + gradv v= υ v grad p +b [ T ] n v v v b d+ d () u dond ( Ψ ) ( Ψ ) = D D θ = ( ) u () V ( V ) γ u() u() = n div (){ () () = v ˆ ξ div θ η θ d { θ () θ() v() () { η() θ() + Q d () n{ () () θ γη γθ d () η dond 3

4 Simposio d Mrología 4 5 al 7 d Ocubr ( Φ ) ( Φ γ ) = D D { η V ([ T] ) () ˆ V R γη θ = =. Aplicando la fórmula d Grn [] corrspondin al oprador divrgncia a la formulación primal global fur s obin la formulación global débil ( v ( ) p( ) θ ( ) ) υ () { () () ( v θ ) b y = gradθ v y θ y W y v V b ( grad ) vvy = v vy vy V. Son ri-linals y coninuos. El siguin problma buscarmos dmosrar qu ( v θ ) V W ( ) + + ( v ) a θ y θ y b gradθ y = Qy y W gradv gradu gradv d a + + b ( grad ) { () + ( grad () ) () + grad p() ( ) v v v b by y V. u v d { () () ξ θ() { η() θ() d (.3) { θ () θ() () + Q() { η() θ( ) { η p div v ( ) v d.7 Modlo discro. u 3 = u() H ( V ) u() = vˆ div u() = n y [ T] () { η() ( ) γη() ˆ θ [ ] η vy v y v vy = in una única solución ano para l caso homogéno como para l caso no homogéno. Una vz dmosrada la xisncia y unicidad d solución para l modlo n bas a [] s roma l problma variacional débil para obnr un modlo discro l cual s pud rsolvr aplicando un algorimo d solución numérica. El problma dl modlo variacional débil s coninuo y los spacios d solución son d dimnsión infinia y no s conoc aun una manra d rsolvrlo n forma analíica. = H R = y T..7. Discrización spacial..6 Exisncia y unicidad d solución Tomando l modlo sub-difrncial y llvándolo a la forma dl Lma.6. [] s dmusra la xisncia y unicidad d solución. Dbido a lo xnso d sa dmosración s sugir s rvis la rfrncia [9]. Lma.6. Los opradors a W W R y a V V R [] dfinidos rspcivamn como a θ y = ξ gradθ grady θ y W a vy = υ gradv grady vy V. Son bi-linals lípicos y coninuos Los opradors b W V W R y b V V V R son dfinidos como A lo anrior s rquir rplanar l modlo coninuo y obnr un modlo discro β % [ R] β { α β H ( β) β { α β m h [ B] ˆβ { [ C] β { b { α β α mh α β α β m h mh α R uh = α jqj h = mh { q j bas d V j= h (.4) 4

5 Simposio d Mrología 4 5 al 7 d Ocubr β % h { ( i i) ( j j) ( j j) { β qi + ( βiqi) vh Q ( α jqj) ( β jqj) ξ β q α q β q d α % h mh { α ( α ) ˆ jq j θh % = R n =. dond [ ] ij υ { { d ( β ) i j ij d R = q q H = [ ] ˆ q qi qj d B β = ij [ ] { b = ( j ) d. j b q q q d C = q q d i j ij i j En s rabajo s prsnan los rsulados d la modlación para rs posicions d la campana (bajo mdio alo) y con rs caudals disinos (bajo mdio alo). La mpraura más ala dl gas s ocurr cuando s in la campana n la posición baja con l caudal más alo; minras qu la mpraura mas baja s prsna cuando la campana sá n la posición ala y cuando l caudal s l mnor. Considrando l caso d qu la campana sé n la posición inrmdia a un caudal alo s pud dcir qu la configuración qu prsna la mnor disprsión n los valors d mpraura corrspond a la configuración d nrada plana para la cual la dsviación sándar d los daos d mpraura (para los 36 nodos) s d 56 K..7. Discrización mporal La discrización n l impo s labora bajo un squma d difrncia n rrocso para valuar la drivada rascndn. El paso dl impo acual s n l n simo y la xprsión nvulv los dos prvios impos rsulans [5]. ( φ) 4 ( φ) 3 ( φ) φ n n = + n. (.5) Es cririo d discrización s aplicara a la R m h vrsión. Fig. Tmpraura nodal para un flujo alo n la posición mdia d la campana (configuración plana) 3. Rsulados En los párrafos subscuns s musran algunos d los rsulados obnidos d la simulación y los rsulados xprimnals. 3.. Simulación numérica Para la ralización d la simulación numérica s combinaron las siguins condicions La mpraura n l inrior d la campana s uniform (935 K) y qu no xis gradin alguno ans d suminisrar l flujo. Las condicions ambinals son las normalizadas ( 35 Pa y 935 K). La mpraura dl fluido qu nra a la campana s K mayor qu la mpraura dl inrior. Fig. Línas d corrin para un flujo alo n la posición mdia d la campana 3.. Prubas xprimnals Para conocr las variacions d mpraura n l inrior d la campana s colocaron cinco snsors n l parón nacional d flujo d gas (vr figura 3) rs d llos s siuaron n l inrior d la campana. En la Gráfica s musra qu la máxima difrncia d mpraura n l inrior d la campana s dl 5

6 Simposio d Mrología 4 5 al 7 d Ocubr ordn d K para l rcorrido oal d la campana. Dichas variacions s obsrvan nr la mpraura n la par suprior d la campana y la mpraura n la bas d la campana. mbargo ambién s vidn qu dspués d un dsplazamino dl ordn d 3% rspco d la carrra oal los gradins máximos d mpraura s rducn a 6 K lo cual s raduc n una incridumbr sándar dl ordn d 7 K. Gráfica. Comporamino d la variación d la mpraura n l inrior d la campana. Fig. 3 Posición d los snsors d mpraura duran las prubas xprimnals. La Gráfica musra las variacions máximas d mpraura (difrncia nr los snsors insalados n l inrior d la campana) para difrns vlocidads d dsplazamino d la campana. La difrncia máxima obsrvada s d K y corrspond a un caudal d 35 L/min. 4. Conclusions 4. Tmpraura Los rsulados dl análisis numérico ilusran una difrncia máxima d mpraura igual a 3 K. La dsviación sándar d la mpraura (considrando l oal d nodos) rsuló d 56 K los qu s raduciría n una incridumbr sándar (considrando una población d nodos d 36) d K. Las variacions máximas d mpraura qu s rfljaron n las prubas xprimnals son dl ordn d K lo cual significa qu asumindo una forma d disribución uniform la incridumbr dbido a los gradins d mpraura n l inrior d la campana s dl ordn d 6 K. Sin Gráfica. Comporamino d la variación d los promdios d las mprauras n l inrior d la campana a disinos flujos d opración. 4. Prsión Los rsulados corrspondins a la variabl d prsión (por análisis numérico) musra qu sa s manin consan n casi odo l inrior d la campana y los gradins son nulos pro los análisis xprimnals rfljan un valor d Pa (para flujo máximo) d difrncia n odo l rayco d la campana lo qu produc una incridumbr d 35 Pa. 5. Rcomndacions S rcominda ralizar mínimo cinco corridas con la campana ans d mpzar cualquir mdición con l objivo d lograr condicions d quilibrio érmico y hacr la corrcción por mpraura ya qu l snsor d mpraura in una difrncia dl 3 C con rspco a la mpraura promdio dl msurando y s propon qu s l asign una 6

7 Simposio d Mrología 4 5 al 7 d Ocubr incridumbr d 7 C so por concpo d los gradins d mpraura n l msurando. S rcominda qu coninún las invsigacions raando con difrns configuracions d la nrada dl fluido a la campana con la finalidad d disminuir los gradins. Rfrncias [] Alduncin (988); Subdiffrnial and variaional formulaios of boundary valu problms Compur mhods in applid mchanics and nginring 7 ( 989) Norh-Holland. [5] Ansys (); Ayuda dl sofwar Ansys 7.. [8] Giraul Raviar (986). Fini Elmn Mhods for Navir-Sos Equaions Thory and Algorihms Springr-Vrlag Nw Yor USA. [6] Moron E. Gurin (98). An Inroducion o Coninuum Mchanics Acadmic Prss Inc. San Digo California. [3] Arch W. Naylor R. Sll (98). Linar Opraor Thory in Enginring and Scincs Springr- Vrlag Nw Yor USA. [7] David R. Own (984). A Firs Cours in h Mahmaical Foundaions of Thrmodynamics Springr-Vrlag Nw Yor USA. [] A. J. Rséndiz ( 995). Dscomposición d opradors para la solución d problmas d fluidos incomprsibls y viscosos Insiuo Tcnológico d Quréaro México. [4] Tmam (979). Navir-Sos Equaions Thory and Numrical Análisis Norh-Holland Publishing Company Nhrlands. [9] Mrcado (4). Comporamino dl fluido n l inrior dl Parón Nacional d Flujo d Gas Tsis Masría n Cincias Insiuo Tcnológico d Quréaro Quréaro México. 7

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción Economría II Tma 8: Rardos n l comporamino conómico y dinamicidad d los modlos. Dinámica y prdicción 1. Moivos d dinamicidad n las rlacions 2. El mcanismo d corrcción dl rror y l quilibrio a largo plazo

Más detalles

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF)

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF) Dinsionaino d un ódulo hollow fibr para ulrafilración (UF) Alan Didir Pérz Ávila Rsun S dinsionó un ódulo d ulrafilración con branas hollow fibr, ralizándos un análisis d snsibilidad d algunas d las variabls

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República OLÍTICA ECONÓICA Curso 01 AESTRIA DE ECONOÍA FACULTAD DE CIENCIAS ECONÓICAS Y ADINISTRACIÓN Univrsidad d la Rpública Ejrcicios d olíica onaria y Cambiaria. Ejrcicio 1 (dificulad mdia: Inconsisncia dinámica

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

COMPARACIÓN DE MODELOS NO LINEALES. UNA APLICACIÓN AL CRECIMIENTO DE FRUTOS DE CAROZO

COMPARACIÓN DE MODELOS NO LINEALES. UNA APLICACIÓN AL CRECIMIENTO DE FRUTOS DE CAROZO COMPARACIÓN DE MODELOS NO LINEALES UNA APLICACIÓN AL CRECIMIENTO DE FRUTOS DE CAROZO Mg Boché, Silvia Mg Lavall, Andra Dparamno d Esadísica Faculad d Economía y Adminisración UNIVERSIDAD NACIONAL DEL COMAHUE

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

Mecanismos de Reacción

Mecanismos de Reacción . Raccions Rvrsibls. Raccions Parallas o Compiivas. Raccions Conscuivas 4. Méodos Aproximados para obnr Ecuacions d Vlocidad 5. Raccions n Cadna 6. Efco d la Tmpraura sobr la consan d vlocidad . Raccions

Más detalles

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones?

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones? Tallr cálculo 1 Profsor Jaim Andrés Jaramillo Gonzálz. jaimaj@concpocompuadors.com. www.jaimaj.concpocompuadors.com UdA 017-1 Problmas d Opimización Rfrncia sudiar jrcicios scción.8 dl o d Zill 1. A un

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

UAM Química Física. Cinética-1

UAM Química Física. Cinética-1 4. Cinéica química Vlocidad d racción Mcanismos d racción Caálisis Torías cinéicas Raccions n disolución UM -3. Química Física. Cinéica- Cinéica d las raccions Vlocidad d racción Ecuacions cinéicas o lys

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

ω es el aumento de la temperatura media por sobre una supuesta temperatura ambiente de

ω es el aumento de la temperatura media por sobre una supuesta temperatura ambiente de Accionaminos lécricos conrolados 54 4. Efcos érmicos n máquinas lécricas 4. - Pérdidas d poncia y rsriccions d mpraura Hasa l momno, nusro análisis sólo s ocupaba d los fnómnos mcánicos y d sus corrspondins

Más detalles

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo.

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo. NÁLII EN RECUENCI DE EÑLE Y ITEM El análisis d la sñal n l dominio d la rcuncia a ravés d su spcro, nos prmi dinir l concpo d ancho d banda d la sñal. Las sñals s ransmin a ravés d sismas d comunicacions

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: ECUACIONES DIFERENCIALES. AÑO 007 TALLERES HORAS DE DURACION

Más detalles

5. Elementos tipo barra

5. Elementos tipo barra Univrsidad Simón Bolívar 5. Elmntos tipo barra En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una barra d scción transvrsal A, módulo d lasticidad E, dnsidad ρ y longitud

Más detalles

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005 Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos

Más detalles

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso.

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso. Prolmas Dccion Modulacion Binaria PROBLMA. QUIZ 3 RO 7. UCAB I GRA : Rinaldo May, José Manul Mjias Osrv las siguins conslacions corrspondins a rs modulacions A, B y C. Considr l mismo canal y rcpor adapado

Más detalles

Tema 2.4: Conceptos básicos de control PID?

Tema 2.4: Conceptos básicos de control PID? ma 2.4: Concpo báico d conrol D? Índic ma 2.4: Concpo báico d conrol.. Accion báico d conrol.. Conrolador odo.nada. 2. Conrol proporcional. 3. Conrol proporcional-drivaivo D. 4. Conrol proporcional-ingral.

Más detalles

BALANCES MICROSCOPICOS o DIFERENCIALES. se transforma. Las expresiones matemáticas obtenidas se denominan ECUACIONES DE CAMBIO

BALANCES MICROSCOPICOS o DIFERENCIALES. se transforma. Las expresiones matemáticas obtenidas se denominan ECUACIONES DE CAMBIO BALANCES MICROSCOICOS o IFERENCIALES Esudian n dall lo qu ocu n l inio dl Volumn d Conol s ansfoma Elmno ifncial d Volumn S suln aplicando las condicions límis o d conono paa sol las inals Las psions mamáicas

Más detalles

TEMA 66. Distribuciones de probabilidad de variable

TEMA 66. Distribuciones de probabilidad de variable TEMA 66. Disribucions d probabilidad d variabl coninua. Disribución normal TEMA 66. Disribucions d probabilidad d variabl coninúa. Disribución Normal.. Inroducción.. Hisórica. Los concpos d azar incridumbr

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capíulo. Sñals, spcros y ilros Univrsidad dl Cauca Toría d Tlcomunicacions Inroducción Las sñals prsns n los sismas d comunicacions varían con l impo, mas sin mbargo n ocasions sul sr más convnin analizar

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

UNIDAD 4 Plasticidad y endurecimiento por deformación

UNIDAD 4 Plasticidad y endurecimiento por deformación UNIDAD 4 Plasicidad y ndurcimino por dformación 4.. CUESTIONES DE AUTOEVALUACIÓN - El amaño d grano rcrisalizado ras un rcocido conra acriud dpnd invrsamn: a) Dl amaño d grano inicial. b) Dl grado d acriud

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Ecuación de transmisión de calor

Ecuación de transmisión de calor Ensaos Ecación d ransmisión d calor smn Absrac ésmé En s rabajo d invsigación s sdia l problma d valor inicial con valor n la fronra para la cación d ransmisión d calor n la smirrca para >: k > > > > S

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

por DANIEL R. HERNÁNDEZ1 y RICARDO G. PERROTTA1, 2,

por DANIEL R. HERNÁNDEZ1 y RICARDO G. PERROTTA1, 2, REV. IVES. DESARR. PESQ. º 9: 3-36 8 3 ODIICACIÓ DEL AÁLISIS DE COHORES DE POPE PARA EXEDER SU APLICACIÓ A U RAGO ÁS APLIO DE VALORES DE ORALIDAD AURAL Y ORALIDAD POR PESCA* por DAIEL R. HERÁDEZ y RICARDO

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica Políica Monaria y Cambiaria Solucions al problma d la crdibilidad y la inconsisncia dinámica Simbr 01 1.1 Plano dl Problma Ancdns: Inconsisncia dinámica como una nación d políica conómica qu prmi sorprndr

Más detalles

Método de Sustitución

Método de Sustitución Método d Sustitución El cálculo d una intgral complicada rquir, n muchos casos, d algunos cambios d variabl qu transformn la intgral n otra más simpl, dond s puda idntificar rápidamnt una antidrivada.

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la Dada una unción al qu, + h Dom dirmos qu: h s llamado + - s llamado s llamado la d la unción rspco d la variabl n [, + ] Si is ' s llamado la d la unción n. Usualmn s l valor absoluo d la vlocidad. Sabmos:

Más detalles

- 2,5% de cargas verticales

- 2,5% de cargas verticales Drminación d la slz d las pards Espsor d las pards 11 cm (sin conar rvoqus) Eslz gomérica = λ g 27 Dond: Con: c λg = = disancia lir nr apoyos orizonals d la pard (nrpisos, ord suprior d la fundación) =

Más detalles

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ Capíulo Nº 9: La condición d la paridad d inrss Marco nonio Plaza Vidaurr PUNTS D MCROCONOMÍ CPÍTULO Nº 9 L CONDICIÓN D L PRIDD D INTRSS GOSTO 2008 LIM - PRÚ Capíulo Nº 9: La condición d la paridad d inrss

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

Relaciones importantes para la entropía.

Relaciones importantes para la entropía. rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d

Más detalles

Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b.

Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b. Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Ára dfinida bajo na crva LA INTEGRAL DEFINIDA. APLICACIONE Mlid d problmas q s planan n la vida ral s rslvn calclando l ára bajo la crva d na fnción.

Más detalles

Sesión 3 Análisis de series de tiempo multiecuacional

Sesión 3 Análisis de series de tiempo multiecuacional Banco Cnral d Rsrva dl Prú 55º Curso d Exnsión Univrsiaria Ssión 3 Análisis d sris d impo mulicuacional 7. La modología d los vcors auorrgrsivos (VAR) 7.1. Nusro sing: forma srucural vs. forma rducida

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Miércols 2 d abril d 2014 Todos alumnos dbn qudars una copia d la prácica nrgada Prácica a ralizar n grupos

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos UCV-INGENIERÍA ECUACIONES DIFERENCIALES (56) ECUACIONES DIFERENCIALES (56) Tma 3: La Tranformada d Laplac Connido programáico 3.- Dfinicion prliminar. Dfinición d Tranformada d Laplac. Condición uficin

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución MEMÁIC VNZ RBJO PRÁCICO N O Sima Linal - nálii d Sñal - Convolción ESCRIPCIÓN E SEÑLES: FUNCIONES RMP ESCLÓN Y EL E IRC Grafiq la igin fncion dl impo. a b r - c d P - r-r- Ecriba na rprnación mamáica para

Más detalles

Departamento de Ingeniería Eléctrica. Área Electrotecnia

Departamento de Ingeniería Eléctrica. Área Electrotecnia Dparamno d Ingniría Elécrica nivrsidad Nacional d Mar dl Plaa Ára Elcrocnia Elcrocnia Gnral (para la arrra Ingniría Indusrial Esudio d los circuios lécricos n égimn Transiorio Profsor Adjuno: Ingniro Elcricisa

Más detalles

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden Solución d modlos matmáticos, utilizando l softwar Driv 6.1 n aplicacions d cuacions difrncials d primr ordn Jhon Franklin Espinosa Castro* RESUMEN Con l avanc d la cincia a través d la tcnología, s utilizan

Más detalles

CONTROL ROBUSTO QFT DE UN HELICÓPTERO DE 3 GDL

CONTROL ROBUSTO QFT DE UN HELICÓPTERO DE 3 GDL CONTROL ROBUSTO QFT DE UN HELICÓPTERO DE GDL I.Egaña, M.Iribas,. Moa,. Casilljo, P.Vial,.Villanuva, M. Barrras, M. García-Sanz Dparamno d Auomáica y Compuación, Campus d Arrosadía, 6 - Pamplona. E-mail:

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Fundamentos Físicos de la Ingeniería Primer Parcial / 12 enero 2010

Fundamentos Físicos de la Ingeniería Primer Parcial / 12 enero 2010 Fundamnos Físicos d a Ingniría rimr arcia / nro. Una mbarcación a moor navga nr dos pobacions ribrñas disans nr si km. En viaj d ida arda h n cuar rcorrido; n d vua, mpa an soo.5 h. Supongamos qu ano a

Más detalles

Problema Respuesta al problema Los símbolos que se transmiten en el código Manchester son los siguientes:

Problema Respuesta al problema Los símbolos que se transmiten en el código Manchester son los siguientes: 57 rolma 3. Un ima d ramiión digial inario ranmi mw uilizando código Manchr a una vlocidad d p. l paar por l canal, la ñal conamina con ruido lanco gauano con dnidad igual a µw/hz. Drmin la mínima proailidad

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Trabajo Fin de Grado

Trabajo Fin de Grado Trabajo Fin d Grado INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS sus Aplicacions n la Economía Auor Guillrmo Pribañz Juan Dircor/s Gloria Jarn Jarn Julio Sáncz Cóliz Faculad d Economía Emprsa 04 Rposiorio

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

Serie 4. Dinámica de Procesos

Serie 4. Dinámica de Procesos Sri 4 Dinámica d Proco unción d ranfrncia S dfin como G Y / X prna un modlo normalizado d un proco, dond Y la variabl d alida y X una d la nrada. Y and X án xprada como variabl dviación. La forma d la

Más detalles

SOBRE LA DESCARGA ELÉCTRICA DE CUERPOS CARGADOS ON THE ELECTRIC DISCHARGE OF CHARGED BODIES

SOBRE LA DESCARGA ELÉCTRICA DE CUERPOS CARGADOS ON THE ELECTRIC DISCHARGE OF CHARGED BODIES SOBE L DESCG ELÉCTIC DE CUEPOS CGDOS O THE ELECTIC DISCHGE OF CHGED BODIES J.C. Frnándz * Dpo. d Física, Faculad d Ingniría Univrsidad acional d Bunos irs Paso Colón 850, ºP. (063) Ciudad d Bunos irs rgnina

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

CÁLCULO Y CONSTRUCCIÓN DE UN SECADOR SOLAR POR CONVECCIÓN NATURAL PARA EL SECADO DE PLANTAS MEDICINALES NO TRADICIONALES

CÁLCULO Y CONSTRUCCIÓN DE UN SECADOR SOLAR POR CONVECCIÓN NATURAL PARA EL SECADO DE PLANTAS MEDICINALES NO TRADICIONALES CÁLCULO Y CONSTRUCCIÓN DE UN SECADOR SOLAR POR CONVECCIÓN NATURAL PARA EL SECADO DE PLANTAS MEDICINALES NO TRADICIONALES CALCULATION AND CONSTRUCTION OF A SOLAR DRYER BY NATURAL CONVECTION FOR DRYING OF

Más detalles

1. INTRODUCCION. 1.1 Introducción:

1. INTRODUCCION. 1.1 Introducción: . INRODUCCION. Inroducción: En los úlimos años, l vriginoso avanc d la lcrónica digial y spcialmn d los microprocsadors ha raído como conscuncia un aumno considrabl n l númro d aplicacions, ano a nivl

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

GEOLOGIA Y GEOTECNIA

GEOLOGIA Y GEOTECNIA GEOLOGIA Y GEOTECNIA 004 CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions cando

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

GEOLOGIA Y GEOTECNIA ( edición)

GEOLOGIA Y GEOTECNIA ( edición) GEOLOGIA Y GEOTECNIA 03 ( dición) CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions

Más detalles

Tema 2: Modelos de concentración de contaminantes atmosféricos. 2.1 Modelos de celda fija z. c = Σ c i f. c e = b + q L / u H

Tema 2: Modelos de concentración de contaminantes atmosféricos. 2.1 Modelos de celda fija z. c = Σ c i f. c e = b + q L / u H Tma : Modlos d onnraión d onaminans amosférios. Modlos d lda fija saionaria no saionaria. Modlos d disprsión: modlo gaussiano para onaminans qu no raionan.3 Inorporaión d inéia d primr ordn n l modlo gaussiano.

Más detalles