2. Cálculo de las pérdidas de carga localizadas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Cálculo de las pérdidas de carga localizadas."

Transcripción

1 Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada 3. Lonitud equialente de la conducción 4. Pérdida de cara localizada de mayor importancia cuantitatia 5. Conideracione práctica para ealuar la pérdida de cara localizada. Introducción y concepto. Ademá de la pérdida de cara continua o por rozamiento, imo que en la conduccione e produce otro tipo de pérdida debido a fenómeno de turbulencia que e oriinan al pao de líquido por punto inulare de la tubería, como cambio de dirección, codo, junta, deriacione, etc, y que e conocen como pérdida de cara accidentale, localizada o inulare ( L, ), que umada a la pérdida de cara continua ( C ) dan la pérdida de cara totale ( T ).. Cálculo de la pérdida de cara localizada. Normalmente, la pérdida de cara continua on má importante que la inulare, pudiendo éta depreciare cuando uponan meno del 5% de la totale, y en la práctica, cuando la lonitud entre inularidade ea mayor de mil ece el diámetro interior de la tubería. alo cao excepcionale, la pérdida de cara localizada ólo e pueden determinar de forma experimental, y pueto que on debida a una diipación de enería motiada por la turbulencia, pueden expreare en función de la altura cinética correida mediante un coeficiente empírico K. K []

2 El coeficiente K e adimenional y depende del tipo de inularidad y de la elocidad media en el interior de la tubería. En la práctica y para cálculo rápido que no precien de ran exactitud, e uelen adoptar lo iuiente alore aproximado de K. Acceorio K L/ Válula eférica (totalmente abierta) Válula en ánulo recto (totalmente abierta) 5 75 Válula de euridad (totalmente abierta).5 - Válula de retención (totalmente abierta) 35 Válula de compuerta (totalmente abierta) 0. 3 Válula de compuerta (abierta ¾).5 35 Válula de compuerta (abierta ½) Válula de compuerta (abierta ¼) Válula de maripoa (totalmente abierta) - 40 T por la alida lateral Codo a 90º de radio corto (con brida) Codo a 90º de radio normal (con brida) Codo a 90º de radio rande (con brida) Codo a 45º de radio corto (con brida) Codo a 45º de radio normal (con brida) Codo a 45º de radio rande (con brida) En conduccione circulare, la fórmula [] puede expreare en función del ato mediante la ecuación: m KQ [] iendo m' 4 π El alor de m para ditinto diámetro comerciale e el iuiente: (metro) m (metro) m

3 3. Lonitud equialente de la conducción. Un método no completamente exacto pero álido a efecto de etimar la pérdida de cara localizada conite en exprearla en forma de lonitud equialente (Le), e decir, alorar cuánto metro de tubería recta del mimo diámetro producen una pérdida de cara continua que equiale a la pérdida que e produce en el punto inular. Por tanto, la lonitud equialente de una inularidad puede determinare iualando la fórmula para el cálculo de y c: C K C L f K f L K L Le f La pérdida de cara total en una tubería de lonitud L con i inularidade de lonitud equialente L ei cada una de ella, erá la que produce una tubería del mimo diámetro pero con una lonitud total L T L Lei Por ejemplo, i la uma de lo coeficiente de reitencia (K) en la inularidade de una tubería de 00 mm de diámetro y f0.00 e K5, inifica que para calcular la pérdida de cara totale, la lonitud real de la conducción deberá aumentare en una lonitud equialente de Le50 m, e decir, 750 diámetro. Eta lonitud equialente oriina la mima pérdida de cara que lo punto inulare a lo que utituye. i la pérdida de cara por rozamiento e exprea mediante la ecuación de arcy implicada: Q C f L m L Q [3], e decir, e conidera 5 m f Entonce, la lonitud equialente de la conducción puede calculare iualando la fórmula [] y [3]: m KQ mlq 5 Lueo L Le m' K m 3

4 A efecto práctico, en muco cao e implifica el cálculo uponiendo que la uponen un porcentaje del orden del 5 0 % de la pérdida de cara continua, eún el número y tipo de inularidade. i x e el porcentaje que upone repecto de c : T c x 00 c c x a c Lueo T a c En eto cao, por tanto, la pérdida de cara total erá la producida en una tubería por rozamiento incrementando u lonitud entre un 5 0%. 4. Pérdida de cara localizada de mayor importancia cuantitatia. 4.. Pérdida localizada en un enancamiento bruco de ección Aunque la tubería e enance brucamente, el flujo lo ace de forma radual, de manera que e forman torbellino entre la ena líquida y la pared de la tubería, que on la caua de la pérdida de cara localizada. Aunque en la mayoría de lo cao la pérdida de cara localizada e calculan a partir de la ecuación [], obteniéndoe K empíricamente, en ete cao pueden deducire de forma analítica. Para ello uponemo que P P γ γ y z z 4

5 5 Aplicando Bernouilli entre y, e obtiene: z P z P γ γ 4 4 Ya que Q y Q como k 4 4 k Cao particular: Tubería que abatece un depóito En ete cao, la uperficie e muco mayor que la, por lo que la relación entre amba tenderá a cero. >>> 0 0 Por lo tanto, en ete cao K, y la pérdida de cara en la deembocadura erá: E decir, e pierde toda la enería cinética en la entrada al depóito.

6 4.. Pérdida localizada en un enancamiento radual de ección on lo difuore, en lo que e producen, ademá de la pérdida de cara por rozamiento como en cualquier tramo de tubería, otra inulare debido a lo torbellino que e forman por la diferencia de preión (al aumentar la ección diminuye la elocidad, y por lo tanto el término cinético, por lo que la preión debe aumentar). A menor ánulo de conicidad (θ), menor pérdida de cara localizada, pero a cambio e precia una mayor lonitud de difuor, por lo que aumentan la pérdida de cara continua. e trata de allar el alor de θ para el que la pérdidad de cara total producida ea mínima. Gibon (Torre otelo, 996) demuetra experimentalmente que el ánulo óptimo de conicidad e de uno 6º, y proporciona la iuiente fórmula empírica para calcular la pérdida de cara totale: T λ Lo alore de λ, también eún Gibon, on lo iuiente: θ 6º 0º 5º 0º 30º 40º 50º 60º λ Pérdida localizada en un etrecamiento bruco de ección 6

7 En ete cao, el flujo continúa coneriendo depué de la embocadura durante una cierta ditancia, a partir de la cual e produce u enancamiento. Por tanto, e formarán turbulencia entre el flujo y la parede de la tubería, y también entre éta y la ena líquida contraída, como e indica en la fiura. Lo alore de K e obtienen de forma uficientemente aproximada en función de la relación entre lo do diámetro: / K Cao particular: Tubería a la alida de un depóito (embocadura) En ete cao, la pérdida de cara depende del tipo de conexión entre la tubería y el depóito. () () (3) () Embocadura de arita ia: K 0.5 () Embocadura tipo entrante: K.0 (3) Embocadura abocinada: K , eún el rado de abocinamiento. e puede coniderar un alor medio de K Pérdida localizada en un etrecamiento radual de ección (tobera) Pueto que el líquido aumenta u elocidad al paar por la tobera, también diminuye u preión. Por tanto, la condicione no faorecen la formación de torbellino, iendo cai la totalidad de la pérdida de cara que e producen debida al rozamiento. Lo alore de K uelen ocilar entre 0.0 y 0.04, por lo que, en la práctica, eta pérdida de cara e deprecian. 7

8 4.5. Otra pérdida localizada de interé on importante por lo extendido del uo de eta pieza epeciale la pérdida de cara producida en álula, codo de ditinto ánulo y ramificacione en T (pérdida por bifurcación o empalme del flujo, er fiura). Bifurcación Empalme 5. Conideracione práctica para ealuar la pérdida de cara accidentale.. Para álula, puede tomare como equialente la pérdida de cara por rozamiento en una tubería recta de 0 m de lonitud y de iual diámetro que el acceorio.. En ocaione, puede tomare una lonitud total de tubería incrementada en un 5 0 %, dependiendo de la lonitud y el mayor o menor número de punto inulare. 3. La pérdida localizada en eneral pueden depreciare cuando, por término medio, aya una ditancia de 000 diámetro entre do punto inulare. 8

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

Ejemplo A. Desde un depósito fluye agua a 20ºC por una cañería de acero (e=0,046 mm). La cañería tiene

Ejemplo A. Desde un depósito fluye agua a 20ºC por una cañería de acero (e=0,046 mm). La cañería tiene Toda la teoría que e utiliza en la reolución de lo iuiente ejemplo, etá baada en el Capítulo 8, del libro del In. Fernando Silva. Por lo tanto, e recomienda u lectura previa ante de euir adelante con la

Más detalles

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 2 Pérdidas de carga localizadas

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 2 Pérdidas de carga localizadas UNIDAD 3 HIDRODINÁMICA. PRINCIPIO FUNDAMENTALE Capítulo Pérdidas de carga localizadas ECCIÓN : EXPREIÓN GENERAL EN PERDIDA LOCALIZADA. ETRECHAMIENTO. ENANCHANIENTO INTRODUCCIÓN Además de las pérdidas de

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

DETERMINACIÓN DE LAS PÉRDIDAS DE CARGA

DETERMINACIÓN DE LAS PÉRDIDAS DE CARGA DETERMINACIÓN DE LAS PÉRDIDAS DE CARGA I. PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA Cl. Miguel leta, Tel/ax: 978 83 33 06 www.academia-nipho.e TRABAJO Y NRGÍA La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en

Más detalles

LEY DE GAUSS. A v. figura 5.1

LEY DE GAUSS. A v. figura 5.1 LY D GAUSS 5.1 INTRODUCCION. l campo eléctrico producido por objeto cargado etático puede obtenere por do procedimiento equivalente: mediante la ley de Coulomb o mediante la ley de Gau, ley debida a Karl

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

SISTEMAS DE PROTECCIÓN PASIVA CONTRA INCENDIOS...

SISTEMAS DE PROTECCIÓN PASIVA CONTRA INCENDIOS... Memoria de Cálculo ÍNDICE 1. SISTEMAS DE PROTECCIÓN PASIVA CONTRA INCENDIOS... 1 1.1 Propagación interior... 1 1.1.1 Compartimentación en sectores de incendio... 1 1.1. Locales y zonas de riesgo especial...

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r

6. Cinética química [ ] 1 ( ) ACTIVIDADES (pág. 145) Para t = 0 s y t = 4 s: mol L. (Cl) = 35,45 u V = 200 ml. Datos: m(nacl) = 3,0 g A r 6. Cinética química ACTIVIDADS (pág. 45) Dato: m(nacl) 0 g A r (Cl) 545 u V 00 m A r (Na) 99 u Calculamo: M r (NaCl) A r (Cl) A r (Na) M r (NaCl) 545 u 99 u 5844 u M g NaCl m diolucion NaCl g NaCl 000

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

PRÁCTICA No. 5 Estados del flujo en un canal

PRÁCTICA No. 5 Estados del flujo en un canal PRÁCTICA No. 5 Estados del flujo en un canal Laboratorio de Hidráulica I OBJETIVO: Observar la generación y el comportamiento de diversos estados del flujo en un canal. INTRODUCCIÓN Para poder comprender

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

FÍSICA SEPTIEMBRE 2003

FÍSICA SEPTIEMBRE 2003 FÍSICA SEPTIEMBE 003 INSTUCCIONES GENEALES Y VALOACIÓN. La prueba conta de do parte. La primera parte conite en un conjunto de cinco cuetione de tipo teórico, conceptual o teórico-práctico, de la cuale

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

FUNCIONES LINEAL Y POTENCIA

FUNCIONES LINEAL Y POTENCIA FUNCIONES LINEAL Y POTENCIA La función lineal La función lineal puede describirse en forma genérica con la fórmula y = ax + c, donde a (la pendiente) y c (la ordenada al origen) son constantes. La gráfica

Más detalles

En la figura 1 se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de ganancia K en lazo abierto.

En la figura 1 se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de ganancia K en lazo abierto. Maren de Ganancia y Maren de Fase En la fiura se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de anancia en lazo abierto. Fiura. Trazas polares de G ( jω ) = ( + jωta )(

Más detalles

Utilizamos la ecuación del constructor de lentes, teniendo en cuenta los signos de los radios de curvatura de la lente: n

Utilizamos la ecuación del constructor de lentes, teniendo en cuenta los signos de los radios de curvatura de la lente: n Departamento Ciencia. Fíica CURSO: BACH Problema 9 Una lente convergente con radio de curvatura de u cara iguale, que uponemo delgada, tiene una ditancia focal de 50. Proecta obre una pantalla la imagen

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg e empujado mediante una fuerza de 150N paralela a la uperficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1 ECUACIONES FUNDAMENTALES DE UN FLUJO José Agüera Soriano 0 José Agüera Soriano 0 ECUACIONES FUNDAMENTALES DE UN FLUJO ECUACIÓN DE CONTINUIDAD ECUACIÓN DE LA ENERGÍA ECUACIÓN CANTIDAD DE MOIMIENTO APLICACIONES

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES LEYES DE LA DINÁMICA Y APLICACIONES Cuetione. Ejercicio de la unidad 14 1.- Qué opina de la iguiente afirmación?: Andamo gracia al rozamiento. Si no exitiera éte no lo podríamo hacer..- Por qué tienen

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 1 SISTEMAS DE MEDIDA ANGULAR 9º 10 = 33,3º = 33º18 RPTA. : C R C 200R. o 90º.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 1 SISTEMAS DE MEDIDA ANGULAR 9º 10 = 33,3º = 33º18 RPTA. : C R C 200R. o 90º. SEMANA 1 SISTEMAS DE MEDIDA ANGULAR 1. Del ráfico adjunto, halle α θ. θ A) 180 B) 60 C) 70 D) 0 E) 0 α α o o 90 θ. Convertir 7 al itea exaeial. A) 1 B) 1 C) 18 D) E) α = 7 =, = 18 9 10 RPTA. : C. El factor

Más detalles

Líneas geodésicas Angel Montesdeoca

Líneas geodésicas Angel Montesdeoca Línea geodéica Angel Montedeoca Lune 12 de Mayo del 2008 1 ara que do uperficie e corten bajo un ángulo contante, e neceario y uficiente que la curva interección tenga la mima torión geodéica relativa

Más detalles

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008 Número Reynold Laboratorio de Operacione Unitaria Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumno: Arlette Mayela Canut Noval arlettecanut@hotmail.com Francico Joé Guerra Millán fjguerra@prodigy.net.mx

Más detalles

Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación

Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación Apellidos, nombre Arianna Guardiola Víllora (aguardio@mes.upv.es) Departamento Centro Mecánica del Medio Continuo

Más detalles

TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA

TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA Nombre Apellido: TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA Ejercicio 1º [,00 punto] Una perona e encuentra en la ventana de u apartamento que etá ituada a 8 metro del uelo oberva el edificio de enfrente. La

Más detalles

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante) Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)

Más detalles

SR(s)=R(s) + E(s) C(s)

SR(s)=R(s) + E(s) C(s) TEMA: EO EN ÉGIMEN PEMANENTE Un apecto importante a tener en cuenta e el comportamiento de un itema ante divera entrada en régimen permanente. En cualquier itema fíico de control exite un error inherente,

Más detalles

CAPÍTULO 6 EVALUACIÓN DE LA POROSIDAD EN LAS PARTÍCULAS

CAPÍTULO 6 EVALUACIÓN DE LA POROSIDAD EN LAS PARTÍCULAS CAPÍTULO 6 EVALUACIÓN DE LA POROSIDAD EN LAS PARTÍCULAS Introducción La poroidad e uno de lo factore interno de la partícula el cual define el comportamiento de la partícula ante el ecado dado que dependiendo

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailé. Aturia La e una parte de la Fíica que etudia la accione que e ejercen obre lo cuerpo y la manera en que eta accione influyen obre el moimiento de lo mimo. or qué un cuerpo

Más detalles

DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146

DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146 E - 146-1 DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146 1. OBJETO Existe dependencia del grado de compactación alcanzado por los suelos, con el contenido de humedad y la magnitud

Más detalles

Descripción del movimiento

Descripción del movimiento Tema 4. El movimiento Eje temático: Fíica. El movimiento El calor - La Tierra y u entorno Contenido: Poición, tiempo y velocidad; Repreentación gráfica de deplazamiento, velocidad y aceleración; Aceleración

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE DAVID CUEVA ERAZO daidcuea.5@hotail.co ANTHONY ENCALADA CAIZAPANTA anthony-fer@hotail.co ALPHA LANDÁZURI

Más detalles

Matemática Diseño Industrial Sistemas de medición Ing. Gustavo Moll

Matemática Diseño Industrial Sistemas de medición Ing. Gustavo Moll Matemática Diseño Industrial Sistemas de medición In. Gustavo Moll Geometría La eometría es la parte de la matemática que estudia las propiedades de las fiuras y de los cuerpos, sin importar su posición,

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

BALANCE MACROSCOPICO DE ENERGIA MECANICA

BALANCE MACROSCOPICO DE ENERGIA MECANICA BALANCE MACROCOPICO DE ENERGIA MECANICA -Existen numerosas aplicaciones de interés práctico donde resulta más importante ealuar magnitudes inculadas con la energía del sistema (por ejemplo la potencia

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

Una tubería es un conjunto de tubos y accesorios unidos mediante juntas para formar una conducción cerrada.

Una tubería es un conjunto de tubos y accesorios unidos mediante juntas para formar una conducción cerrada. ema 4. Conducciones forzadas. Materiales de tuberías 1. Definición y conceptos previos 2. uberías de policloruro de vinilo (VC) 3. uberías de polietileno (E) 4. uberías de fibrocemento 5. uberías de fundición

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Juntas de acoplamiento tipo DRESSER Código JD T. 38

Juntas de acoplamiento tipo DRESSER Código JD T. 38 HOJA DE DATOS Juntas de acoplamiento tipo DRESSER Código JD T. 38 Las Juntas de Acoplamiento tipo DRESSER son piezas para unir caños sin necesidad de bridas, roscas o soldaduras. Son reutilizables y pueden

Más detalles

LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS NEWTONIANOS Y NO-NEWTONIANOS

LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS NEWTONIANOS Y NO-NEWTONIANOS Fenómenos de Transporte.Licenciatura en Ciencia Tecnología de Alimentos Licenciatura en Ciencia Tecnología Ambiental Licenciatura en Biotecnología Biología Molecular LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

1.7. DINÁMICA DEL SÓLIDO RÍGIDO

1.7. DINÁMICA DEL SÓLIDO RÍGIDO 17 DINÁMICA DE SÓIDO RÍGIDO Problema 1 Un cilindro de maa 9 Kg y radio r = 8, cm lleva una cuerda enrollada en u uperficie de la que cuelga un peo de 5 Kg El cilindro gira perfectamente obre u eje que

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 2 Pérdidas de carga localizadas

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 2 Pérdidas de carga localizadas UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES Capítulo Pérdidas de carga localizadas SECCIÓN : PERDIDAS DE CARGA LOCALIZADAS EN CAMBIOS DE DIRECCIÓN. CURAS CODOS Y ALULAS. PERDIDAS DE CARGA LOCALIZADAS

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2

CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2. Ejemplo 2 CÍRCULOS CIRCUNFERENCIA Y ÁREA 9.1.1 y 9.1.2 ÁREA DE UN CÍRCULO En clase, los estudiantes han hecho exploraciones con círculos y objetos circulares para descubrir la relación entre la circunferencia, diámetro

Más detalles

Fuente de Alimentación de Tensión

Fuente de Alimentación de Tensión 14/05/014 Fuente de Alimentación de Tenión Fuente de alimentación: dipoitivo que convierte la tenión alterna de la red de uminitro (0 ), en una o varia tenione, prácticamente continua, que alimentan a

Más detalles

TECNOLOGÍA DE FLUIDOS Y CALOR

TECNOLOGÍA DE FLUIDOS Y CALOR Departamento de Física Aplicada I Escuela Universitaria Politécnica TECNOLOGÍA DE FLUIDOS Y CALOR TABLAS DE MECÁNICA DE FLUIDOS A. Propiedades del agua... 1 B. Propiedades de líquidos comunes... 2 C. Propiedades

Más detalles

Tema 2. Redes de dos puertas: Cuadripolos

Tema 2. Redes de dos puertas: Cuadripolos Tema Rede de do puerta: Cuadripolo .. ntroducción En el capítulo anterior emo analiado el funcionamiento interno del circuito; aora, vamo a caracteriar el circuito dede el punto de vita externo, e decir,

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 -

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 - 4.1. Introducción: los conjuntos Espacio ectorial R y R.... - - 4.. Espacio ectorial.... - - 4.. Vectores libres del espacio tridimensional.... - - 4.4. Producto escalar... - 4-4.5. Producto ectorial....

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA

UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA DEPARTAMENTO DE TECNOLOGÍA DE LA CONSTRUCCIÓN Construcción 30 Prof. Alejandro Villasmil UNIDAD INTRODUCTORIA Introducción

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Notas del curso de Introducción a los métodos cuantitativos

Notas del curso de Introducción a los métodos cuantitativos Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima. MF. T5.- Golpe de Ariete y Cavitación

Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima. MF. T5.- Golpe de Ariete y Cavitación Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima MF. T5.- Golpe de Ariete y Caitación Objetios: Se exponen en este tema los fenómenos transitorios que por sobrepresión o depresión

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Redes de abastecimiento Publicas y Privadas Biblioteca Atrium de las Instalaciones: Agua. Volumen 3. ed. Oceano/centrum

Redes de abastecimiento Publicas y Privadas Biblioteca Atrium de las Instalaciones: Agua. Volumen 3. ed. Oceano/centrum Redes de abastecimiento Publicas y Privadas Biblioteca Atrium de las Instalaciones: Agua. Volumen 3. ed. Oceano/centrum CONCEPTOS BÁSICOS DE HIDRÁULICA Entre las generalidades teóricas de la hidráulica

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

1 / s' + 1 / s = 1 / f, A = y' / y = - s' / s

1 / s' + 1 / s = 1 / f, A = y' / y = - s' / s TEMA: ÓPTICA. C-J-0 Un objeto luminoo e encuentra delante de un epejo cóncavo. Efectuar la contrucción geométrica de la imagen, indicando u naturaleza, i el objeto etá ituado a una ditancia igual, en valor

Más detalles

Reemplazando la salida C(s) en función de R(s) obtenemos, la expresión para el cálculo del error actuante:

Reemplazando la salida C(s) en función de R(s) obtenemos, la expresión para el cálculo del error actuante: Cátedra: Sitema de Control Reemplaando la alida C( en función de R( obtenemo, la expreión para el cálculo del error actuante: Ea( = R ( + GH ( ( Ete error actuante, podría coniderare como el que e obtendría

Más detalles

[A]0 / mol dm -3 [B]0 / mol dm -3 v0/ mol dm -3 s

[A]0 / mol dm -3 [B]0 / mol dm -3 v0/ mol dm -3 s Repueta Serie (Cinética Química) Profeor: Jorge Peón Peralta. La reacción A + B C + D e etudió experimentalmente obteniéndoe lo iguiente dato. [A]0 / mol dm - [B]0 / mol dm - v0/ mol dm - - 0.0 0.0.4 0-6

Más detalles

Curvas de isoeficiencia. Líneas NPSH R. Cabezal de la bomba para diferentes diámetros de impulsor. Líneas de

Curvas de isoeficiencia. Líneas NPSH R. Cabezal de la bomba para diferentes diámetros de impulsor. Líneas de Ejercicio resuelto. Bombas centrifugas Se necesita bombear 40 m 3 de agua a 220 F y 2,246 Psig en 3 horas, del depósito A al B, donde la altura desde la superficie del agua hasta la línea central de la

Más detalles

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva.

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva. Como ya abe, una lente e un medio tranparente a la luz que etá limitado por do uperficie, al meno una de ella curva. La lente e pueden claificar egún Groor orma Radio de curvatura de la uperficie Gruea

Más detalles

Ejercicio de Física de 2BAT, M.A.S. 2007

Ejercicio de Física de 2BAT, M.A.S. 2007 Ejercicio de Fíica de BA, M.A.S. 7 P.- Una partícula lleva el movimiento dado por la expreión: x en t P.- a) Calcula lo parámetro: Amplitud, periodo, frecuencia, pulación y fae inicial. Comparamo la ecuación

Más detalles

FILTROS ACTIVOS CAPÍTULO 3

FILTROS ACTIVOS CAPÍTULO 3 FILTOS TIOS PÍTULO ealización ctiva en Matlab. Filtro ctivo. Lo filtro activo también tienen en u configuracione elemento paivo como capacitore, reitencia y elemento activo como el mplificador Operacional,

Más detalles

TIPOS DE REACCIONES QUIMICAS

TIPOS DE REACCIONES QUIMICAS Liceo Polivalente Juan Antonio Ríos Quinta Normal Unidad temática: Disoluciones Químicas. GUÍA DE APRENDIZAJE Nº 6 2º MEDIO SOLUCIONES 2ª parte Objetivo General:Conocer conceptos de las disoluciones en

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Fluidos: RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Materiales que fluyen, que no tienen forma propia, materiales que se comportan de manera diferente de los sólidos ya que estos tienen forma y volumen definido.

Más detalles

Fundamentos de Hidrodinámica

Fundamentos de Hidrodinámica Fundamentos de Hidrodinámica Biofísica del Sistema Cardiovascular Matías Puello Chamorro http://matiaspuello.wordpress.com/ 20 de enero de 2015 Índice 1. Introducción 3 2. Dinámica de Fluidos 4 2.1. Definición

Más detalles

TEMA 6 DESPEGUE Y ATERRIZAJE. 6.1 Despegue

TEMA 6 DESPEGUE Y ATERRIZAJE. 6.1 Despegue TEMA 6 DESPEGUE Y ATERRIZAJE En este tema se analizan las maniobras de despeue y aterrizaje para aviones con tren triciclo, que son los habituales hoy en día. Se supone que el aire está en calma, ya que

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.).

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.). SIMBOLOGÍA El número que figura entre paréntesis al final de la definición de un símbolo se refiere al número de artículo de este Reglamento donde el símbolo es definido o utilizado por primera vez. A

Más detalles

Las pérdidas de carga de cada una de las secciones se suman: Categoría Datos Incógnita 1 Q, D, e, v h L 2 D, h L, e, v Q 3 Q, h L, e, v D

Las pérdidas de carga de cada una de las secciones se suman: Categoría Datos Incógnita 1 Q, D, e, v h L 2 D, h L, e, v Q 3 Q, h L, e, v D Tema 7 FUJO EN SISTEMAS E TUBERÍAS Introducción El estudio del flujo en sistemas de tuberías es una de las aplicaciones más comunes de la mecánica de fluidos, esto ya que en la mayoría de las actividades

Más detalles

FÍSICA 2-1 er control de la 2ª evaluación Propiedades de las Ondas. 27 de Enero de 2010

FÍSICA 2-1 er control de la 2ª evaluación Propiedades de las Ondas. 27 de Enero de 2010 FÍSICA - er control de la ª evaluación Propiedade de la Onda. 7 de Enero de 00 CUESTIONES ( punto):.- Define qué e una onda etacionaria y cómo e produce. Cuál e la diferencia má detacada entre la onda

Más detalles