Guía Aplicación de Funciones Jorge Gaona

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía Aplicación de Funciones Jorge Gaona"

Transcripción

1 Guía Aplicación de Funciones Jorge Gaona 1. Sea K : [400; 2500]! R p! p una función que entrega la cantidad de kilos de palta K (kg) que vende una comerciante, cuando se conoce el precio de venta p ($), en base a esta información determine (a) El grá co de K.Interprete (b) La imagen de Interprete y ubique la (c) La imagen de Interprete y ubique la (d) La preimagen de 12; 5. Si existe esta preimagen interprete y ubique la (e) La preimagen de 24. Si existe esta preimagen interprete y ubique la 2. Sea R : [40; 150]! R v! v v 3 una función que entrega el rendimiento R (km/lt) en relación con la velocidad (km/hr) de este, en base a esta información determine (a) El grá co de R:Interprete (b) La imagen de 70. Interprete y ubique la (c) La imagen de 100. Interprete y ubique la (d) La imagen de 120. Interprete y ubique la (e) La preimagen de 10. Si existe esta preimagen interprete y ubique la (f) La preimagen de 15. Si existe esta preimagen interprete y ubique la (g) La preimagen de 17. Si existe esta preimagen interprete y ubique la 1

2 3. Sea U : [0; 5000]! R x! 2000x una función que entrega la utilidad U en relación con la cantidad de artículos vendidos x, en base a esta información determine (a) El grá co de U. Interprete (b) La imagen de 500. Interprete y ubique la (c) La imagen de Interprete y ubique la (d) La imagen de Interprete y ubique la (e) La preimagen de 0. Si existe esta preimagen interprete y ubique la (f) La preimagen de 7:100:000.Si existe esta preimagen interprete y ubique la (g) La preimagen de 10:000:000. Si existe esta preimagen interprete y ubique la 4. Efecto de la altura en el peso: si un objeto pesa m kg al nivel del mar, entonces su peso a h metros de altura está dado por la función W (h) = m, en base a esta onformación determine: h (a) El dominio de la función considerando el contexto del problema (b) La grá ca de la función utilizando una tabla de valores (c) El peso de un objeto que pesa 100 kg a la altura de la montaña más alta de Chile 5. Una empresa tiene la siguiente función para calcular la ganancia G al vender x productos dada por: G (x) = x 2 + 6:000x 5:000:000, cuyo dominio es el intervalo [0; 5000] (a) Gra que la función e indique cortes con el eje e x y con el eje y, vértice (b) Si la empresa vende 0 [u] cuál es la ganancia? interprete la respuesta (c) Si la empresa vende 1500 [u] cuál es la ganancia? interprete la respuesta (d) Cuántas unidaddes debería vender para que la empresa no gane ni pierda dinero? (e) Cuántas unidaddes debería vender para que la empresa maximice sus utilidades? (f) Explique en palabras el comportamiento de la función 2

3 6. Considere la siguiente gura: La función V : [0; 50]! R x! 0; 04x x entrega el volumen V (lts) del estanque en función de la altura x (cm), en base a esta información determine: (a) El grá co de V (b) La capacidad máxima del estanque (c) La altura a la cual se obtiene el 50% de la capacidad máxima del estanque Sea V (x) = 27 x3 si x 2 [0; 3] 3x + 76 si x 2 ]3; 10] la función que determina el volumen en litros V de un estanque cuando se conoce la altura x en decímetros (dcm), para visualizar el problema se sabe que el estaqnue es un cilindro en la parte inferior es un cono y la parte superior un cilindro, en base a esta información determine: (a) El grá co de f (b) Los litros que contiene el estenque si la altura del líquido es de 2 dcm (c) Los litros que contiene el estenque si la altura del líquido es de 5 dcm (d) La capacidad máxima del estanque (e) La altura a la cual el estanque alcanza un 50% del total de su capacidad (f) La altura a la cual el estanque alcanza un 90% del total de su capacidad 3

4 8. Una página con dimensiones de 8,5 por 11 pulgadas tiene un margen de ancho uniforme x como muestra la gura: En base a esta información determine: (a) Una función que determine el área impresa de la página en relación con el ancho x del margen. Indique dominio (b) Gra que la función e interprétela 9. Una empresa que produce una tabla de surf tiene dos opciones para arrendar una fábrica que las produzca, la fábrica A tiene costos jos por $ y el costo de producir una tabla es de $25.000, la fábrica B tiene costos jos por $ y el costo de producir una tabla es de $20.000, se sabe que la esructura de costos de una empresa se puede establecer mediante la fórmula: Costos = Costos F ijos+costos V ariables. En base a esta información determine: (a) Una fórmula para determinar los costos de la fábrica A (b) Una fórmula para determinar los costos de la fábrica B (c) La grá ca de cada una indicando la interseción de las funciones con los ejes x e y (d) La intersección de las dos funciones y la interpretación del punto en el que se encuentran (e) Determine cual de las dos plantas eligiría, justi cando su respuesta 10. Utilice el mismo tipo de función usado en el ejercicio 9 para comparar el gasto de un hervidor eléctrico y una tetéra convencional 11. Sea x = 7:500: :000p la ecuación que relaciona la cantidad de calculadoras vendidas x en función del precio p de estas en $. En base a esta información determine: (a) El grá co de la función e interprete el grá co (b) Determine la expresión analítica y la grá ca de la función ingreso (Ayuda: Ingreso = precio cantidad) (c) Explique el signi cado del grá co 4

5 12. Un proyectil es disparado desde un acantilado a 500 pies por encima del agua con una inclinación de 45 respecto de la horizontal (como se muestra en la gura), la velocidad desl disparo es de 400 pies por segundo. Aplicando las leyes de Newton, se puede demostrar que la altura h (pies) por encima del agua está dada por h (x) = 32x2 (400) 2 + x donde x (mt) es la distancia horizontal del proyectil a la base del acantilado 13. Una canaleta para captar agua de lluvia es fabricado con hojas de aluminio de 12 pulgadas de ancho, doblando los lados 90 hacia arriba, como se muestra en la gura: La función que entrega al área de la sección transversal está dada por: A (x) = 12x (a) El grá co de A 2x 2, con x 2 ]0; 6[, en base a esta información determine: (b) El valor de x que maximiza el área y por ende el ujo del agua (c) Indique como podría deducir la fórmula e indicar porque el dominio tiene que ser el intervalo ]0; 6[ 5

6 14. La resistencia eléctrica R de un alambre depende de la temperatura T del mismo. Un experimento mide la resistencia en Ohm () de un alambre a diferentes temperaturas en grados Celsius ( C). Los resultados del experimento se presentan en la tabla siguiente: T R Exprese la resistencia como función de la temperatura 15. La Empresa Construciones siglo XXI experimenta un decrecimiento lineal en sus ganancias en la última década. En cambio la empresa Constructora Innova experimenta un crecimiento lineal en sus ganancias en el mismo período. Los datos están expresados en la tabla siguiente Año Ganancias* Año Ganancias* Construciones siglo XXI Constructora Innova (a) En un solo grá co muestre ambos casos (b) Encuentre la ecuación que describe el comportamiento de cada empresa (c) En qué año, ambas empresas, obtuvieron la misma ganancia? * Las ganancias están en millones de pesos 16. Una empresa que fabrica cintas de audio estima que el costo C (en dólares) al producir x cintas es una función de la forma: C = 200x + 100, con x > 0 (a) Calcule el costo al producir 50 unidades. (b) Si el costo es 1900 dólares, cuántas unidades se produjeron? (c) Gra que el costo v/s unidades producidas 6

7 17. Con el propósito de tener mayor seguridad, un fabricante planea cercar un área de almacenamiento rectangular de m 2, que es adyacente a un edi cio, el cual se utilizará como uno de los lados del área cercada. La cerca paralela al edi cio da a una carretera y costará $1.500 por metro instalado, mientras que la cerca de los otros dos lados costará $2.000 por metro instalado. (a) Exprese el costo total como función de la longitud del lado paralelo al edi cio. (b) Determine el dominio de la función obtenida. (c) Gra que Costo v/s lado 18. El valor V en pesos de un computador está dado por la función: V = 500:000 1 x 40 (a) Cuál es el valor inicial del computador? donde x se mide en años. (b) En qué momento el valor del computador es la mitad de su valor inicial? 19. Para la empresa usted debe tomar la descición de cual camioneta arrienda para el transporte de unos materiales. Existen dos ofertas en el mercado, la primera compañía de arriendo de vehículos cobra $ por día mas $40 por kilómetro recorrido, mientras que la segunda compañía arrienda el mismo tipo de autos a $ por día mas $60 por cada kilómetro recorrido. (a) Si x representa el n o de kilómetros recorridos en un día, encuentre las funciones CC y CL que representan el costo por arrendar un auto en la primera y segunda compañía respectivamente, indicando claramente los dominios y recorridos. (b) En qué caso conviene arrenda un auto en cada compañía? Entregue una solución grá ca 20. Un fabricante de muebles puede vender mesas de comedor a $ c/u. El costo total para el fabricante está formado por costos indirectos jos de $ más costos de producción de $ por mesa: (a) Cuál es la función de costo de esta empresa? Gra que e interprete (b) Cuál es la función de ingreso de esta empresa? Gra que e interprete (c) Cuál es la función de ganancia de la empresa? Gra que e interprete (d) Cuántas mesas debe vender el fabricante para obtener una utilidad de $ ? (e) Cuál será la utilidad o pérdida del fabricante si vende 150 mesas? 7

8 21. En una cuenta de agua potable se consigna un cargo jo de $1061. Sabiendo que el modelo de cálculo de tarifas es un modelo lineal y que por un consumo de 14 m3 se facturó en el mes de octubre $6021, a cuánto se facturó en diciembre si en ese mes el consumo ascendió a 28 m3? Determine la función que calcula el dinero facturado en función del consumo? 8

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1

ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 A) Enunciar el conjunto solución de las ecuaciones e inecuaciones dadas. Representar gráficamente. 1) x + 3 + 1 = x ) x 5 = - 3 x + 15 3) 3 x < 1 4) -. 3

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

1. Ejercicios propuestos

1. Ejercicios propuestos Coordinación de Matemática I (MAT0) Semestre de 05 er Semana 3: Guía de Ejercicios de Cálculo, lunes 3 viernes 7 de Marzo Contenidos Clase : Funciones: Dominio, recorrido, gráco. Ejemplos. Clase : Igualdad

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

Funciones. 1. Funciones - Dominio - Imagen - Gráficas

Funciones. 1. Funciones - Dominio - Imagen - Gráficas Nivelación de Matemática MTHA UNLP 1 Funciones 1 Funciones - Dominio - Imagen - Gráficas 11 Función Una función es una asociación, que a cada elemento de un conjunto A le asocia eactamente un elemento

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

FUNCIÓN LINEAL. Funciones 2 INTRODUCCIÓN FUNCIÓN LINEAL. f : R R / f(x) mx b

FUNCIÓN LINEAL. Funciones 2 INTRODUCCIÓN FUNCIÓN LINEAL. f : R R / f(x) mx b Funciones INTRODUCCIÓN FUNCIÓN LINEAL Observamos que: La longitud que se alarga un resorte es proporcional a la fuerza que se hace para alargarlo. El dinero que se debe pagar por un crédito en un banco

Más detalles

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de Caso 3: En la ecuación general a b c, a 0 b 0, obtenemos a c, a 0. 10 = + = 8 6 4 = -1 3 - -1 1 3-1 Por ejemplo si a = 1 c = obtenemos. El gráfico de, es el mismo que el de desplazado unidades hacia arriba.

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 0 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT00 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C.

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Pregunta 1 Hallar el dominio y recorrido de las siguientes funciones, dibújelas, y estudie su paridad, imparidad, crecimiento y decrecimiento,

Más detalles

1. GRÁFICAS. Página 1

1. GRÁFICAS. Página 1 1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

71E10.- Cuál es el valor de x del siguiente sistema de ecuaciones simultáneas? 2x + y = 7 5x - 3y = 1 2(2) + 3 = 4 + 3 = 7 5(2) 3(3) = 10 9 = 1

71E10.- Cuál es el valor de x del siguiente sistema de ecuaciones simultáneas? 2x + y = 7 5x - 3y = 1 2(2) + 3 = 4 + 3 = 7 5(2) 3(3) = 10 9 = 1 RESOLUCIÓN DE SISTEMA DE ECUACIONES LINEALES (ECUACIONES DE PRIMER GRADO) 71E08.- Cuál es la solución del siguiente sistema de ecuaciones lineales? x + y = 1 3x y = 0 10 + = 1 y 3(10) () = 30 10 = 0 88E08.-

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

PRACTICO 2: Funciones Noviembre 2011

PRACTICO 2: Funciones Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO : Funciones Noviembre 011 Ejercicio 1.- Reescriba las oraciones que siguen usando la palabra función. (a) El impuesto

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno

Más detalles

Respuestas a los ejercicios y problemas

Respuestas a los ejercicios y problemas s a los ejercicios y problemas Unidad I. La medición y sus instrumentos Tema 2. Medidas de longitud y sus conversiones 4. En qué utilizará la escuadra don Andrés al construir el juguetero de la señora

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación

Más detalles

PROBLEMAS DE SISTEMAS DE ECUACIONES

PROBLEMAS DE SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor

Más detalles

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora.

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. Cálculo Diferencial Taller de pre-requisitos. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. p 6s t v 5p 6st 5 v, b) (x p x ) c) 0 6 y + y y. Multiplicación. Expanda el producto

Más detalles

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos:

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos: TEMA 8: FUNCIONES Una función es una relación entre dos magnitudes, x e y, que asigna a cada valor de x, un único valor de y. Estas magnitudes reciben el nombre de variables, siendo x la variable independiente,

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

13 FUNCIONES LINEALES Y CUADRÁTICAS

13 FUNCIONES LINEALES Y CUADRÁTICAS 3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PRPUESTS 3. Indica cuáles de las siguientes funciones son lineales. a) y 5 d) y 0,3x ) y 0,04 3x e) y x c) y x f) y 0,5x Son lineales a,, d y f. 3. Expresa cada

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página Completa la siguiente tabla: Nº- de vídeos 0 6 7 8 9 0 Coste no socios 0, 7, 0, 7, 0, Coste socios 6 7 8 9 0 Completa en tu cuaderno la gráfica de la derecha, representando los resultados con

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas PROBLEMAS DE OPTIMIZACIÓN 1.-Entre todos los rectángulos de perímetro 10 cm. encontrar el de mayor

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto 11 Tablas y gráficas Objetivos En esta quincena aprenderás a: Representar puntos en el plano Calcular las coordenadas de un punto Construir e interpretar gráficas cartesianas Construir e interpretar tablas

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0 ECUACIÓN DE LA RECTA Y PENDIENTE GUIA DE EJERCICIOS ) Encontrar la pendiente de la recta determinada por cada uno de los guientes pares de números: a) (, ) y (5, ) b) (, -3) y (-, ) c) (, 6) y (8, 56)

Más detalles

Ecuaciones Problemas Ejercicios resueltos

Ecuaciones Problemas Ejercicios resueltos Ecuaciones Problemas Ejercicios resueltos 1. En el siguiente dibujo todos los autos son iguales: Determinar el largo de cada auto. Sea x el largo de cada auto. De acuerdo a la figura, la ecuación que modela

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

ALGUNAS ACTIVIDADES EN LAS CIENCIAS

ALGUNAS ACTIVIDADES EN LAS CIENCIAS ALGUNAS ACTIVIDADES EN LAS CIENCIAS CIENCIAS FÍSICAS PRIMER AÑO. MARZO 2007 LUIS BONELLI LOS CUERPOS Y LA LUZ ACTIVIDAD 3.1 En esta etapa de nuestro curso no disponemos de elementos suficientes para responder

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRUEBA DE DIAGNÓSTICO MATEMÁTICA NOMBRE DEL ESTUDIANTE: INSTITUCIÓN EDUCATIVA:

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

1.- Usando la gráfica de la siguiente curva de posibilidades de producción del país Botswana responda a los incisos del a al g.

1.- Usando la gráfica de la siguiente curva de posibilidades de producción del país Botswana responda a los incisos del a al g. EJERCICIOS EL PROBLEMA ECONÓMICO 1.- Usando la gráfica de la siguiente curva de posibilidades de producción del país Botswana responda a los incisos del a al g. Zapatos (por mes) 100 90 75 55 2 4 6 8 Computadoras

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. 001 00 00 004 005 006 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS NÚM. 13 RICARDO FLORES MAGÓN Guía para el ETS (ordinario o especial)

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 159

7Soluciones a los ejercicios y problemas PÁGINA 159 7Soluciones a los ejercicios y problemas PÁGINA 159 Pág. 1 S istemas de ecuaciones. Resolución gráfica x + y = 3 1 Representa estas ecuaciones: x y = 1 a) Escribe las coordenadas del punto de corte. b)escribe

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w Elaborada por José A. Barreto. Master of Arts The University of Teas at Austin. En el conjunto de los números reales se define la relación Ry ( está relacionado con y si > y + 0. Cuál de los siguientes

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos. Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá

Más detalles

MODELADO MATEMÁTICO DE FENÓMENOS FÍSICOS. APRENDIZAJE COLABORATIVO UTILIZANDO AULAS VIRTUALES

MODELADO MATEMÁTICO DE FENÓMENOS FÍSICOS. APRENDIZAJE COLABORATIVO UTILIZANDO AULAS VIRTUALES MODELADO MATEMÁTICO DE FENÓMENOS FÍSICOS. APRENDIZAJE COLABORATIVO UTILIZANDO AULAS VIRTUALES Jorge Azpilicueta 1 y José Luis Galoppo 2 Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional

Más detalles

Balanza de Corriente.

Balanza de Corriente. Balanza de Corriente. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En la presente práctica experimental,

Más detalles

Colegio Colsubsidio Torquigua IED Formamos Ciudadanos con compromiso Social y Ético

Colegio Colsubsidio Torquigua IED Formamos Ciudadanos con compromiso Social y Ético PLAN DE MEJORAMIENTO - ÁREA: CIENCIAS NATURALES GRADO: NOVENO - PRIMER TRIMESTRE El plan de mejoramiento es una de las acciones propuestas para el mejoramiento del desempeño de los estudiantes, de acuerdo

Más detalles

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

3 Sistemas de cálculo, unidades y operaciones

3 Sistemas de cálculo, unidades y operaciones 3 Sistemas de cálculo, unidades y operaciones El fontanero debe poder calcular la cantidad de tubos, de diferentes diámetors, que necesitará para hacer una instalación. Tubería de PVC Tubería de cobre

Más detalles

Función Cuadrática *

Función Cuadrática * Función Cuadrática * Edward Parra Salazar Colegio Madre del Divino Pastor 10-1 Una función f : A B, f(x) = ax 2 + bx + c, donde A y B son subconjuntos de R, a, b, c R, a 0, se llama una función cuadrática.

Más detalles

LA DERIVADA. Según la figura la tasa de cambio promedio es igual a la pendiente del segmento (x, f(x))

LA DERIVADA. Según la figura la tasa de cambio promedio es igual a la pendiente del segmento (x, f(x)) LA DERIVADA La derivada de una función se puede utilizar para determinar la tasa de cambio de la variable dependiente con respecto a la variable independiente. A través de la derivada se puede obtener

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

Hidráulica Teórica Guía Nº1

Hidráulica Teórica Guía Nº1 Hidráulica Teórica Guía Nº1 PARTE I: CONCEPTOS 1.- Responda las siguientes preguntas: a) Derive la expresión de la corrección de caudal Q aplicable en el método de Cross para una malla que contiene una

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

Razones de Cambio Relacionadas

Razones de Cambio Relacionadas CAPITULO 4 Razones de Cambio Relacionadas M.Sc. Sharay Meneses R. 1 Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) 2 Créditos

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA 3.1 MODELOS CLÁSICOS DE OLIGOPOLIO 3.2 DIFERENCIACIÓN DEL PRODUCTO Y

Más detalles

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3 0 FUNCINES EJERCICIS PRPUESTS 0. Halla el dominio y el recorrido de estas funciones. a) f () b) g() c) h() a) D(f) R; Recorrido (f) R b) D(g) R; Recorrido (g) [0, ) c) D(h) R; Recorrido (h) R 0. 0. Calcula

Más detalles

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 MATEMÁTICAS: º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 1.- Determina dos números cuya suma sea y tales que el producto de uno de ellos por el cubo del otro sea máimo. = 1 er número;

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS:

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS: TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Función Lineal y su Gráfica Nombre Asignatura: Algebra Sigla MAT2001 Sala de clases Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora?

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? Solución : 12 años 2.- Si al doble de un número le restas 13, obtienes

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles