Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008"

Transcripción

1 Número Reynold Laboratorio de Operacione Unitaria Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumno: Arlette Mayela Canut Noval Francico Joé Guerra Millán Bruno Guzmán Piazza legend Adelwart Struck Garza Aeor: Mtra. Alondra Torre Reumen El número de Reynold e quizá uno de lo número adimenionale má utilizado. La importancia radica en que no habla del régimen con que fluye un fluido, lo que e fundamental para el etudio del mimo. Si bien la operación unitaria etudiada no reulta particularmente atractiva, el etudio del número de Reynold y con ello la forma en que fluye un fluido on umamente importante tanto a nivel experimental, como a nivel indutrial. A lo largo de eta práctica e etudia el número de Reynold, aí como lo efecto de la velocidad en el régimen de flujo. Lo reultado obtenido no olamente on atifactorio, ino que denotan una hábil metodología experimental.

2 Índice 1. Objetivo 3 2. Introducción 3 3. Marco Teórico 5 4. Equipo 5 5. Trabajo Prelaboratorio 6 6. Procedimiento Experimental 7 7. Dato Experimentale y Reultado 7 8. Análii 8 9. Concluione 9 A. Canut, F. J. Guerra, B. Guzmán, A. Struck 2

3 1. Objetivo Relacionar la velocidad y la propiedade fíica de un fluido, aí como la geometría del ducto por el que fluye con lo divero patrone de flujo. 2. Introducción Cuando un líquido fluye en un tubo y u velocidad e baja, fluye en línea paralela a lo largo del eje del tubo; a ete régimen e le conoce como flujo laminar. Conforme aumenta la velocidad y e alcanza la llamada velocidad crítica, el flujo e dipera hata que adquiere un movimiento de torbellino en el que e forman corriente cruzada y remolino; a ete régimen e le conoce como flujo turbulento (ver la Figura 2.1). El pao de régimen laminar a turbulento no e inmediato, ino que exite un comportamiento intermedio indefinido que e conoce como régimen de tranición. Figura 2.1: Régimene de flujo. Si e inyecta una corriente muy fina de algún líquido colorido en una tubería tranparente que contiene otro fluido incoloro, e pueden obervar lo divero comportamiento del líquido conforme varía la velocidad (véae la Figura 2.2). Cuando el fluido e encuentra dentro del régimen laminar (velocidade baja), el colorante aparece como una línea perfectamente definida (Figura 2.1), cuando e encuentra dentro de la zona de tranición (velocidade media), el colorante e va diperando a lo largo de la tubería (Figura 2.2) y cuando e encuentra en el régimen turbulento (velocidade alta) el colorante e difunde a travé de toda la corriente (Figura 2.3). La curva típica de la ditribución de velocidade a travé de tubería e muetran en la Figura 2.3. Para el flujo laminar, la curva de velocidad en relación con la ditancia de la parede e una parábola y la velocidad promedio e exactamente la mitad de la velocidad máxima. Para el flujo turbulento la curva de ditribución de velocidade e má plana (tipo pitón) y el mayor cambio de velocidade ocurre A. Canut, F. J. Guerra, B. Guzmán, A. Struck 3

4 Figura 2.2: Comportamiento del líquido a diferente velocidade. Figura 2.3: Ditribucione típica de velocidad. A. Canut, F. J. Guerra, B. Guzmán, A. Struck 4

5 en la zona má cercana a la pared. 3. Marco Teórico Lo diferente regímene de flujo y la aignación de valore numérico de cada uno fueron reportado por primera vez por Oborne Reynold en Reynold obervó que el tipo de flujo adquirido por un líquido que fluye dentro de una tubería depende de la velocidad del líquido, el diámetro de la tubería y de alguna propiedade fíica del fluido. Aí, el número de Reynold e un número adimenional que relaciona la propiedade fíica del fluido, u velocidad y la geometría del ducto por el que fluye y etá dado por: donde: Re = Número de Reynold D = Diámetro del ducto [L v = Velocidad promedio del líquido [ L T ρ = Denidad del líquido [ M L 3 µ = Vicoidad del líquido [ M L t Re = D v ρ µ (3.1) Cuando el ducto e una tubería, D e el diámetro interno de la tubería. Cuando no e trata de un ducto circular, e emplea el diámetro equivalente (D e ) definido como: D e = 4 Área Tranveral de Flujo Perímetro Mojado (3.2) Generalmente cuando el número de Reynold (Ecuación 3.1) e encuentra por debajo de 2100 e abe que el flujo e laminar, el intervalo entre 2100 y 4000 e conidera como flujo de tranición y para valore mayore de 4000 e conidera como flujo turbulento. Ete grupo adimenional e uno de lo parámetro má utilizado en lo divero campo de la Ingeniería Química en lo que e preentan fluido en movimiento. 4. Equipo El equipo utilizado e muetra en la Figura 4.1. Conite de un tubo de vidrio de 1 in de diámetro, iluminado en u parte uperior por una lámpara fluorecente, por el cual fluye agua regulada por medio de la válvula A. El colorante (violeta de genciana en olución) e mantiene en un recipiente y e inyecta en la corriente de agua mediante un tubo metálico inertado en A. Canut, F. J. Guerra, B. Guzmán, A. Struck 5

6 el tubo de vidrio. La corriente de agua e recoge en un tanque de 21 cm de diámetro, provito de un medidor de nivel de tubo de vidrio. Figura 4.1: Equipo utilizado. 5. Trabajo Prelaboratorio Determinar lo flujo de alimentación de agua neceario para obtener do flujo laminare, do de tranición y do turbulento. Eto e, cuál debe er la velocidad de llenado del tanque de decarga para cada tipo de flujo? Tabla 5.1: Velocidade de llenado del tanque para diferente Reynold. Régimen Re [ v[ tubo m v tanque [ m Laminar Tranición Turbulento Lo valore obtenido en el trabajo prelaboratorio e muetran en la Tabla 5.1 y fueron calculado coniderando que A tanque v tanque = A tubo v tubo. A. Canut, F. J. Guerra, B. Guzmán, A. Struck 6

7 6. Procedimiento Experimental Por medio de la válvula A regula lo mejor poible cada uno de lo flujo que obtuvite en el trabajo de prelaboratorio, y comprueba i realmente el régimen obervado e el que eperaba. Regula al meno ei flujo diferente de manera que oberve al meno do de cada tipo de régimen y obtén lo dato neceario para determinar la velocidad del flujo en cada cao. 7. Dato Experimentale y Reultado Para la realización de ete experimento evarió ligeramente el procedimiento experimental. En nuetro cao e fijó un tiempo de 30 egundo para cada corrida y e abrió la llave de flujo en una velocidad deconocida. Ete procedimiento e realizó aproximando flujo en la zona laminar, de tranición y turbulenta. Una vez fijado ete flujo e midió la altura de llenado del tanque, con lo que e poible calcular la velocidad del líquido en el tubo y el número de Reynold. De eta forma e verificará que el flujo fijado eté dentro del régimen deeado. Lo valore obtenido e muetran en la Tabla 7.1. Lo parámetro utilizado e muetran en la Tabla 7.2. Tabla 7.1: Dato Experimentale. Corrida Régimen Teórico Tiempo Altura [ [m Laminar Tranición Turbulento Tabla 7.2: Parámetro utilizado. Parámetro Valor Unidade kg C m kg C m 3 D tanque m D tubo m A. Canut, F. J. Guerra, B. Guzmán, A. Struck 7

8 La velocidade mínima y máxima del fluido en el tubo de vidrio para cada régimen de flujo e muetran en la Tabla 7.3. Tabla 7.3: Valore de velovidad mínima y máxma para cada régimen. Régimen Re [ v[ tubo m v tanque [ m Laminar Tranición Turbulento Con bae en lo reultado de la Tabla 7.4, utilizando la ecuación (3.1) y coniderando que A tanque v tanque = A tubo v tubo e obtienen lo reultado motrado en la Tabla 7.4. Tabla 7.4: Reultado obtenido. Corrida v tanque [ v tubo Re Régimen Experimental m [ m [ Laminar Laminar Laminar Tranición Tranición Turbulento Turbulento Turbulento 8. Análii Como e oberva en la Tabla 7.4, lo valore de Reynold calculado para cada flujo, coinciden con el régimen eperado. Si e analizan la corrida 3 y 5, comparándola con lo dato de la Tabla 7.3, e puede obervar que con el flujo fijado e obtuvieron valore de Reynold cai de frontera. Eto habla de una gran preciión al momento de fijar el flujo en el tubo, pue cabe recordar que eto e realizó con bae en la obervación de la violeta de genciana dentro del tubo. A. Canut, F. J. Guerra, B. Guzmán, A. Struck 8

9 9. Concluione Una vez analizado lo reultado e poible afirmar que on atifactorio, pueto que en todo lo cao, el régimen de flujo obtenido experimentalmente coincide con el eperado. Incluo en un par de ocaione fue poible obtener valore cercano a la frontera. Cabe recordar que durante la experimentación e fijó un flujo al azar, que debía etar dentro del régimen deeado. Lo reultado obtenido coinciden a la perfección con la obervacione realizada durante la práctica, donde una delgada línea de violeta de genciana en el tubo denotaba un flujo laminar, mientra que vórtice de violeta de genciana indicaban un régimen turbulento. Como era de eperare, al aumentar la velocidad de flujo e paa de un régimen laminar a uno turbulento, y com conecuencia aumenta el número de Reynold y e oberva la formación de vórtice. Si bien la operación unitaria etudiada no e particularmente atractiva, la comprenión de lo efecto de flujo en el régimen de flujo e umamente importante. El número de Reynold e quizá el número adimenional má utilizado en cálculo de ingeiería y u comprenión adecuada reulta fundamental. Lo objetivo fueron atifecho, pue no ólo e obtuvieron reultado adecuado, ino que e comprendió adecuadamente la relación de la velocidad con el régimen de flujo y lo efecto en el número de Reynold. A. Canut, F. J. Guerra, B. Guzmán, A. Struck 9

Caída de Presión en Tubos de Diferente Diámetro

Caída de Presión en Tubos de Diferente Diámetro Caída de Presión en Tubos de Diferente Diámetro Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumnos: Arlette Mayela Canut Noval arlettecanut@hotmail.com

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

VARIABLE ALEATORIA UNIFORME

VARIABLE ALEATORIA UNIFORME VARIABLE ALEATORIA UNIFORME DEFINICIÓN Se dice que una variable X tiene una ditribución uniforme en el intervalo [a;b] i la fdp de X e: 1 i a x b f(x)= b-a 0 en otro cao Demotrar que la FDA etá dada por

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

Fracción de petróleo Tubería Q min = m / C. = 2m

Fracción de petróleo Tubería Q min = m / C. = 2m Ejercicio para fluido incopreible: Un edidor de orificio e intala en una conducción con el fin de edir la velocidad de flujo de una fracción de petróleo de.6 API que e introduce en una unidad de craking.

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

atorio de Operaciones Unitarias I

atorio de Operaciones Unitarias I Labora atorio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio de

Más detalles

Práctica 5: Control de Calidad

Práctica 5: Control de Calidad Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable).

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Diapositiva 1. Tema 9: Convección forzada CONVECCIÓN FORZADA. JM.Corberán, R. Royo (upv) 1

Diapositiva 1. Tema 9: Convección forzada CONVECCIÓN FORZADA. JM.Corberán, R. Royo (upv) 1 iapoitiva 1 CONVECCIÓN FORZAA JM.Corberán, R. Royo (upv 1 iapoitiva 2 ÍNICE Flujo externo Flujo interno incompreible placa compreible tubo único circulare normal a tubo hace no circulare laminar turbulento

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Fíica General Proyecto PMME - Curo 008 Intituto de Fíica Facultad de Ingeniería UdelaR TITULO Dinámica de la partícula AUTORES Aniella Bertellotti y Gimena Ortiz. ITRODUCCIÓ En nuetro proyecto utilizamo

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

MANUAL DE LABORATORIO DE FENOMENOS DE TRANSPORTE PRÁCTICA. NÚMERO DE REYNODLS CONTENIDO

MANUAL DE LABORATORIO DE FENOMENOS DE TRANSPORTE PRÁCTICA. NÚMERO DE REYNODLS CONTENIDO CONTENIDO I. OBJETIVOS. II. SÍNTESIS DE LA TEORÍA. III. EQUIPO Y ACCESORIOS UTILIZADOS. IV. DIAGRAMA DE FLUJO. V. PROCEDIMIENTO DE OPERACIÓN. VI. TABLA DE DATOS EXPERIMENTALES. VII. SECUENCIA DE CÁLCULOS.

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

El Tratamiento de Fenómenos Físicos para Aprender Matemáticas

El Tratamiento de Fenómenos Físicos para Aprender Matemáticas El Tratamiento de Fenómeno Fíico para Aprender Matemática Pericle Ramírez y Gildardo Corté CETi No 116, Univeridad Autónoma de Guerrero México pericle_r@hotmail.com, gildardo_59@hotmail.com Socioepitemología

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS EFECTO DE LA TEMERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS Jeú Alberto Cortez Hernández (1), Francico Javier Ortega Herrera () Alfono Lozano Luna (3)

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Resolución de problemas de equilibrio

Resolución de problemas de equilibrio Reolución de problema de equilibrio Conideramo olamente fuerza actuando en un plano La condicione de equilibrio on: (1) F = 0, F = 0 τ = i 0 j. 1 Ditribución de peo de un auto Nian 40SX 53% de u peo obre

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES NRGÍA (I) CONCPTOS UNDAMNTALS IS La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido general),

Más detalles

7.2. FUNCIONAMIENTO DE UNA INSTALACIÓN DE BOMBEO ELEMENTAL

7.2. FUNCIONAMIENTO DE UNA INSTALACIÓN DE BOMBEO ELEMENTAL 7. FUCIOAMIETO DE OMAS ROTODIÁMICAS 87 7. FUCIOAMIETO DE OMAS ROTODIÁMICAS 7.. ITRODUCCIÓ Dada la organización de lo tema que conforman ete libro, hata ete punto e han etudiado la morfología y la caracterítica

Más detalles

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física Herramienta Matemática Computacionale aplicada en la eneñanza de la Fíica Zambrano, Juan C. 1 Sanabria Irma Z. 2 1 jzambra@unet.edu.ve (Principal), 2 irmaa66@hotmail.com Decanato de Invetigación. Univeridad

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

G= llevar gafas, H= relevancia en Habilidades D=relevancia en Destrezas C=relevancia en Capacidades 0, 4 = 0,08 + 0,03 + PG ( / D) 0, 3

G= llevar gafas, H= relevancia en Habilidades D=relevancia en Destrezas C=relevancia en Capacidades 0, 4 = 0,08 + 0,03 + PG ( / D) 0, 3 Examen probabilidad 009-0 reuelto Etadítica Empreariale Junio 00 P Apellido.... Nombre grupo...- Como todo el mundo abe, la nueva pedagogía otiene que para etar bien formado en competencia hay que tener

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II 22.

UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II 22. . Reolver la iguiente ecuacione. UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II Raúl Córdoba. 4 = +6. 0,(+)+, =,., 0,7 = 0,4( ) + 4. = 4 7. 8 = + 6. ( ) = ( )(9+4) 7. ( 7)(+)

Más detalles

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido.

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Tipo de regimenes y número de Reynolds. Cuando un fluido fluye alrededor de

Más detalles

Universidad Iberoamericana

Universidad Iberoamericana Universidad Iberoamericana Ingeniería Química Laboratorio de Operaciones Unitarias Reporte Post-Laboratorio Práctica 2: Tubos Aletados Arlette Canut Noval Francisco José Guerra Millán Bruno Guzmán Piaza

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

Aforador Parshall

Aforador Parshall aforador Parhall de cuo uo e tiene maor número de referencia calibracione má precia. El aforador Khafagi e en general má difícil de contruir el rango de gato que puede medir má retringido. 6.3.. Aforador

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

1. PRESENTACIÓN ESTUDIO SOBRE LA SITUACIÓN DE LAS PERSONAS EN SITUACIÓN DE EXCLUSIÓN RESIDENCIAL GRAVE EN LA CAPV

1. PRESENTACIÓN ESTUDIO SOBRE LA SITUACIÓN DE LAS PERSONAS EN SITUACIÓN DE EXCLUSIÓN RESIDENCIAL GRAVE EN LA CAPV III ESTUDIO SOBRE LA SITUACIÓN DE LAS PERSONAS EN SITUACIÓN DE EXCLUSIÓN RESIDENCIAL GRAVE EN LA CAPV 1. PRESENTACIÓN Ete documento recoge lo primero reultado del recuento nocturno de perona localizada

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL Problema 1 Para construir una bomba grande que debe suministrar 2 m 3

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

1. Definiciones. 1.1 Rendimiento. Evaluación del Rendimiento de Algoritmos Paralelos

1. Definiciones. 1.1 Rendimiento. Evaluación del Rendimiento de Algoritmos Paralelos Para poder evaluar el deempeño de un itema de computación y aí poder compararlo repecto a otro neceitamo definir y medir u rendimiento. Pero, Qué queremo decir con rendimiento?, En bae a qué parámetro

Más detalles

capítulo 10 expectativas, contratos laborales y oferta agregada de corto PlaZo

capítulo 10 expectativas, contratos laborales y oferta agregada de corto PlaZo Capítulo 1 EXECTATIVAS, CONTRATOS LABORALES OFERTA AGREGA DE CORTO LAZO 1. Comente uponiendo que a corto plazo lo precio etán fijo: a) Cuál e la diferencia entre la determinación del ingreo en el corto

Más detalles

Capítulo 8. Flujo de fluidos a régimen transitorio.

Capítulo 8. Flujo de fluidos a régimen transitorio. Capítulo 8 Flujo de fluidos a régimen transitorio. Flujo de fluidos a régimen transitorio. En flujo de fluidos se puede encontrar el régimen transitorio fenómeno de la descarga de tanques. cuando se presenta

Más detalles

PRÁCTICA 1: MEDIDORES DE FLUJO

PRÁCTICA 1: MEDIDORES DE FLUJO 1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO

Más detalles

NORMAL SUPERIOR LA HACIENDA

NORMAL SUPERIOR LA HACIENDA NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 10 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. Impulo y Cantidad de movimiento Eta expreión (llamada también ímpetu

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Deshidrogenación de Metanol a Formiato de Metilo. Diseño preliminar de un reactor de membrana.

Deshidrogenación de Metanol a Formiato de Metilo. Diseño preliminar de un reactor de membrana. Dehidrogenación de Metanol a Formiato de Metilo. Dieño preliminar de un reactor de membrana. Molina, Mathia E. a, Bachiller, Alicia a, Ardione, Daniel E. a a Facultad de Ingeniería y Ciencia Agropecuaria,

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

Número de Reynolds (N Re ) M. En C. José Antonio González Moreno 4 E 2 2 de Marzo del 2015

Número de Reynolds (N Re ) M. En C. José Antonio González Moreno 4 E 2 2 de Marzo del 2015 Número de Reynolds (N Re ) M. En C. José Antonio González Moreno 4 E 2 2 de Marzo del 2015 Introducción: En esta presentación se estudiará el número de Reynolds, su significado y las variantes que existen

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta CAPITULO 4 FLUIDIZACIÓN AL VACÍO 4.1 FLUIDIZACIÓN AL VACÍO La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta definición al tema de esta tesis se podría decir que se refiere

Más detalles

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación:

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación: Guía de Problema GUIA DE PRBLEMA. El crecimiento de. cereviae obre glucoa en condicione anaeróbica puede er decripta por la iguiente ecuación: C6 6 + β N 0.59 C +.C + 0.06 5.74 N 0. 0.45 ( biomaa) + 0.4

Más detalles

CARGA Y DESCARGA DE UN CONDENSADOR

CARGA Y DESCARGA DE UN CONDENSADOR Laboratorio de Fíica de Proceo Biológico AGA Y DESAGA DE UN ONDENSADO Fecha: 3/2/2006. Objetivo de la práctica Etudio de la carga y la decarga de un condenador; medida de u capacidad 2. Material Fuente

Más detalles

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES Hata ahora la erie etadítica etudiada etaban aociada a variable etadítica unidimenionale, e decir e etudiaba un olo carácter de la población.

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

Curvas de Bombas. Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008. México D.F., 16 de abril de 2008

Curvas de Bombas. Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008. México D.F., 16 de abril de 2008 Curvas de Bombas Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008 México D.F., 16 de abril de 2008 Alumnos: Arlette Mayela Canut Noval arlettecanut@hotmail.com Francisco José Guerra Millán

Más detalles

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA I.M. González and E. Vile Ecuela Superior de Ingeniero, Univeridad de Navarra, P. Manuel de Lardizábal, 8 San Sebatián, Epaña. E-mail:

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2 PROLEM Nº1. El mecanimo de la figura e compone de un diferencial que tranmite el movimiento a un tren de engranaje epicicloidal mediante un tornillo in fin. El brazo de ete tren de engranaje e el elabón

Más detalles

Encuesta de Remuneraciones del Sector Industrial Diciembre 2004

Encuesta de Remuneraciones del Sector Industrial Diciembre 2004 Encueta de Remuneracione del Sector Indutrial Diciembre 2004 Departamento de Etudio SOFOFA Índice del Contenido I. Antecedente Generale....3 II. Principale Reultado...4 A. Ingreo Promedio...4 B. El Ingreo

Más detalles

COMPORTAMIENTO Y EXPERIENCIAS EN CUBA EN LA GESTION DE LOS SUCESOS RADIOLÓGICOS OCURRIDOS EN EL PERÍODO

COMPORTAMIENTO Y EXPERIENCIAS EN CUBA EN LA GESTION DE LOS SUCESOS RADIOLÓGICOS OCURRIDOS EN EL PERÍODO COMPORTAMIENTO Y EXPERIENCIAS EN CUBA EN LA GESTION DE LOS SUCESOS RADIOLÓGICOS OCURRIDOS EN EL PERÍODO 1995-1999 López Forteza Y.; Quevedo García J. R., Díaz Guerra P. I. Duménigo González C., de la Fuente

Más detalles

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Autora: Violeta Molina Natera Pontificia Univeridad Javeriana, Cali, Colombia RESUMEN Eta ponencia muetra lo reultado de encueta

Más detalles

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe.

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe. Caracterización de la oferta turítica de la Reerva de la Biofera de Monfragüe. Elaborado en febrero de 2013 por el Departamento de Análii Territorial El ector turítico e configura como una de la actividade

Más detalles

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES República bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Escuela de Ingeniería Química Laboratorio de Operaciones Unitarias I PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

Fuente de Alimentación de Tensión

Fuente de Alimentación de Tensión 14/05/014 Fuente de Alimentación de Tenión Fuente de alimentación: dipoitivo que convierte la tenión alterna de la red de uminitro (0 ), en una o varia tenione, prácticamente continua, que alimentan a

Más detalles

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos Capítulo 3: Algoritmo Uado por el Generador de Autómata Finito Determinítico 3.1 Introducción En ete capítulo e preentan lo algoritmo uado por el generador de autómata finito determinítico que irve como

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN PROGRAMAS DE POSGRADO DE INGENIERÍA MECÁNICA REPORTE DEL PROYECTO: VALIDACIÓN

Más detalles

Revista Ocupación Humana. Guía para Autores

Revista Ocupación Humana. Guía para Autores Revita Ocupación Humana Guía para Autore La Revita Ocupación Humana e el principal órgano de divulgación científica del Colegio Colombiano de Terapia Ocupacional. E una publicación emetral, orientada a

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

Determinación de la producción de una nueva gama de productos

Determinación de la producción de una nueva gama de productos itulo del trabajo... Determinación de la producción de una nueva gama de producto Mocholí Arce Manuel (manuel.mocholi@uv.e Dpto. Matemática para la Economía y la Emprea Navarro Miquel, Valentín ( valentin.navarro@uv.e)

Más detalles

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro ínea de Epera: Teoría de Cola Curo Método Cuantitativo Prof. ic. Gabriel eandro a cola a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles