Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010"

Transcripción

1 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010

2 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado o interpretación de cada una de la medida Aplicar la medida de variación en un conjunto de dato Conocer lo diagrama de caja y bigote y u aplicación

3 Medida de Variación o Diperión

4 Medida de Variación Son medida que indican cuánto varía o cuánto e dipera un grupo de dato. Alguna de eta medida on: rango, rango intercuartil, deviación intercuartil, deviación promedio, varianza, deviación etándar y coeficiente de variación. Eta medida miden el grado de diperión, deviación, o variación, que tienen la puntuacione, entre í, o en relación al centro de una ditribución.

5 Medida de Variación Ayudan a determinar cuán homogéneo e un grupo de dato. La puntuacione que etán relativamente junta tienen una medida de variación má pequeña. La puntuacione que etán má dipera tienen una medida de variación má grande. Meno diperión ignifica que el grupo de dato e má homogéneo. Má diperión implica mayor heterogeneidad.

6 Medida de Variación Muetra Valor 1 Valor Valor 3 Valor 4 Valor 5 Muetra A Muetra B Muetra C Lo valore en la muetra C on iguale, por lo tanto, no eite variabilidad entre ello. Al calcular cualquier medida que cuantifique la variabilidad de eta muetra, el reultado ería igual a cero.

7 Medida de Variación Muetra Valor 1 Valor Valor 3 Valor 4 Valor 5 Muetra A Muetra B Muetra C Si e comparan lo valore de la muetra A con lo de la muetra B e puede obervar que en la Muetra A lo valore etán má lejano uno de otro.

8 Medida de Variación Muetra Valor 1 Valor Valor 3 Valor 4 Valor 5 Muetra A Muetra B Muetra C Si e fuee a calcular cualquier medida que cuantifique la variabilidad en cada una de eta muetra, el reultado ería mayor para la muetra A que para la muetra B. En general, mientra mayor e la variabilidad entre lo dato, mayor erá la medida de diperión

9 Medida de Variación o Diperión

10 Dice cuál e la diperión total del grupo de dato Rango El rango e la medida que indica cuánto e dipera un grupo de dato. Se le conoce también, como: alcance, amplitud, recorrido, o campo de valore E la medida má encilla pero meno confiable. Se determina retando el valor mayor meno el valor menor. Rango = (Valor mayor) (Valor menor)

11 Rango Aunque la mayoría de la vece e determina con la fórmula: Rango = (Valor mayor) (Valor menor) Para propóito del libro de Hinkle e utilizará la iguiente fórmula que ajuta la incluión de ambo etremo: Rango =[ (Valor mayor) (Valor menor) ] + 1

12 Rango Si el valor mayor e 5 y el menor e 3, al retar 5 3 e obtiene. 5 3 = indica que hay do unidade de diferencia entre eto valore. Si e uma 1, (5-3) + 1, tenemo el total de valore que hay en ee intervalo de 5 a 3. (5-3) + 1 = + 1 = 3 Hay 3 valore: 5, 4, 3

13 Rango Grupo Valor 1 Valor Valor 3 Valor 4 Valor 5 Valor 6 Valor 7 Grupo Grupo La mediana de ambo grupo e 3, pero lo rango varían. El rango del grupo 1 e 7 ( = 7) El rango del grupo e 1 ( = 1) El grupo 1 e má variado que el grupo.

14 Limitacione del Rango Se afecta por valore etremo. Si el último valor del grupo 1 hubiera ido 64 en vez de 37, el rango e duplacaría. Se afecta por el tamaño de n, o ea, la cantidad de ujeto en la muetra. Lo rango de do grupo que tienen diferente número de ujeto (n) no e pueden comparar.

15 Dice cuál e la diperión de lo valore que etán en el centro Rango Intercuartil Indica cuánto e diperan lo valore que etán en el centro de un grupo de dato. Se conidera el centro como lo valore que e concentran entre el primer y tercer cuartil. El rango intercuartil no e afectado por valore etremo. Se determina uando la iguiente fórmula: Rango Intercuartil= Q 3 Q 1

16 Repreenta el punto medio del rango intercuartil Deviación Intercuartil E la ditancia promedio que eite entre el primer y tercer cuartil. Eta medida no dice, en promedio, cuán amplio o dipero etán lo dato que e concentran en el centro (de Q 3 a Q 1 ). El centro e concentra entre el primer y tercer cuartil. La fórmula para hallarlo e: Q 3 - Q 1

17 Diagrama de Caja y Bigote E una repreentación viual imple pero que brinda gran información obre la diperión de un grupo de dato. Utiliza la mediana y el rango intercuartil (Q 3 Q 1 ) para el análii. Lo dearrolló el prominente etadítico llamado Tuckey. Se puede uar para determinar valore que repreentan valore inuuale llamado outlier que requieren conideración epecial.

18 Diagrama de Caja y Bigote Para trazar el diagrama e neceitan 5 número o valore. Por eo a vece e le conoce como el análii de lo 5 número. Eto 5 valore on: Valor mayor (puntuación máima) Q 3 Mediana Q 1 Valor menor (puntuación mínima)

19 Diagrama de Caja y Bigote Ejemplo: Traza el diagrama de caja y bigote uando lo iguiente valore: Valor mayor = 69 Q 3 = 56.6 Mediana = 49.6 Q 1 = Valor menor =

20 Outlier Son valore inuuale que podrían coniderare etremo y que requieren conideración epecial. Para determinar eto valore e utiliza el rango intercuartil: (Q 3 Q 1 ). El límite uperior razonable de una ditribución etá dado por la fórmula: Límite Superior Razonable (LSR) = Q (Q 3 Q 1 ) El límite inferior razonable de una ditribución etá dado por la fórmula: Límite Inferior Razonable (LIR) = Q (Q 3 Q 1 )

21 Outlier Si un valor dado cae fuera de eto límite razonable, el valor e conidera un etremo y habría que coniderarlo cuando e tomen deciione obre el grupo. Determine i lo valore a continuación on razonable: 68, 75, 3, 1 LIR LSR

22 Repreenta el promedio de la deviacione de todo lo valore repecto a la media Deviación Media E la uma de lo valore aboluto de la deviacione de lo valore repecto a la media aritmética de la muetra. La fórmula para hallarlo e: Deviación media i n 1 i n

23 i i i Totale = 4 = 0 = 0 Deviación Media n i 1 i n i n 1 i n

24 Deviación Media Se puede uar la deviación media para comparar la variación de ditinta ditribucione. La ditribucione con mayor deviación media erán la que tengan la variación mayor. Sin embargo, la utilidad de eta medida e limitada debido a que e ua el valor aboluto como medio para hallarla. Lo análii etadítico má avanzado requieren manejo algebraico má complejo, como la varianza.

25 La varianza no e interpreta por er una unidad cuadrada Varianza E una medida que repreenta una unidad cuadrada. Eta medida promedia lo cuadrado de la deviacione de lo valore repecto a la media aritmética. La varianza toma en conideración cada valor de la muetra. La fórmula para hallar la varianza de una población e: i n Fórmula 1 e deviación etándar de la población e media aritmética de la población

26 Ver cuando e ua cada fórmula Varianza La fórmula para hallar la varianza de una muetra e: Fórmula La fórmula anterior e equivalente también a la iguiente fórmula: Fórmula 3 i i n n 1 1 n i

27 Varianza Se ua la fórmula 1 cuando e va a determinar la varianza de una población. Se ua la fórmula y fórmula 3 cuando e va a determinar la varianza de una muetra. Se ua la fórmula cuando e tiene una muetra pequeña y la media aritmética e un número entero, ya que e torna má compleja y difícil de utilizar cuando hay mucho valore o cuando la media repreenta un valor decimal. En ete cao, e ua mejor la fórmula 3.

28 Varianza Má adelante e preentarán ejemplo de cómo e utilizan eta fórmula. El elevar al cuadrado la deviacione de la puntuacione repecto a la media aritmética, e un método alterno al uo del valor aboluto para eliminar lo igno negativo ante de umar la deviacione. Cuando e utilizan lo cuadrado en vez de lo valore aboluto de la deviacione e facilita el manejo algebraico y e elimina la retricción que tiene la deviación media.

29 i 6 Ejemplo Deviación Media i i Totale = 4 = 0 = 76 = 104 i 8

30 E un promedio que mide cuánto e devían todo lo dato en relación a la media aritmética Deviación Etándar E una medida que repreenta una unidad lineal. Se halla etrayendo la raíz cuadrada de la varianza. La fórmula para hallar la deviación etándar e: ó Para hallar la deviación etándar de una población e ua la última fórmula.

31 Varianza y Deviación Etándar para dato agrupado Cuando lo dato etán agrupado e utiliza la iguiente fórmula: Fórmula 4 n i 1 i f i n 1 i n 1 i n f i

32 Ver la columna que e neceitarían añadir en una tabla de ditribución de frecuencia para poder aplicar la fórmula 4. Varianza y Deviación Etándar para dato agrupado n n f f n i i i n i i i

33 Coeficiente de Variación Repreenta una medida relativa (por ciento) que permite comparar grupo ditinto. Relaciona la deviación etándar con la media aritmética. No dice cuál e el por ciento de variación de un grupo repecto a la media aritmética. La fórmula e: deviación etándar media aritmética

34 Ejemplo para aplicar la fórmula

35 Ejemplo 1: Dato Crudo Halla el rango, varianza y deviación etándar uando fórmula. Rango = 10-6 = i n Segundo de reacción ante de conumir un gramo de droga THC X (egundo) ( ) ( - ) = = = = = = = = = = =

36 Ejemplo : Dato Crudo El mimo ejercicio anterior pero uando la fórmula 3 para calcular. i n n i Segundo de reacción ante de conumir un gramo de droa THC X (egundo)

37 Halla la deviación intercuartil Q 3 = 3(n+1) = 36 = 9 ó 9na poición Q 3 = Q 1 = n+1 = 1 = 3 ó 3era po. Q 1 = 6 Q 3 - Q Ejemplo 3 = 10-6 = Interpreta ete reultado Q 3 - Q DI = 1 Segundo de reacción ante de conumir un gramo de droa THC X (egundo)

38 Halla el coeficiente de variación Coeficiente de Variación = Deviación etándar = Media aritmética Ejemplo = = 0.1=1% 8 Interpreta ete reultado Segundo de reacción ante de conumir un gramo de droa THC X (egundo)

39 Ver qué columna e neceitan, f, f Ejemplo 5: Dato en Clae Halla la varianza y deviación etándar del grupo de dato a continuación (Completar Tabla) Reultado de eamen de etadítica Clae f. f. f

40 Ejemplo 5: Dato en Clae Halla la varianza y deviación etándar del grupo de dato a continuación (Clic para ver proceo) Reultado de eamen de etadítica Clae f. f. f

41 Continuación Ejemplo 5 f ( n 1) ( f) (3755) 14,100,05 91, , ,85 8, n

42 Fin de la Lección

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010

Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010 Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010 Objetivos de Lección 1. Conocer las medidas de posición o localización más comunes y cómo se

Más detalles

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES Hata ahora la erie etadítica etudiada etaban aociada a variable etadítica unidimenionale, e decir e etudiaba un olo carácter de la población.

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Práctica 5: Control de Calidad

Práctica 5: Control de Calidad Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable).

Más detalles

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Medidas de Tendencia Central Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Objetivos de Lección Conocer cuáles son las medidas de tendencia central más comunes y cómo se calculan

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

VARIABLE ALEATORIA UNIFORME

VARIABLE ALEATORIA UNIFORME VARIABLE ALEATORIA UNIFORME DEFINICIÓN Se dice que una variable X tiene una ditribución uniforme en el intervalo [a;b] i la fdp de X e: 1 i a x b f(x)= b-a 0 en otro cao Demotrar que la FDA etá dada por

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 9: Medidas de Posición para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 9: Medidas de Posición para Datos Agrupados por Clases 1 Curso de Estadística Unidad de Medidas Descriptivas Lección 9: Medidas de Posición para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruiz Limardo, EdD 2010 Derechos de Autor 2 Objetivos 1. Calcular

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecanimo: PROYECTO DE TEORIA DE MECANISMOS. Análii cinemático y dinámico de un mecanimo plano articulado con un grado de libertad. 6. Cálculo de la velocidade con el método de lo centro intantáneo

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 1: Medidas de Tendencia Central para Datos Crudos

Curso de Estadística Unidad de Medidas Descriptivas. Lección 1: Medidas de Tendencia Central para Datos Crudos 1 Curso de Estadística Unidad de Medidas Descriptivas Lección 1: Medidas de Tendencia Central para Datos Crudos Creado por: Dra. Noemí L. Ruiz Limardo, EdD 010 Derechos de Autor Objetivos 1. Definir las

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos Capítulo 3: Algoritmo Uado por el Generador de Autómata Finito Determinítico 3.1 Introducción En ete capítulo e preentan lo algoritmo uado por el generador de autómata finito determinítico que irve como

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 8: Medidas de Posición para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 8: Medidas de Posición para Datos Agrupados por Valor Simple 1 Curso de Estadística Unidad de Medidas Descriptivas Lección 8: Medidas de Posición para Datos Agrupados por Valor Simple Creado por: Dra. Noemí L. Ruiz Limardo, EdD 2010 Derechos de Autor 2 Objetivos

Más detalles

M edidas de dispersión P rof. S. V élez

M edidas de dispersión P rof. S. V élez M edidas de dispersión P rof. S. V élez Introducción Las medidas de tendencia central permiten describir una distribución por medio de sus valores típicos. Sin embargo estas medidas son sólo parte de la

Más detalles

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k 1. Estadística Definición: La estadística es un ciencia inductiva que permite inferir características cualitativas y cuantitativas de un conjunto mediante los datos contenidos en un subconjunto del mismo.

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES NRGÍA (I) CONCPTOS UNDAMNTALS IS La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido general),

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

DESCRIPCIÓN DE DATOS. Medidas Numéricas

DESCRIPCIÓN DE DATOS. Medidas Numéricas DESCRIPCIÓN DE DATOS Medidas Numéricas MEDIDAS DE TENDENCIA CENTRAL O POSICIÓN MEDIA ARITMÉTICA O PROMEDIO Media poblacional Cualquier característica medible de una población recibe el nombre de parámetro

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2 Etructura de la Materia Grupo 1, Semetre 013- Prof. Iidoro García Cruz EERCICIOS 1. a) Predecir el numero de ubcapa que hay en la cuarta capa, para n4. b) Epecifique la deignación de cada una de ea ubcapa.

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales REGRESIÓN CORRELACIÓN Método Etadítico Aplicado a la Auditoría Sociolaborale Francico Álvarez González http://www.uca.e/erv/fag/fct/ francico.alvarez@uca.e DISTRIBUCIONES BIVARIANTES El etudio de la relación

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos de Autor Reservados

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos de Autor Reservados Medidas de Tendencia Central Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos de Autor Reservados Objetivos de Lección Conocer cuáles son las medidas de tendencia central y cómo se calculan o se determinan

Más detalles

MOVIMIENTO PARABÓLICO = =

MOVIMIENTO PARABÓLICO = = MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data

Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data (parte 2) Medidas de dispersión 3.1-1 Medidas de dispersión La variación entre los valores de un conjunto de datos se conoce como dispersión

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

BLOQUES BÁSICOS ACTIVOS

BLOQUES BÁSICOS ACTIVOS Análii y Síntei de Circuito APENDICE Fig.4.6 Schauman (a) (b) Figura A.: Ilutración de la imulación de (a) un inductor a tierra y (b) un inductor flotante mediante circuito C-activo. A. Dieño de funcione

Más detalles

LOS ERRORES EN QUÍMICA ANALÍTICA

LOS ERRORES EN QUÍMICA ANALÍTICA LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

IMADIL /10/2014

IMADIL /10/2014 TEMA 3: Características estadísticas fundamentales (Segunda parte: Dispersión y forma) Ignacio Martín y José Luis Padilla IMADIL 2014-2015 2 POSICIÓN DISPERSIÓN ESTADÍSTICOS SIMETRÍA APUNTAMIENTO 3. ESTADÍSTICOS

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

MATEMÁTICAS 3ºESO 10 de diciembre de Nombre:

MATEMÁTICAS 3ºESO 10 de diciembre de Nombre: MATEMÁTICAS ºESO de diciembre de Nombre. Una clae de leche da lo / de u peo en nata, y la nata lo / de u peo en mantequilla. Qué fracción de peo de leche repreenta el peo de mantequilla? Qué cantidad de

Más detalles

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe.

Caracterización de la oferta turística de la Reserva de la Biosfera de Monfragüe. Caracterización de la oferta turítica de la Reerva de la Biofera de Monfragüe. Elaborado en febrero de 2013 por el Departamento de Análii Territorial El ector turítico e configura como una de la actividade

Más detalles

TEMA 3 MEDIDAS DE DISPERSIÓN Y VARIABILIDAD

TEMA 3 MEDIDAS DE DISPERSIÓN Y VARIABILIDAD TEMA 3 MEDIDAS DE DISPERSIÓN Y VARIABILIDAD 1 TEMA 3 MEDIDAS DE DISPERSIÓN Y VARIABILIDAD 3. MEDIDAS DE DISPERSIÓN O VARIABILLIDAD Son medidas que informan sobre la variabilidad que existe en un conjunto

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

CEFE CEFE CEFE CEFE CEFE CEFE

CEFE CEFE CEFE CEFE CEFE CEFE BUSQUEDA DE IDEAS DE NEGOCIOS A: La hitoria Ete ejercicio imula una tarea de búqueda de información en 3 intitucione diferente, preparando a lo participante para la dificultade que encontrarán en el campo

Más detalles

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado.

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado. Objetivos / Criterios de evaluación TEMA 14 ESTADÍSTICA O.15.1 Conocer el significado y saber calcular los parámetros de centralización y dispersión O.15.2 Interpretar y utilizar los parámetros de dispersión.

Más detalles

Resolución de problemas de equilibrio

Resolución de problemas de equilibrio Reolución de problema de equilibrio Conideramo olamente fuerza actuando en un plano La condicione de equilibrio on: (1) F = 0, F = 0 τ = i 0 j. 1 Ditribución de peo de un auto Nian 40SX 53% de u peo obre

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 7: Medidas de Posición para Datos Crudos

Curso de Estadística Unidad de Medidas Descriptivas. Lección 7: Medidas de Posición para Datos Crudos 1 Curso de Estadística Unidad de Medidas Descriptivas Lección 7: Medidas de Posición para s Crudos Creado por: Dra. Noemí L. Ruiz Limardo, EdD 010 Derechos de Autor Objetivos 1. Definir las medidas de

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS EFECTO DE LA TEMERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS Jeú Alberto Cortez Hernández (1), Francico Javier Ortega Herrera () Alfono Lozano Luna (3)

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Universidad Técnica de Babahoyo ESTADÍSTICA DESCRIPTIVA MEDIDAS DE POSICIÓN Y DE TENDENCIA CENTRAL OBJETIVO Analizar y Describir las Características de una Muestra a través de sus estadísticos ó estadígrafos

Más detalles

01) Tiempo y Distancia. 0103) Distancia

01) Tiempo y Distancia. 0103) Distancia Página 1 01) Tiempo y Ditancia 0103) Ditancia Dearrollado por el Profeor Rodrigo Vergara Roja Página 2 A) Ditancia Aociamo la idea de ditancia a do ituacione epecífica Cuando queremo aber qué tan grande

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

CAPÍTULO 2 RESPUESTA EN FRECUENCIA

CAPÍTULO 2 RESPUESTA EN FRECUENCIA CAPÍTULO RESPUESTA EN FRECUENCIA.1 GENERALIDADES Introducción Para el circuito de la figura.1, e encontrarán la funcione circuitale de admitancia de entrada y de ganancia de voltaje, la cuale e definen

Más detalles

Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010

Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010 Regresión Lineal Dra. Noemí L. Ruiz Limardo 008 Derechos Reservados, Rev 010 Objetivos de la Lección Conocer el significado de la regresión lineal Determinar la línea de regresión cuando ha correlación

Más detalles