Práctica 5: Control de Calidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 5: Control de Calidad"

Transcripción

1 Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable). Interpretar correctamente la información contenida en dicho gráfico. Etimar correctamente lo parámetro del proceo µ y σ, utilizando la muetra recogida. 1. Introducción al control etadítico de la calidad En control de calidad e ditinguen entre do tipo de fuente de variación en un proceo: la caua fortuita y la caua aignable. La caua fortuita de variación on debida a mucha pequeña influencia inherente al proceo de fabricación. La caua aignable pueden er debida, por ejemplo, a un ajute incorrecto de la máquina, errore del operario o defecto en la materia prima, entre otra. La variabilidad producida por eta caua aignable hace que el funcionamiento del proceo e conidere inaceptable. Un gráfico de control contituye un mecanimo para detectar ituacione donde la caua aignable pueden etar afectando de manera advera a la calidad del producto. Un proceo puede monitorizare midiendo alguno valore (en el cao de control por variable e monitorizan la media y la deviación típica o el rango de la variable X de interé) obre muetra de ee proceo tomada a intervalo de tiempo regulare. A eta muetra e le llama ubgrupo racionale. Control etadítico e la ituación en la que ólo exiten caua fortuita de variación, e decir, la ditribución de lo valore que e monitorizan e predecible y etable a lo largo del tiempo. Un gráfico de control conta de tre línea horizontale: la línea central y lo límite inferior y uperior de control. El cálculo de eta línea e baa en la ditribución de probabilidade del valor monitorizado. Ademá de la línea, obre el gráfico e repreentan con punto (generalmente unido con una recta) lo valore monitorizado Iolina Alberto Moralejo 73

2 obtenido en cada uno de lo ubgrupo racionale. Si eto punto caen dentro de lo límite de control inferior y uperior y no e detecta ningún patrón no aleatorio en el gráfico, e coniderará que el proceo etá bajo control etadítico. Un gráfico de control erá eficiente i da muy poca eñale de fuera de control cuando el proceo etá bajo control, pero muetra un punto fuera de lo límite de control tan pronto como el proceo e ale de control. Lo gráfico de control e utilizan ampliamente en la indutria como técnica de diagnótico, para uperviar proceo de producción e identificar variacione y circuntancia anormale: cuando un gráfico indica una ituación de fuera de control, e puede iniciar una invetigación para identificar caua y tomar medida correctiva. La notación que vamo a utilizar e la iguiente: Tamaño del ubgrupo racional Número de ubgrupo racionale Número total de obervacione Media del ubgrupo racional i-éimo Media de la media Deviación típica del ubgrupo racional i-éimo Media de la deviacione típica Rango del ubgrupo racional i-éimo Media del rango xi i= verificando que x = 1, Ri i= R = 1 y i i= = 1. n n x i x i R R i Si tra la realización y el análii de lo gráfico de control e concluye que el proceo etá bajo control etadítico, lo parámetro del proceo, µ y σ, e pueden etimar utilizando la información de lo dato. La etimacione on la iguiente: para la media del proceo, µˆ = x ; y para la deviación típica, ˆ σ = o ˆ σ = c 2 R d 2, dependiendo de i e ha utilizado el gráfico de la deviación típica o del rango. Lo valore de la contante c 2 y d 2 dependen del tamaño del ubgrupo racional y u valore e encuentran tabulado en la Tabla 4. Si lo gráfico no muetran control etadítico, lo ubgrupo racionale que produzcan obervacione fuera de lo límite de control habrá que eliminarlo del etudio y Iolina Alberto Moralejo 74

3 recalcular lo gráfico de control con lo ubgrupo retante hata que lo gráfico muetren control. 2. Contrucción del gráfico del rango Para el cálculo de la línea central y lo límite de control inferior y uperior del gráfico de control del rango e utilizan la expreione que aparecen en la Tabla 1. Tabla 1: Expreione para la línea central y límite de control para el gráfico del rango Línea central Límite inferior de control (LIC) Límite uperior de control (LSC) R D 3 R D 4 R La contante D 3 y D 4 dependen del tamaño del ubgrupo racional, n, y u valore aparecen en la Tabla 4. Para u contrucción deberemo eguir lo iguiente pao: 1. En primer lugar, calcular, para cada uno de lo ubgrupo racionale, la obervacione mínima (con la función etadítica MIN) y máxima (con la función MAX). 2. A continuación, haciendo la reta, obtendremo el rango. 3. Una vez obtenido el rango de cada ubgrupo, obtendremo el rango medio, R, utilizando la función etadítica PROMEDIO. 4. Contruiremo la línea central y lo límite de control inferior y uperior utilizando la expreione de la Tabla 1, y lo valore de la contante de la Tabla Finalmente no tenemo má que hacer la repreentación gráfica correpondiente. 3. Contrucción del gráfico de la deviación típica Para el cálculo de la línea central y lo límite de control inferior y uperior del gráfico de control de la deviación típica e utilizan la expreione de la Tabla 2. Tabla 2: Expreione para la línea central y límite de control para el gráfico de la deviación típica Línea central Límite inferior de control (LIC) Límite uperior de control (LSC) B 3 La contante B 3 y B 4 también dependen del tamaño del ubgrupo racional, n, y u valore aparecen en la Tabla 4. B 4 Iolina Alberto Moralejo 75

4 Para u contrucción deberemo eguir lo iguiente pao: 1. En primer lugar, calcular la deviación típica de cada ubgrupo racional utilizando la función etadítica DESVESTP. 2. Utilizando la función etadítica PROMEDIO calcularemo la media de ea deviacione típica,. 3. Contruiremo la línea central y lo límite de control inferior y uperior utilizando la expreione de la Tabla 2, y lo valore de la contante de la Tabla No queda má que hacer la repreentación gráfica. 4. Contrucción del gráfico de la media Dependiendo de i la variabilidad e ha medido con el rango o con la deviación típica, la expreione para el cálculo de la línea central y lo límite inferior y uperior de control del gráfico de la media e encuentran en la Tabla 3. Tabla 3: Expreione para la línea central y límite de control para el gráfico de la media Variabilidad Línea Límite inferior de control Límite uperior de control medida con central (LIC) (LSC) Deviación típica x x A1 x + A1 Rango x A R + A R x 2 x 2 La contante A 1 y A 2 también dependen del tamaño del ubgrupo racional, n, y u valore aparecen en la Tabla 4. Para u contrucción deberemo eguir lo iguiente pao: 1. En primer lugar, calcular la media de cada ubgrupo racional utilizando la función etadítica PROMEDIO. 2. Utilizando la función etadítica PROMEDIO calcularemo la media de la media, x. 3. Contruiremo la línea central y lo límite de control inferior y uperior utilizando la expreione de la Tabla 3, y lo valore de la contante de la tabla Tabla Finalmente no tenemo má que hacer la repreentación gráfica correpondiente. Iolina Alberto Moralejo 76

5 5. Valore de la contante de lo gráfico de control Lo valore de la contante A 1, A 2, c 2, B 3, B 4, d 2, D 3 y D 4 aparecen en la Tabla 4, para tamaño de ubgrupo racional entre 2 y 25. Tabla 4: Valore de la contante en función del tamaño del ubgrupo racional n A 1 A 2 c 2 B 3 B 4 d 2 D 3 D Ejemplo Una vez al día e eligen al azar tre epecimene de aceite para motor de u proceo de producción y cada uno e analiza para determinar u vicoidad. Lo dato del fichero Aceite_motor.xl correponden a un periodo de 25 día. El día en que e recogió la muetra etá ituado en la columna A del fichero y la obervacione medida en la columna B, C y D (ver Figura 1). Iolina Alberto Moralejo 77

6 Figura 1: Dato del fichero Aceite_motor.xl Contruir lo gráfico de control de la media y la deviación típica. Qué concluione e obtienen de la obervación de eto gráfico? En primer lugar, con la funcione PROMEDIO(B2:D2), DESVESTP(B2:D2), MAX(B2:D2) y MIN(B2:D2) calculamo la media, deviación típica, máximo y mínimo de cada ubgrupo racional, que ituaremo en la columna E, F, G y H, repectivamente. A continuación, calcularemo el rango haciendo la operación G2-H2 en la columna I. Una vez ecrita toda eta expreione, etiraremo la fórmula hata la fila número 26, obteniendo lo dato de la Figura 2. No ituaremo entonce en la celda E27, e inertaremo la función etadítica PROMEDIO(E2:E26), obteniendo aí el valor x = Análogamente, en la celda F27 calcularemo el PROMEDIO(F2:F26), obteniendo = 0. 14; y en la celda I27, la función PROMEDIO(I2:I26), obteniendo con ello R = Iolina Alberto Moralejo 78

7 Figura 2: Cálculo de la media, deviación típica y rango de lo ubgrupo racionale Como en ete cao, el tamaño del ubgrupo racional e n=3 (e toman tre epecimene), lo valore de la contante que proporciona la Tabla 4 on: n A 1 A 2 B 3 B 4 D 3 D Debemo, por tanto, efectuar la operacione anteriormente citada para calcular lo valore de lo límite de control para lo gráfico de la media, de la deviación típica y del rango. Lo haremo utilizando la funcione habituale de Excel, pegando la fórmula en la egunda fila y luego etirándola hacia abajo. Lo valore obtenido e pueden ver en la Figura 3. Figura 3: Límite de control para la media, la deviación típica y el rango Iolina Alberto Moralejo 79

8 Con eto valore repreentaremo lo gráfico de control, con la opción del menú INSERTAR>GRÁFICO. Lo gráfico e pueden ver en la Figura 4 y la Figura 5. Gráf ico de cont rol de la media midiendo la di pe r i ón c on l a de v i a c i ón t í pi c a Gráf ico de la deviación t ípica 0,40 11,00 0,35 10,80 10,60 10,40 10,20 Media LCI LCS 0,30 0,25 0,20 0,15 0,10 0,05 Devi aci ón típi ca LCI LCS 10,00 0,00 Día Día Figura 4: Gráfico de control de la media y la deviación típica Gráf ico de cont rol de la media midiendo la diperión con el rango Gráf ico del rango 0,90 11,00 10,80 10,60 10,40 10,20 Media LCI LCS 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 Rango LCI LCS 10,00 0,00 Dia Día Figura 5: Gráfico de control de la media y el rango Obervando lo gráfico de control podemo decir que, dado que ninguna obervación e ale de lo límite y que no e aprecia un comportamiento no aleatorio, el proceo etá bajo control etadítico. Podemo etimar lo parámetro del proceo utilizando lo dato. La etimacione on 0.14 R 0.32 ˆ µ = x = para la media y ˆ σ = = = ó ˆ σ = = = c d para la deviación típica. 2 2 Iolina Alberto Moralejo 80

9 Apellido y nombre: Profeor: Grupo: Ejercicio 1.- En el fichero Reitencia.xl e recogen lo valore de la reitencia al efuerzo de hoja de plático utilizada para tranparencia (la fuerza, en pi, necearia para romper una hoja). Hay =22 muetra de tamaño n=4, obtenida en intante equiditante en el tiempo. (pi= pound/inch 2 = libra/pulgada 2 ). Calcula la media, la deviación típica y el rango de cada muetra. Con lo dato obtenido, completa la tabla iguiente: x R Calcula lo límite de control inferior y uperior y la línea central para lo gráfico de la media, de la deviación típica y del rango. Con lo dato obtenido, completa la tabla iguiente: Gráfico de control para la deviación típica Gráfico de control para el rango Gráfico de control para la media, utilizando la deviación típica Gráfico de control para la media, utilizando el rango Repreenta lo gráfico de control. Qué oberva? Etima lo parámetro del proceo y completa la tabla iguiente: µˆ σˆ con la deviación típica σˆ con el rango Iolina Alberto Moralejo 81

10 Ejercicio 2.- Se han recogido dato del índice de refracción de un cable de fibra óptica tomando ubgrupo racionale de tamaño n=6. Lo dato del fichero Fibra_optica.xl contienen la media y la deviación típica de lo ubgrupo racionale en 24 día. Calcula la media total y la media de la deviacione típica y completa la tabla. x Calcula lo límite de control inferior y uperior y la línea central para lo gráfico de la media y de la deviación típica. Con lo dato obtenido, completa la tabla iguiente: Gráfico de control para la deviación típica Gráfico de control para la media, utilizando la deviación típica Repreenta lo gráfico de control. Hay alguna obervación que quede fuera de lo límite de control?... Cuál?... En qué gráfico? Recalcula lo límite de control eliminando lo ubgrupo racionale que hayan quedado fuera de lo límite y completa la tabla iguiente: Gráfico de control para la deviación típica Gráfico de control para la media, utilizando la deviación típica Repreenta lo gráfico de control. Qué oberva? Etima lo parámetro del proceo y completa la tabla iguiente: µˆ σˆ con la deviación típica σˆ con el rango Iolina Alberto Moralejo 82

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES Hata ahora la erie etadítica etudiada etaban aociada a variable etadítica unidimenionale, e decir e etudiaba un olo carácter de la población.

Más detalles

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales REGRESIÓN CORRELACIÓN Método Etadítico Aplicado a la Auditoría Sociolaborale Francico Álvarez González http://www.uca.e/erv/fag/fct/ francico.alvarez@uca.e DISTRIBUCIONES BIVARIANTES El etudio de la relación

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro ínea de Epera: Teoría de Cola Curo Método Cuantitativo Prof. ic. Gabriel eandro a cola a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad

Más detalles

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA I.M. González and E. Vile Ecuela Superior de Ingeniero, Univeridad de Navarra, P. Manuel de Lardizábal, 8 San Sebatián, Epaña. E-mail:

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008 Número Reynold Laboratorio de Operacione Unitaria Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumno: Arlette Mayela Canut Noval arlettecanut@hotmail.com Francico Joé Guerra Millán fjguerra@prodigy.net.mx

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

TEMA N 4.- TEORÍA DE DECISIONES

TEMA N 4.- TEORÍA DE DECISIONES UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 4.1 Análii de deciione TEMA N 4.- TEORÍA DE DECISIONES Aignatura: Invetigación Operativa I Docente: Ing.

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Ecuela Univeritaria de Ingeniería Técnica grícola de Ciudad Real En el edificio de oficina de tre planta anexo a una indutria de fabricación de puerta, e pretende calcular la armadura de un oporte B ituado

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica Control Estadístico de la Calidad Gráficos de Control Estadistica Básica Control de Calidad Calidad significa idoneidad de uso, Es la interacción de la calidad: Del diseño Nivel de desempeño, de confiabilidad

Más detalles

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos Capítulo 3: Algoritmo Uado por el Generador de Autómata Finito Determinítico 3.1 Introducción En ete capítulo e preentan lo algoritmo uado por el generador de autómata finito determinítico que irve como

Más detalles

CARGA Y DESCARGA DE UN CONDENSADOR

CARGA Y DESCARGA DE UN CONDENSADOR Laboratorio de Fíica de Proceo Biológico AGA Y DESAGA DE UN ONDENSADO Fecha: 3/2/2006. Objetivo de la práctica Etudio de la carga y la decarga de un condenador; medida de u capacidad 2. Material Fuente

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

EL PROCESO DE MEJORA CONTINUA. Satisfacer plenamente los Requisitos de nuestros Clientes y Consumidores.

EL PROCESO DE MEJORA CONTINUA. Satisfacer plenamente los Requisitos de nuestros Clientes y Consumidores. EL PROCESO DE MEJORA CONTINUA OBJETIVOS Satifacer plenamente lo Requiito de nuetro Cliente y Conumidore. 1 EL PROCESO DE MEJORA CONTINUA ELEMENTOS CLAVES La calidad e la percibida por el cliente. Todo

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil FORMULARIO Dato: x 1, x 2,..., x N } Media: x = N i=1 x i N Rango intercuartílico: Diferencia entre el tercer y primer cuartil Varianza: 2 = N i=1 (x i x) 2 = N i=1 x2 i N x2 Deviación típica: = N i=1

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8.

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8. C.- Una plataforma gira alrededor de un eje vertical a razón de una vuelta por egundo. Colocamo obre ella un cuerpo cuyo coeficiente etático de rozamiento e 0,4. a) Calcular la ditancia máxima al eje de

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sitema y Señale Señale en Tiempo Dicreto Teorema de Muetreo Autor: Dr. Juan Carlo Gómez Señale en Tiempo Continuo: etán definida en un intervalo continuo de tiempo. Señale en tiempo dicreto:

Más detalles

MOVIMIENTO PARABÓLICO = =

MOVIMIENTO PARABÓLICO = = MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe.

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe. Caracterización de la oferta turítica de la Reerva de la Biofera de Monfragüe. Elaborado en febrero de 2013 por el Departamento de Análii Territorial El ector turítico e configura como una de la actividade

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

LOS ERRORES EN QUÍMICA ANALÍTICA

LOS ERRORES EN QUÍMICA ANALÍTICA LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948

Más detalles

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Autora: Violeta Molina Natera Pontificia Univeridad Javeriana, Cali, Colombia RESUMEN Eta ponencia muetra lo reultado de encueta

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 Boletín 08-14 VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 El propóito de ete boletín e brindar información obre la cantidad de cao de violencia regitrado en lo centro educativo de Educación Tradicional,

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

TEMA 3: Control Estadístico de la Calidad

TEMA 3: Control Estadístico de la Calidad TEMA 3: Control Estadístico de la Calidad 1. Introducción al control de la calidad. 2. Métodos de mejora de la calidad 3. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R 4. Interpretación

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

I Congreso de Automatización y Mantenimiento Industrial 23, 24 y 25 de junio 2014, Palacio de las Convenciones de La Habana

I Congreso de Automatización y Mantenimiento Industrial 23, 24 y 25 de junio 2014, Palacio de las Convenciones de La Habana I Congreo de Automatización y Mantenimiento Indutrial 23, 24 y 25 de junio 2014, Palacio de la Convencione de La Habana CONTROL DE LA TEMPERATURA DE UN INTERCAMBIADOR DE CALOR EN LA EMPRESA LABORATORIOS

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física Herramienta Matemática Computacionale aplicada en la eneñanza de la Fíica Zambrano, Juan C. 1 Sanabria Irma Z. 2 1 jzambra@unet.edu.ve (Principal), 2 irmaa66@hotmail.com Decanato de Invetigación. Univeridad

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

Escuela de Ingenieros School of Engineering

Escuela de Ingenieros School of Engineering Ecuela de Ingeniero Aignatura / Gaia ERMODINÁMICA 2º EORÍA 1 (10 punto) Curo / Kurtoa IEMPO: 45 minuto. Lea la 10 cuetione y ecriba dentro de la cailla a la derecha de cada cuetión V i conidera que la

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailé. Aturia La e una parte de la Fíica que etudia la accione que e ejercen obre lo cuerpo y la manera en que eta accione influyen obre el moimiento de lo mimo. or qué un cuerpo

Más detalles

LOS GRÁFICOS DE CONTROL

LOS GRÁFICOS DE CONTROL CAPÍTULO IX LOS GRÁFICOS DE CONTROL 9.1 INTRODUCCIÓN En cualquier proceso de generación de productos o servicios, sin importar su buen diseño y/o mantenimiento cuidadoso, siempre existirá cierto grado

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

EJERCICIOS DE DISTRIBUCIONES MUESTRALES

EJERCICIOS DE DISTRIBUCIONES MUESTRALES EJERCICIOS DE DISTRIBUCIONES MUESTRALES (º) Sea la media de una muetra aleatoria de tamaño n = 5 extraída de una 5 ditribución de probabilidad con denidad deconocida f(), media = 7 deviación etándar =

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación:

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación: Guía de Problema GUIA DE PRBLEMA. El crecimiento de. cereviae obre glucoa en condicione anaeróbica puede er decripta por la iguiente ecuación: C6 6 + β N 0.59 C +.C + 0.06 5.74 N 0. 0.45 ( biomaa) + 0.4

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo Competencia Indicadore logro Unida Hr Criterio Repreenta patrone numérico y expreione algebraica e intifica el patrón formación y lo aplica en la reolución problema matemático Compren forma lógica e intuitiva

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Intensidad. Intensidad. Máximos

Intensidad. Intensidad. Máximos 4 Propiedade ondulatoria de la partícula En la interferencia luminoa producida por do rendija paralela, aparecen uno máximo de intenidad, eparado por mínimo (raya negra). En la fig.1.18, e muetra la imagen

Más detalles

CÁLCULO DEL SISTEMA DE PUESTA A TIERRA

CÁLCULO DEL SISTEMA DE PUESTA A TIERRA FPP / REV.3 PROYECTO: INGENIERÍA BÁSICA Y TALLE LOCALIZACIÓN Y VÍA ACCESO L POZO TALADRO ESCUELA PROYECTO NO. UNIDAD CÓDIGO L DOCUMENTO PROGRESIVO REVISIÓN HOJA Project No. Unit Document Code Serial No.

Más detalles

NORMAL SUPERIOR LA HACIENDA

NORMAL SUPERIOR LA HACIENDA NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 10 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. Impulo y Cantidad de movimiento Eta expreión (llamada también ímpetu

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: Prueba de Hipótei (Do Muetra) Ete procedimieto prueba hipótei acerca de cualquiera de lo iguiete parámetro:. la diferecia etre la media μ y μ de do ditribucioe ormale.. el radio de la deviació etádar σ

Más detalles