Sistemas Suavemente Variantes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas Suavemente Variantes"

Transcripción

1 Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas lnamn varians s modlan como sismas invarians a rozos, por jmplo n sínsis voz [Madido-Quijano], [Duqu-Vizcaya-Niño] l cambio n la forma dl raco vocal al pasar d dcir a a dcir, n l dipongo a, s modla con dos sismas invarians. La xciación s asum aproximadamn consan y provin d los pligus vocals. Con los sismas lnamn varians, modlamos con un sis ma varian una ransición xplícia y suav dl sisma a al sisma ; así, l paso d fonma a fonma s lo más suav posibl y l cambio s raa xplíciamn. En s arículo s prsna la caracrización d los sismas dnominados suavmn varians. S dan algunas cuacions gnrals y s prsnan los rsulados obnidos para dos ipos d nradas spcíficos, xponncials y sinusoidals. Palabras Clavs: Sismas Suavmn Varians, Función Caracrísica. Dfinición S considra un sisma basan gnral linal, aunqu no ncsariamn invarian, con una función caracrísica qu voluciona lnamn n l impo. En gnral, asumimos qu para una nrada ( la salida d un sisma linal s d la forma [Zadh] s ( ) h(, τ ) ( τ )dτ En nusro caso asumirmos qu h (, τ ) s una combinación baricénrica d la forma h(, τ ) ( h (τ ) + h (τ ) qu pasa linalmn d la función caracrísica h (τ) n a la función caracrísica h (τ) n (u n oro impo qu scojamos, p.j. ) y dirmos qu l sisma s suavmn varian. Por jmplo, dsconocido.: f( y g( 2 Rspusas d los Sismas Suavmn Varians Inicialmn, nconramos xprsions para las salidas corrspondins a nradas d ipo scalón, xponncial complja y sinusoidal. 2. Rlación nr la función caracrísica y la rspusa scalón: La rspusa scalón sá dada por

2 s ( ) h(, τ ) u( τ )dτ [( )h (τ ) + h(τ )]u( τ )dτ ( ) h(τ )dτ + h (τ ) dτ Por lo ano, n los punos d coninuidad d h y h, la drivada d la rspusa scalón sá dada por ( h (τ ) + h (τ ) + h(τ ) h (τ )dτ dada por la función caracrísica más un érmino qu dpnd d la difrncia nr h y h. s( H( Ωa ) cos( Ωa + H( Ωa )) + ( H ( Ωa ) cos( Ω a + ( H( 2. Enrada Exponncial Complja: Si s in una nrada xponncial complja, d la forma ( a y s aplica al sisma, la salida srá: s( ) h(, τ ) ( τ )dτ ( )h (τ ) + h (τ ) [ ] a ( τ ) dτ a ( )h (τ ) + h (τ ) [ ] a τ dτ dsconocido.: Magniud d H y H H ( Ω, sindo y. H ( Ω, Ω j 5 Si s xprsa l cos(5 como una suma d xponncials compljas s in la siguin rspusa n l impo (s implmnó n MATHEMATICA 4.): qu incluy las ransformadas d fourir H y H, d h ( ) y d h ( ) rspcivamn. Así quda s ( ) a [( ) H ( Ω a ) + H (Ω a )] Por lo ano, dfinimos la función d ransfrncia dl sisma como H(Ω, ) [( ) H ( Ω a ) + H (Ω a )] Esa fórmula, para una función d nrada xponncial complja y un sis ma con función d ransfrncia H(?, como sigu H ( Ω, ) + + Ω + j 5 dsconocido.:rsulado s( a una nrada xponncial complja 2.2 Enrada sinusoidal Si s asum una nrada sinusoidal d la forma ( cos( Ω y nindo n cuna qu la rspusa a un sisma d convolución (linal invarian) con función a 2

3 caracrísica ral, dbida a una nrada sinusoidal, s d la forma : dsconocido.: Rspusa a un sisma d convolución con nrada sinusoidal Rsula qu la salida dl sisma varian s Para una nrada sinusoidal a un sisma suavmn varian con h ( - u( y h ( -. u( como s musra n la figura siguin, dsconocido.: Rspusa dl sisma s( a una nrada sinusoidal 3 Filro pasa bajas RC con rsisncia variabl y Sismas Varians Para un filro pasa bajas RC d ordn, dsconocido.: Filro RC dsconocido.: Rspusa scalón d h ( y h ( S in qu las ransformada d fourir d h ( y h ( son H ( Ω) H ( Ω) +.. Por lo ano la rspusa dl sisma a la nrada cos(5 s la siguin: s in qu la rspusa scalón dl sisma s g( ( RC) u(, si s driva sa xprsión s pud nconrar la rspusa impulso dl sisma, h( Si s asum RC u(. RC h ( hacindo RC y h ( hacindo RC, nmos las gráficas d la figura siguin, Fundamnos d la Toría d Sñals y Sismas, Alfrdo Rsrpo, Enro dl 2, Capiulo 4, Pág. 48 dsconocido.: Rspusa scalón para h ( y h ( 3

4 Calculando la ransformada d fourir d h ( ) y d h (, nmos H ( Ω) y H ( Ω) qu conforman la función d ransfrncia dl sisma d la siguin manra H ( Ω, ) + + jω Si s oma como nrada un sinusoid con frcuncia /5 d al manra qu s ncunr nr H y H como s musra como s H, a pasar a un sisma con mayor ancho d banda como s H n l impo. Solución a la cuación difrncial dl filro RC La cuación d malla d un filro RC como l qu s musra s( ) i( ) R + V + C i (τ )dτ s pud rsolvr como una cuación difrncial d primr ordn si s plana d la siguin manra ' ( ' i ( + i( R RC La solución gnral d sa cuación d primr ordn s 2 : CR d ' ( CR d i ( ) d R dsconocido.: Magniud d las funcions d ransfrncia H (O) H (O) El rsulado d aplicar la función d ransfrncia a una nrada sinusoidal con frcuncia /5 s musra n la siguin ilusración: Si s plana una hipósis dond asumimos qu los sismas suavmn varians modlan l filro RC dado qu la rsisncia R s variabl n forma linal, podmos solucionar la cuación difrncial d primr ordn d la siguin manra: CR( d ' ( ) CR( d i ( ) d R( Sindo n s caso R( dsconocido.: Rsulado s( a una nrada sinusoidal y con función caracrísica H(O, Ilusración : Variación linal d R( Como s pud vr, la anrior rspusa corrspond al cambio n l impo d pasar d un sisma con mnor ancho d banda n l impo, 2 Ecuacions Difrncials, con aplicacions y noas hisóricas. Gorg F. Simmons. Sgunda Edición. Pág.:

5 D sa manra nmos qu n l impo R( y n l impo R(2. Si s scrib la cuación rmplazando R( y ( 5j nmos C( ) d j 5 C( ) d i ( ) 5j d + Y s oma u d al manra d hacr un cambio d variabl, s in: i ( ) ( + ) C 5 j j 5 j 5u u C du Si s compara lo anrior con un sisma lnamn varian con una nrada xponncial, dond H ( Ω, corrspond a H ( w, + 3 j6ω Lo qu significa qu para un condnsador d valor 3 y una rsisncia varian d manra linal R(, s in qu n l impo Ω qu 3 corrspond a R( y n l impo Ω 6 qu corrspond a R(2. Si s asum qu l condnsador C3, s pud aplicar la siguin fórmula [2]: x 2 ax ax dx a 3 ( a 2 2 x 2ax + 2) + C Tomando a 5j podmos nconrar la solución a la ingral: 3 i( ( + j5 5 j( ( 5 ) 2 ( 5( + j( + 2)) La anrior corrspond a la solución paricular d C3 y a5j, si s grafica s rsulado n MATHEMATICA 4. nmos: Ilusración 3: Rspusa dl sisma con función caracrísica H(O, Si s grafican las dos rspusas como s musra a coninuación, podmos vr qu l comporamino d la rspusa dl filro RC s fcivamn varian n l caso d R(. Ilusración 2: Volaj dl condnsador n l filro RC dbido a un nrada xponncial La gráfica anrior corrspond a l valor dl volaj s( n l filro pasa bajas. Sin mbargo s ncsario disminuir l rsulado n un facor d para podr vr l comporamino nr y. Ilusración 4: Comparación d los rsulados Como s pud vr l comporamino dl sisma s similar, s dcir si s compora como un sisma suavmn varian pro la solución d su cuación difrncial no corrspond a la solución gnral d un sisma varian con nrada xponncial. 5

6 4 Trabajo Fuuro Para un rabajo fuuro s propon coninuar con la caracrización dl sisma analizando su comporamino con difrns nradas. Qurmos nconrar l ipo d variación funcional d R con qu hac qu l sisma sa suavmn varian. Nusra ma inicial s sínsis d voz. También s propon buscar un sisma qu caracric l filro RC d manra más spcífica. 5 Bibliografía []Alfrdo Rsrpo. Fundamnos d la Toría d Sñals y Sismas. Cáp.4 Pág. 48. Enro 2. [2] Gorg F. Simmons Ecuacions Difrncials, on aplicacions y noas hisóricas. Pág. 62,63. Sgunda Edición. Mc Graw Hill. 998 [3] Mamáica 4. Edición profsional. [4] L. A. Zadh Tim Varying Nworks Procdings of h IRE. Pags Ocubr 96. [5] M. Madido y A. F. Quijano. Sínsis d voz n impo ral difrnciada por ipo d sonido. VII Simposio d raamino d sñals, imágns y visión arificial. págs Bucaramanga, Nov [6] R.E. Duqu, P.R. Vizcaya I.C. Niño. Gnrador auomáico d prosodia y bas d daos d difonmas para la sínsis d voz. VII Simposio d raamino d sñals, imágns y visión arificial. págs Bucaramanga, Nov

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA ONTROL I ING. QUIRINO IMENEZ D. APITULO IV. ANÁLII DE REPUETA TRANITORIA La rspusa n l impo d un sisma d conrol s divid normalmn n dos pars: la rspusa ransioria y la rspusa n sado sabl o régimn prmann.

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso.

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso. Prolmas Dccion Modulacion Binaria PROBLMA. QUIZ 3 RO 7. UCAB I GRA : Rinaldo May, José Manul Mjias Osrv las siguins conslacions corrspondins a rs modulacions A, B y C. Considr l mismo canal y rcpor adapado

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo.

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo. NÁLII EN RECUENCI DE EÑLE Y ITEM El análisis d la sñal n l dominio d la rcuncia a ravés d su spcro, nos prmi dinir l concpo d ancho d banda d la sñal. Las sñals s ransmin a ravés d sismas d comunicacions

Más detalles

Tema 2.4: Conceptos básicos de control PID?

Tema 2.4: Conceptos básicos de control PID? ma 2.4: Concpo báico d conrol D? Índic ma 2.4: Concpo báico d conrol.. Accion báico d conrol.. Conrolador odo.nada. 2. Conrol proporcional. 3. Conrol proporcional-drivaivo D. 4. Conrol proporcional-ingral.

Más detalles

Método novedoso para resolver ecuaciones diferenciales lineales de segundo y tercer orden no homogéneas con coe cientes constantes

Método novedoso para resolver ecuaciones diferenciales lineales de segundo y tercer orden no homogéneas con coe cientes constantes Método novdoso para rsolvr cuacions difrncials linals d sgundo y trcr ordn no homogénas con co cints constants amírz Arc Grivin, gramirz@itcr.ac.cr Stimbr, 007 sumn: Est artículo part d un nuvo método

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capíulo. Sñals, spcros y ilros Univrsidad dl Cauca Toría d Tlcomunicacions Inroducción Las sñals prsns n los sismas d comunicacions varían con l impo, mas sin mbargo n ocasions sul sr más convnin analizar

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

Departamento de Ingeniería Eléctrica. Área Electrotecnia

Departamento de Ingeniería Eléctrica. Área Electrotecnia Dparamno d Ingniría Elécrica nivrsidad Nacional d Mar dl Plaa Ára Elcrocnia Elcrocnia Gnral (para la arrra Ingniría Indusrial Esudio d los circuios lécricos n égimn Transiorio Profsor Adjuno: Ingniro Elcricisa

Más detalles

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF)

Dimensionamiento de un módulo hollow fiber para ultrafiltración (UF) Dinsionaino d un ódulo hollow fibr para ulrafilración (UF) Alan Didir Pérz Ávila Rsun S dinsionó un ódulo d ulrafilración con branas hollow fibr, ralizándos un análisis d snsibilidad d algunas d las variabls

Más detalles

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005 Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos

Más detalles

1. INTRODUCCION. 1.1 Introducción:

1. INTRODUCCION. 1.1 Introducción: . INRODUCCION. Inroducción: En los úlimos años, l vriginoso avanc d la lcrónica digial y spcialmn d los microprocsadors ha raído como conscuncia un aumno considrabl n l númro d aplicacions, ano a nivl

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

Mecanismos de Reacción

Mecanismos de Reacción . Raccions Rvrsibls. Raccions Parallas o Compiivas. Raccions Conscuivas 4. Méodos Aproximados para obnr Ecuacions d Vlocidad 5. Raccions n Cadna 6. Efco d la Tmpraura sobr la consan d vlocidad . Raccions

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: ECUACIONES DIFERENCIALES. AÑO 007 TALLERES HORAS DE DURACION

Más detalles

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción Economría II Tma 8: Rardos n l comporamino conómico y dinamicidad d los modlos. Dinámica y prdicción 1. Moivos d dinamicidad n las rlacions 2. El mcanismo d corrcción dl rror y l quilibrio a largo plazo

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilacions (9 hs). Moiino Arónico Sipl (MAS). Oscilacions Aoriguadas 3. Oscilacions forzadas y rsonancia 4. Suprposición d MAS. Furza d fricción iscosa. Oscilacions arónicas aoriguadas.3 Tipos

Más detalles

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ Capíulo Nº 9: La condición d la paridad d inrss Marco nonio Plaza Vidaurr PUNTS D MCROCONOMÍ CPÍTULO Nº 9 L CONDICIÓN D L PRIDD D INTRSS GOSTO 2008 LIM - PRÚ Capíulo Nº 9: La condición d la paridad d inrss

Más detalles

TEMA I. Señales y sistemas de tiempo discreto. Señales en tiempo discreto. Ejemplos de secuencias (1) = Escalón unitario:

TEMA I. Señales y sistemas de tiempo discreto. Señales en tiempo discreto. Ejemplos de secuencias (1) = Escalón unitario: TEMA I Sñals y sistmas d timpo discrto II. Análisis d sñals n timpo discrto. Introducción. Sñals d timpo discrto. Sistmas d timpo discrto. Sistmas linals invariants n l timpo (LIT. Propidads d los sistmas

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

Trabajo Fin de Grado

Trabajo Fin de Grado Trabajo Fin d Grado INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS sus Aplicacions n la Economía Auor Guillrmo Pribañz Juan Dircor/s Gloria Jarn Jarn Julio Sáncz Cóliz Faculad d Economía Emprsa 04 Rposiorio

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

Serie 4. Dinámica de Procesos

Serie 4. Dinámica de Procesos Sri 4 Dinámica d Proco unción d ranfrncia S dfin como G Y / X prna un modlo normalizado d un proco, dond Y la variabl d alida y X una d la nrada. Y and X án xprada como variabl dviación. La forma d la

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

ω es el aumento de la temperatura media por sobre una supuesta temperatura ambiente de

ω es el aumento de la temperatura media por sobre una supuesta temperatura ambiente de Accionaminos lécricos conrolados 54 4. Efcos érmicos n máquinas lécricas 4. - Pérdidas d poncia y rsriccions d mpraura Hasa l momno, nusro análisis sólo s ocupaba d los fnómnos mcánicos y d sus corrspondins

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

Sistemas de segundo orden

Sistemas de segundo orden Sima d gundo ordn Analizarmo l comporamino n régimn raniorio d un circuio R-L-C. dcir, lo uponmo xciado mdian una fun d nión coninua idal accionada mdian una llav qu cirra n l impo. U V C R L Planamo la

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

Control Discreto en Plantas Continuas

Control Discreto en Plantas Continuas UdC - DIE Conrol Dicro n Plana Coninua Prolma Prnar l conrolador dicro n un ima coninuo. Conrol Análogo ld + - k c v k a v a l moor l Conrolador Análogo PID i R C C R 4 R R 3 o El conrolador á implmnado

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Miércols 2 d abril d 2014 Todos alumnos dbn qudars una copia d la prácica nrgada Prácica a ralizar n grupos

Más detalles

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República OLÍTICA ECONÓICA Curso 01 AESTRIA DE ECONOÍA FACULTAD DE CIENCIAS ECONÓICAS Y ADINISTRACIÓN Univrsidad d la Rpública Ejrcicios d olíica onaria y Cambiaria. Ejrcicio 1 (dificulad mdia: Inconsisncia dinámica

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

DISCRETOS LINEALES CON RESPUESTAS AL IMPULSO PERIÓDICAS

DISCRETOS LINEALES CON RESPUESTAS AL IMPULSO PERIÓDICAS DESCRIPCIÓ DE SISTEMAS DISCRETOS LIEALES CO RESPUESTAS AL IMPULSO PERIÓDICAS DESCRIPTIO OF LIEAR DISCRETE SYSTEMS WITH PERIODICAL IMPULSE RESPOSES Rcibido: fbrro d Arbitrado: abril d Marclo Hrrra Martínz*

Más detalles

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden Solución d modlos matmáticos, utilizando l softwar Driv 6.1 n aplicacions d cuacions difrncials d primr ordn Jhon Franklin Espinosa Castro* RESUMEN Con l avanc d la cincia a través d la tcnología, s utilizan

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos UCV-INGENIERÍA ECUACIONES DIFERENCIALES (56) ECUACIONES DIFERENCIALES (56) Tma 3: La Tranformada d Laplac Connido programáico 3.- Dfinicion prliminar. Dfinición d Tranformada d Laplac. Condición uficin

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

MAESTRIA EN OPTOELECTRONICA

MAESTRIA EN OPTOELECTRONICA MAESTRA EN OPTOELECTRONCA Complmnos d Mamáicas.- Sismas linals rprsnación d Fourir Sismas linals Muchos nómnos ísicos pudn dscribirs mamáicamn mdian maniuds uncions dl spacio dl impo. En muchas siuacions

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA TEORÍA DE OS CIRCUITOS I CAPÍTUO 6 REV. 8..8 S. ENRIQUE PUIAFITO UNIVERSIDAD TECNOÓGICA NACIONA FACUTAD REGIONA MENDOZA APUNTES DE A CÁTEDRA DE TEORÍA DE OS CIRCUITOS I Prof. Dr. Ing. S. Enriqu Puliafio

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

Método de Sustitución

Método de Sustitución Método d Sustitución El cálculo d una intgral complicada rquir, n muchos casos, d algunos cambios d variabl qu transformn la intgral n otra más simpl, dond s puda idntificar rápidamnt una antidrivada.

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución MEMÁIC VNZ RBJO PRÁCICO N O Sima Linal - nálii d Sñal - Convolción ESCRIPCIÓN E SEÑLES: FUNCIONES RMP ESCLÓN Y EL E IRC Grafiq la igin fncion dl impo. a b r - c d P - r-r- Ecriba na rprnación mamáica para

Más detalles

- 2,5% de cargas verticales

- 2,5% de cargas verticales Drminación d la slz d las pards Espsor d las pards 11 cm (sin conar rvoqus) Eslz gomérica = λ g 27 Dond: Con: c λg = = disancia lir nr apoyos orizonals d la pard (nrpisos, ord suprior d la fundación) =

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Sesión 3 Análisis de series de tiempo multiecuacional

Sesión 3 Análisis de series de tiempo multiecuacional Banco Cnral d Rsrva dl Prú 55º Curso d Exnsión Univrsiaria Ssión 3 Análisis d sris d impo mulicuacional 7. La modología d los vcors auorrgrsivos (VAR) 7.1. Nusro sing: forma srucural vs. forma rducida

Más detalles

GEOLOGIA Y GEOTECNIA

GEOLOGIA Y GEOTECNIA GEOLOGIA Y GEOTECNIA 004 CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions cando

Más detalles

Conversión CC/CC. Electrónica de Potencia. Autores (orden alfabético): A. Barrado, C. Fernández, A. Lázaro, E. Olías, M. Sanz, P.

Conversión CC/CC. Electrónica de Potencia. Autores (orden alfabético): A. Barrado, C. Fernández, A. Lázaro, E. Olías, M. Sanz, P. Convrsión CC/CC Elcrónica d Poncia Auors (ordn alfabéico): A. Barrado, C. Frnándz, A. ázaro, E. lías, M. Sanz, P. Zuml Índic ma Inroducción a las funs d alimnación linals y conmuadas Clasificación d los

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20 GUIA DE TRABAJO PRACTICO º PAGIA º OBJETIVOS: GUIA DE ACTIVIDADES Y TRABAJO PRACTICO º Lograr qu l Alumno: Distinga tipos d cuacions difrncials ordinarias Rsulva Ecuacions difrncials ordinarias Rsulva

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles