ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1"

Transcripción

1 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 A) Enunciar el conjunto solución de las ecuaciones e inecuaciones dadas. Representar gráficamente. 1) x = x ) x 5 = - 3 x ) 3 x < 1 4) -. 3 x -1 5) 1 x 3 x > 1 6) 3 x + 1 B.1) A partir de los siguientes gráficos, leer las imágenes solicitadas: 1) f ( - 3) ) f (- ) 1) g ( - 3) ) g (-1) 3) f ( -1) 4) f ( 0 ) 3) g ( 1) 4) g () 5) f (1.5) 6) f ( 3 ) 5) g ( 3) 6) g (3.5) B.) La gráfica de y = f (x) está dada en la figura a) Cuál es el dominio de f? b) Cuál es la Imagen de f? c) Qué valores de y son imagen de un solo valor de x?- Expresar dicho conjunto. B.3) Indicar si los siguientes puntos pertenecen o no a la función y = x -3 1) P (, 1) ) Q ( 3, 5) 3) T ( 5, 3)

2 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja B.4) Hacemos una excursión en bicicleta a un bosque que está a 44 Km. de nuestro pueblo. Para llegar hay que seguir un itinerario con subidas y bajadas. Mirando las gráficas, contestar las siguientes preguntas: Qué significa cada cuadradito en el eje horizontal de la gráfica tiempo-espacio? Y en el eje vertical? 1. A qué hora salimos?. Cuántos Km. hay, aproximadamente, desde el comienzo de la primera cuesta hasta la cima? Cuánto tiempo tardamos en subirla? 3. Cuántos Km. hay de bajada? Qué tiempo se tarda? 4. Qué distancia hay desde la hondonada hasta el bosque? Cuánto tardamos en recorrerla? 5. Cuánto tiempo estamos descansando en el bosque? 6. Describir el viaje de vuelta. 7. Cuánto tardamos en ir del pueblo al bosque? Y del bosque al pueblo? A qué crees que puede deberse la diferencia? B.5) Expresar el área de un triángulo equilátero en función de la longitud L de uno de sus lados. B.6) Una empresa necesita envasar un producto en recipientes de lata cilíndricos, de manera tal que el diámetro de la base sea la mitad de la altura. a) Encontrar una fórmula que permita calcular el volumen de la lata en función de la altura. b) Con que dimensiones construyen la lata si ésta debe tener una capacidad de 350 cm 3? B.7) La ecuación de una recta es 3 x + 4 y = -1. Hallar la longitud del segmento de recta que se encuentra entre la intersección con los ejes coordenados.

3 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 3 B.8) Se sabe que la cantidad de sustancia radiactiva que queda en un objeto decae exponencialmente. Suponer que una determinada sustancia, sigue el modelo: M(t) = M 0. e -0. t ( t en días). a) Si la masa inicial es de 38mg. Cuánta sustancia radiactiva se tendrá al cabo de un mes? b) Cuántos días deben transcurrir para tener la mitad de la masa inicial? B.9) Para producir un artículo se pueden emplear dos maquinas, una que cuesta $.000 y cada artículo se puede fabricar a un costo de $1 por unidad y la otra que vale $13000, pero cada artículo lo produce a un costo de $5. Se quiere decidir cual conviene de acuerdo a la cantidad de artículos que se necesitan. B.10) En una habitación a 0º C hemos retirado del fuego medio litro de agua hirviendo. Construir una gráfica que muestre la variación de la temperatura en función del tiempo. Interpretar. C.1) Graficar las siguientes funciones elementales. Hallar dominio e imagen. 1) y = - /3 x 3 ) z = ln x 3) w = x 1 / 4) t = x 3 5) h = x 1 / 3 6) s = sen x 7) l = cos x 8) j = 1 / x 9) r = 1 / x 10) d = x 11) y = e x 1) r = tg x C.) A partir de los gráficos de las funciones elementales dadas en el ejercicio C.1, graficar mediante desplazamientos las siguientes funciones y escribir la ecuación correspondiente, luego verificar con el software Winfun: a) la función que resulta de desplazar a z dos unidades hacia la derecha. b) la función que resulta de desplazar a z dos unidades hacia arriba. c) la función que resulta de desplazar a t tres unidades hacia la izquierda. d) la función que resulta de desplazar a d una unidad hacia la derecha y dos hacia abajo. Graficar con Winfun o Geogebra y analizar los desplazamientos: h 1 (x) = x -4 h (x) = (x-4) h 3 (x) = (x+1) - f 1 (x) = x 1/ - f (x) = (x-) 1/ g 1 (x) = ln(1+x) g (x) = lnx+1 C.3) Dada la expresión de f(x) en cada caso, encontrar la formula de las funciones desplazadas. Indicar Dominio e Imagen para cada una de ellas.

4 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 4 a) f(x) = x 1/ b) f(x) = x c) f(x) = 1/x d) f(x) = x 1/3 C.4) Un comercio de la zona, decidió que la función y = 0 x + 50, era el modelo matemático más adecuado para realizar la liquidación de comisiones a sus vendedores de telefonía celular. Realice la gráfica correspondiente y determine: a) Si un vendedor no realiza ninguna venta percibirá alguna comisión? b) Qué tipo de función se utiliza? Observando dicha gráfica, Qué debería hacer el vendedor para percibir al menos $150 de comisión? C.5) Se tienen rectángulos de 150 cm de superficie a) Completar la siguiente tabla: Largo del rectángulo (cm) Ancho del rectángulo (cm) b) Buscar una fórmula que permita calcular el ancho de estos rectángulos en función del largo. c) Graficar la función hallada en el inciso b. C.6) La expresión general de la función que modela la Ley de enfriamiento de Newton es Donde: T = T A - (T C T A ) e - k t T es la temperatura del cuerpo en función del tiempo k es la constante que define el ritmo de enfriamiento T A es la temperatura del ambiente T C es la temperatura actual del líquido o del cuerpo t es el tiempo transcurrido

5 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 5 Considerar que la temperatura del ambiente es º, k =. Qué se puede decir respecto al enfriamiento de una taza de agua que se encuentra a 50º y de otra que está a 100º? Graficar ambas situaciones en un mismo gráfico. C.7) Una fábrica de pinturas confecciona envases cilíndricos para sus productos. Una de sus máquinas arma todos los envases con una altura de 0,4 m y puede variar la base circular, tal como muestran los dibujos Otra máquina arma todos los envases con la misma base circular de 0,5 m de radio pero puede variar la altura, tal como se muestra en los dibujos siguientes: En cada caso, el radio de la base de los primeros cilindros coincide con la altura de los segundos a) Encontrar una fórmula que represente la variación del volumen de los envases que arma cada máquina. b) Determinar analíticamente si existe algún envase armado por la primera máquina de volumen y radio respectivamente iguales al volumen y la altura de algún envase armado por la segunda. c) Graficar. C.8) Dos empresas inauguradas el mismo año estiman sus ganancias, en millones de pesos, de acuerdo con las siguientes funciones: 3 f ( x) = 35x 5x y g( x) = 5x.( x 1) respectivamente, donde x es el tiempo transcurrido desde la puesta en funcionamiento de la planta, expresada en años. a) Graficar ambas funciones en un mismo sistema cartesiano ( utilizar WinFun) b) Determinar un dominio acorde con el problema. c) cuál de las dos empresas obtiene mayor ganancias en el primer año? Justificar d) A partir de qué momento cada empresa da pérdidas? e) En qué año la ganancia de la primera empresa supera en 80 millones la ganancia de la segunda? D.1) Hallar el dominio de las siguientes funciones: 1.- y = x y = 1 / ( x + x 3 )

6 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 6 1/ (4 x) y = ( x 3 x ) 1 / y = 1/ 7 (4 + x) 5.- x x 0 y = 6.- ln x x > 0 x y = ( x 1) 1/ x < 1 x y = x + 6 ( ) 5 x 1/ 8.- y = 1/ ( x + 5) x + 4x y = ln ( x + 10 ) 10.- y = log [ ( - x + 5 ) / ( x + 3)] 11.- y = ( ln ( x + ) ) 1 / 1.- y = ln ( - x x ) D.) Un envase de metal, cuyo volumen es de 60 cm 3, tiene la forma de un cilindro circular recto. a. Determinar un modelo matemático que exprese el área de la superficie total del envase como función del radio de la base. b. Cuál es el dominio de la función obtenida en el inciso a? E.1) Analizar si es posible la composición (GoF) x y (FoG) x. Hallar el dominio de la función resultante de la composición. 1) F (x) = x 8 x + 5 G (x) = x 3 ) F (x) = 3 x - x G (x) = 1 / x 3) F (x) = e x + 1 G (x) = ln ( x 1) E.) Cada una de estas funciones se han obtenido componiendo dos o más funciones. Encontrar en cada caso cuáles son las funciones compuestas. 1) f (x) = x + 1 ) f(x) = - x 3) f(x) = sen (x) E.3) En un bosque un depredador se alimenta de su presa, y para las primeras 15 semanas a partir del fin de la temporada de caza, la población de predadores es una función de, el número de presas en el bosque, la cual a su vez, es una función de, el numero de semanas que han pasado desde el fin de la temporada de caza. Si y donde a) Encontrar un modelo matemático que exprese la población de predadores como función del número de semanas a partir del fin de la temporada de caza. b) Determinar la población de depredadores 11 semanas después del cierre de la temporada de caza F.1) Dadas las siguientes funciones f : A B Analizar si f es inyectiva, suryectiva, biyectiva teniendo en cuenta los conjuntos A y B indicados en cada caso. 1) f : R R / f (x) = x 1

7 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 7 ) f : (-, 0) R / f(x) = 3 x + 3) f : ( -, 0] [0,+ ) / f (x) = ( x + 1) 4) f : [ - π/ ; π/] R / f(x) = cos x F.) Dadas las siguientes funciones f : A B a) Analizar si f es biyectiva b) En caso de no serlo, hacer las mínimas restricciones necesarias c) Hallar f 1. Graficar f y su inversa. d) Clasificar por la forma 1) f : R { 0 } R / f(t) = 1/t ) f : R R / f(z) = z 1 3) f : R + R / f(x) = ( x + 1 ) 1 / 4) f : ( - 1 ; + ) R / f(x) = ln ( x + 1) 5) f : R - R + / f(w) = e w 6) f: [-π/,π/] R / f(x) = senx F.3) 1) Inicialmente se tiene una población de 1000 bacterias que se triplican cada horas. La cantidad de ejemplares después de t horas es B(t)= t/ a) Cuál es la inversa de esta función? b) Al cabo de cuántas horas habrá bacterias? ) a) La función f(x) = 1,8x + 3 expresa la temperatura en grados Fahrenheit, conocida la misma en grados Celsius. Sabiendo que el papel arde a aproximadamente 453º F, a cuántos grados Celsius, tendrá que exponer esta práctica para quemarla? Graficar. b) Recíprocamente, obtener la función que da la temperatura en grados Celsius, conocida la misma en grados Fahrenheit. G) a) Analizar el siguiente gráfico que corresponde a la función f y completar con la información pedida:

8 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 8 Dominio..Imagen ceros Intervalos de positividad:.intervalos de negatividad;.. Intervalos de crecimiento:..intervalos de decrecimiento:.. La función..par porque. La función..impar porque.inyectiva,. suryectiva,.biyectiva porque 1 b) Construir los gráficos de f(x) y f(x) H) Representar gráficamente las funciones que se indican, teniendo en cuenta: Dominio Paridad Raíces y ordenada al origen de la función. Comportamiento asintótico de la función. 1) y = x 3 3 x ) y = ( x 1/ 3 ) ( x + ) 3) y = - x 3 + x + 6 x x 4) y = ( ) ( x + 5) y = ln [ - (3/5) x + ] 6) y = x 1 7) y = ( x ) ( x 1) 8) y = x 4 4 x 3) Indicar intervalos de crecimiento, decrecimiento e imagen de las funciones graficadas. I) Graficar con el software Winfun o Geogebra: 1) y = sen ( x ) ) y = tg (3x) 3) y = cos (x + π / ) Observar la gráfica e indicar valores de algunas raíces y período de la función. 1.-Graficar con Winfun o Geogebra cada una de las siguientes familias de funciones en un mismo sistema de coordenadas proponiendo hasta seis valores al parámetro correspondiente. a) y = sen (ax), a (-1.5, 5) b) y = sen(5x) + b, b (-3, 3) c) y = k. sen(5x), k (-0.5,.1).-Graficar otras familias de funciones elementales conocidas, por ejemplo y =(x + b), y = ax 3, y = ln (bx), entre otras.

9 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 9 Observar las gráficas obtenidas y concluir. Dadas las siguientes funciones, con uso de Winfun: a) y = sen(3x-π)-x +1 b) y = e x/3 - c) y = (x-4.) 1/3 + d) y = 0.45(x +.3) 3-4(x-) -54.8x+54 e) y = x.sen(1/x) f) y = cos (- x ) g) y = sen (x - π ) h) y = tg (x + π / ) i) Calcular raíces, intervalos de crecimiento y decrecimiento, máximos y mínimos. ii) Calcular, si existen, imágenes para distintos valores de x. (Observación: En algunos casos adecuar la escala para obtener mayor precisión) J.1) a) Una partícula se mueve en el plano de tal modo que sus coordenadas (x,y) varían con el tiempo según las ecuaciones : x = ½ t 3 6 t y = ½ t Trazar la trayectoria de la partícula en el intervalo 0 t 4 b) Trazar las graficas de las curvas, con parametrización dada por: x = t x = a.cost 1), 1 t ) y = t 1 y = a. sent Dar las ecuaciones cartesianas correspondientes., t R J.) Dadas las siguientes curvas definidas en forma cartesiana, encontrar distintas parametrizaciones. 1) y = x + 3 ) x = 3 y 3) y + x = 4 J.3) Considerando las ecuaciones paramétricas a) Completar la tabla x = t e y = 1 t t x y b) Marcar los puntos (x,y) generados en la tabla y esbozar la gráfica de las ecuaciones paramétricas. Indicar la orientación de la gráfica. c) Hallar la ecuación rectangular. Comparar la gráfica del apartado b) con la gráfica de la ecuación rectangular. J.4) Esbozar la curva representada por las ecuaciones paramétricas (indicar la orientación de la curva) y hallar la ecuación rectangular correspondiente. a)

10 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 10 b) ; J.5) Determinar en que difieren las curvas planas unas de otras a) b) c) d) Observamos como un hombre y una mujer se despiden y empiezan a alejarse uno del otro. A continuación mostramos una lista de las distancias que han recorrido cada uno de ellos en el mismo tiempo. Hombre metros 4 metros 10 metros 13 metros 18.5 metros 0 metros 7 metros Mujer 1 metro metros 4.85 metros 6.75 metros 9 metros 10 metros metros a) Cuál es el modelo matemático que mejor aproxima los datos? Use el software Winfun para graficar los datos de la tabla. (sugerencia: defina y la distancia recorrida por el hombre y x la distancia recorrida por la mujer.) b) Determinar la ecuación de dicha función. c) Reflexionar sobre algunos pares de puntos por ejemplo (9,18.5) 5) Teniendo en cuenta los datos que figuran en cada tabla de valores, realizar un diagrama de dispersión de estos datos y encuentre y graficar la línea de regresión utilizando el software WinFun a) b) Tiempo ( seg) Altura (m) x y

11 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja ) Un biólogo desea encontrar una relación entre el número de chirridos de los grillos y la temperatura ambiente, para lo cual decide realizar algunas observaciones. De su experiencia de campo obtuvo los datos que se muestran en la siguiente tabla. Temperatura Nro. de Chirrido a) Cuál de las variables te parece que puedes elegir como independiente y cual como dependiente? Por qué? b) Realizar la gráfica correspondiente a partir de este gráfico notas alguna tendencia en los datos? c) Utilizando el Winfun determinar la curva de regresión y la ecuación correspondiente. 7) En la tabla se registran alturas ganadoras en salto con garrocha en olimpiadas del siglo XX. Año Altura(pies) Año Altura(pies) a) Hacer un diagrama de dispersión de los datos. b) Determinar y grafique una línea de regresión. c) Usar el modelo de regresión lineal para predecir la altura del salto vencedor en la Olimpiada de 000. d) Es razonable usar el modelo para predecir el salto con el que se obtendrá la medalla de oro en la Olimpiada del 100? EJERCICIOS COMPLEMENTARIOS: 1) Encontrar el conjunto solución de las ecuaciones e inecuaciones dadas. Representar gráficamente. x 1 x + 3 a) > b) < 5 3 x x c) 9- x = 7 d) ( x -1) < 4

12 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 e) x + 3 <5 f) 3x-4 7 x ) El peso medio de los chicos desde que nacen hasta los 0 años viene dado por el siguiente gráfico: Observando el mismo responder: a) Cuál es el peso medio de los varones de 9 años? b) A qué edad tienen las mujeres un peso medio superior a 40 Kg.? c) En qué período el peso medio de las mujeres supera al de los varones? 3) Una compañía que renta autos ofrece unidades a $40 por día más 15 centavos por kilómetro. Los autos de su competidora se rentan $50 por día más 10 centavos por kilómetro. Para cada compañía escriba una formula para hallar el costo de rentar un automóvil por un día en función de la distancia recorrida. En los mismos ejes trace las graficas de ambas funciones. Cuál compañía es mas barata? 4) Un artesano ha podido establecer que por x pares de aros vendidos la ganancia en pesos está dada por la función g(x) = x + 3x a) Cuántos pares de aros debe vender para ganar 10, 18 y 3 pesos? b) Si para otro artesano la función de ganancia está dada por g(x) = 7x, hallar el número de pares de aros para el cual ambos artesanos obtienen la misma ganancia. 5) Hallar el dominio de las siguientes correspondencias de R R para que sean funciones: 1 x a) y = - 4 b) y = x ( x ) c) 1/ y = ( x + 5) d) y = + 4 1/ ( x x ) e) x + 6 y = f) y = x 5 x x( x )

13 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 13 g) x 3 y = h) y = log( x x + 1) x 49 ln( x + 7) + x + 5 i) y = j) ) ( x 1/ 4) ln( x + 7 y = x 16 x x < 3 x k) g ( x) = l) f ( x) = 0.5x + 4 x > 1 + x 6 x x > x 6) Encontrar si es posible (GoF) (x) y (FoG)(x). Hallar el dominio de la función resultante de la composición: a) F(x) = 3x G(x) = x 1/ b) F(x) = (x 1) G(x) = ln (x+1) c) F(x) = ln x G(x) = x d) F(x) = x+ G(x) = x + 1 7) Dadas las siguientes funciones f : A B a. Decir si f 1 es función b. En caso de que no lo sea realizar las restricciones necesarias c. Graficar f(x) y hallar analítica y gráficamente f 1 i) f: R R / f(x) = 7-5x ii) f: [1,+ ) R/ f(x) = ln x iii) f: R R + 3x / f(x) = e iv) f: [3, + ) R / f(x) = (x-) v) f: R R + / f(x) = sen x vi) f: R-{0} R / f(x) = 1/ x 1/ 8) Representar gráficamente las siguientes funciones teniendo en cuenta: Dominio Paridad Ordenada al origen y raíces o ceros de la función. Comportamiento asintótico de la función. a) y = x + x + 3 b) y = ln (x+4) 1/ c) y = (x + 5) 1 d) y = (1 x ) x + 4 e) y = 3 x f) y = log (3x-)

14 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 14 g) y = ( x + 3 ) ( x 1) h) y = log ( x 1) 9) Encontrar distintas parametrizaciones de las curvas siguientes y graficar: a) y = x ( 1 x/4) b) y = x /3

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

12 ESTUDIO DE FUNCIONES

12 ESTUDIO DE FUNCIONES ESTUDI DE FUNCINES EJERCICIS PRPUESTS. Representa las siguientes funciones lineales e indica el valor de sus pendientes. a) y b) y 5 y = + y = 5 c) y a) m 0 b) m 5 c) m y =. Representa estas funciones

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de Caso 3: En la ecuación general a b c, a 0 b 0, obtenemos a c, a 0. 10 = + = 8 6 4 = -1 3 - -1 1 3-1 Por ejemplo si a = 1 c = obtenemos. El gráfico de, es el mismo que el de desplazado unidades hacia arriba.

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

8Soluciones a las actividades de cada epígrafe

8Soluciones a las actividades de cada epígrafe PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA CAPÍTULO VI. APLICACIONES DE LA DERIVADA SECCIONES A. Crecimiento y decrecimiento. Máximos y mínimos locales. B. Concavidad. Puntos de inflexión. C. Representación gráfica de funciones. D. Problemas de

Más detalles

CAPÍTULO 2 APLICACIONES DE LA DERIVADA

CAPÍTULO 2 APLICACIONES DE LA DERIVADA CAPÍTULO 2 APLICACIONES DE LA DERIVADA 2.1 ANÁLISIS Y TRAZO DE CURVAS 2.1.1 Estudio de la Variación de una Función a) Tabulación y Graficación de una Función b) Dominio y Rango de una Función 2.1.2 Intersecciones

Más detalles

9 Estudio de funciones

9 Estudio de funciones Solucionario 9 Estudio de funciones ACTIVIDADES INICIALES 9.I. Resuelve las siguientes inecuaciones. a) 0 0 b) 4 0 c) 0 d) 0 7 9 a) (, ) b) (, 4] c) (, ] [0, ] d) (, ) (4, ) 9.II. Halla el valor en radianes

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos:

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos: TEMA 8: FUNCIONES Una función es una relación entre dos magnitudes, x e y, que asigna a cada valor de x, un único valor de y. Estas magnitudes reciben el nombre de variables, siendo x la variable independiente,

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar

Funciones y gráficas. Objetivos. Antes de empezar 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Reconocer si una relación entre dos variables es una función o no. Distinguir la variable independiente y la dependiente. Expresar una función

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto 11 Tablas y gráficas Objetivos En esta quincena aprenderás a: Representar puntos en el plano Calcular las coordenadas de un punto Construir e interpretar gráficas cartesianas Construir e interpretar tablas

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

3.1 Funciones de Variable Real

3.1 Funciones de Variable Real 3 CAPÍTULO TRES Ejercicios propuestos 3.1 Funciones de Variable Real 1. La gráfica de una función puede tener más de una intersección con el eje Y. 2. Un dominio de la función de variable real f (x)= 2x

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

EJERCICIO 8 Halla m y n para que la función f(x) sea continua en x= 2 y en x = 1. Es f(x) globalmente continua?

EJERCICIO 8 Halla m y n para que la función f(x) sea continua en x= 2 y en x = 1. Es f(x) globalmente continua? EJERCICIOS BLOQUE 4: Funciones, límites, continuidad y derivadas EJERCICIO 1 Halla el dominio de las siguientes funciones : a) f(x ) = b) f(x) = c) f(x) = ln ( ) EJERCICIO 2 Dadas las funciones f(x) =

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES .5 FUNCIONES CON RADICALES UNIDAD : Funciones racionales y con radicales.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES Aprendizajes: - Eplora en una situación o problema que da lugar a una función

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π]

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π] Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo Parcial III 15 % Estudiante: Tiempo: 1 h. Fecha: 1 Resolver la ecuación para w en 0 w 2π. (2Cos(2w) 1)(2Sen(3w) 2) = 0 2 Hallar los ceros

Más detalles

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.

Más detalles

Problemas sobre la función afín

Problemas sobre la función afín Problemas sobre la función afín 1. Representar gráficamente las funciones: a. b. f(x) = 2x + 3 c. d. e. f. 2. Indicar pendiente y ordenada en el origen de las funciones afines siguientes: a. f(x) = 2-3x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

8 FUNCIONES: PROPIEDADES GLOBALES

8 FUNCIONES: PROPIEDADES GLOBALES 8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.

Más detalles

1. GRÁFICAS. Página 1

1. GRÁFICAS. Página 1 1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no:

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (o relación entre magnitudes), de forma que cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

Funciones y gráficas

Funciones y gráficas Funciones y gráficas Contenidos 1. Relaciones funcionales Concepto y tabla de valores Gráfica de una función Imagen y antiimagen Expresión algebraica Relaciones no funcionales 2. Características de una

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

CAPÍTULO 1 RAZÓN DE CAMBIO

CAPÍTULO 1 RAZÓN DE CAMBIO CAPÍTULO 1 RAZÓN DE CAMBIO La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 199 a partir del mes de enero se muestra en la tabla. ENE FEB MAR ABR MAY JUN JUL

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS LA ENSEÑANZA Y APLICACIÓN DE LAS CIENCIAS BÁSICAS Bosquejo de funciones con apoyo de calculadoras graficadoras

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

Modelo1_2009_Enunciados. Opción A

Modelo1_2009_Enunciados. Opción A a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

1 EL MOVIMIENTO Y SU DESCRIPCIÓN

1 EL MOVIMIENTO Y SU DESCRIPCIÓN EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved. 4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles