1. Breves Apuntes de la Transformada de Laplace

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Breves Apuntes de la Transformada de Laplace"

Transcripción

1 Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan a la clae preenciale. Tranformada Directa de Laplace La técnica de la tranformada de Laplace e utiliza para la reolución de ecuacione diferenciale lineale de coeficiente contante, tranformando eta en ecuacione algebraica lineale. La tranformada de Laplace de una función f ( t) e define como L f () t = F() = f () t e t dt, = σ jω 0 (.) paando del dominio temporal t al dominio complejo, iendo F ( ) llamada tranformada de Laplace de f ( t), formando el par f () t F() (.) Ejemplo: f ()= t f ()= t e at t F () = e dt=, > 0 0 at t ( a) t F () = e e dt= e dt= 0 0 ( a), > a La definición de la tranformada hace necearia que la integral converja, por lo tanto e ha de cumplir que lim f ( t) e t t = 0 (.)

2 Propiedade de la Tranformada de Laplace Ingeniería de Sitema Se exponen un conjunto de propiedade de la tranformada que harán má fácil u cálculo. a) Linealidad b) Deplazamiento Laf() t a f() t = af() af() (.4) t L f ( t T) u( t T) = e F( ) (.5) c) Amortiguación d) Derivación at Le f() t = F ( a) (.6) En el cao má general L f '( t) = F( ) f ( 0 ) (.7) n) n n n n ) L f () t = F() f ( ) f '( ) f 0 0 ( 0) (.8) Eta propiedad e muy útil para la reolución de ecuacione diferenciale. e) Integración L t F () f () t dt = 0 f () t dt (.9) f) Multiplicación por potencia de t n n n) Lt { f( t)} = ( ) F ( ) (.0)

3 Ingeniería de Sitema Se incluye una tabla de tranformada de Laplace má frecuente (Tabla.). f () t F () f () t F () ( t ) enbt b ut () t t n n! n e at t n e at a n! ( ) a n Tabla. Tranformada de Laplace má frecuente. b cobt b at e en bt b ( a) b at e co bt a ( a) b ten bt b ( b ) tco bt b ( b ) Si e deea una tabla ma completa, acuda a la bibliografía recomendada [8], o a lo recuro de la Web. La aplicación de la tranformada de Laplace a la ecuacione diferenciale que definen un itema conduce a la expreión en ecuacione algebraica de la tranformada de la alida del itema en función de la tranformada de la entrada al mimo. Ejemplo: con y( 0) = ; y'( 0) = 4 y'' 9y' y = u Aplicando la tranformada a ambo miembro Y () y() 0 y'() 0 9( Y () y()) 0 Y () = U() Y ()( 9 ) = U () 4 reultando la ecuación algebraica ( 4) Y () = U() ( ) 9 ( 9 )

4 Tranformada Invera de Laplace Ingeniería de Sitema La tranformada invera de Laplace recupera una función y( t) a partir de u tranformada Y( ), egún t L { Y( )} = Y( ) e d = σ j yt (), t 0, t < 0 σ j 0 (.) El cálculo de la tranformada invera no e uele hacer egún u fórmula de definición, ino aprovechando el conocimiento de la tranformada directa. En la mayoría de la ituacione que e van a encontrar, la Y( ) cuya tranformada invera e quiere hallar e una función racional N() Y () = (.) D () con gra do( N ( )) < grado( D( )), procediéndoe a la diviión directa en cao contrario. El cálculo de la tranformada invera e realizará decomponiendo Y() en fraccione parciale. Para ello e calculan la raíce del denominador D (), D ()= 0 (.) La reolución de eta ecuación llamada ecuación caracterítica da como reultado un conjunto de raíce (cero) p, p,, p n con grado de multiplicidad r, r,, en general compleja. r n La decompoición en fraccione e hará de la forma N() K K K r Y () = = D () ( p ) ( p ) ( p ) K K Kr Kn Knrn r ( p ) ( p ) ( p ) ( p ) ( p ) n r n rn (.4) que El cálculo de lo coeficiente K ij e hará mediante el método de lo reiduo, tal ) para raíce con grado de multiplicidad (imple), K = Y()( p ), k =, l (.5) k k = pk iendo l el número de raíce imple con p = σ jω. k k k

5 Ejemplo: Y () = ( )( 4) Ingeniería de Sitema La ecuación caracterítica poee do raíce imple, Y () = K K ( ) ( 4) con K = ( 4) = = K = ( ) = 4 = 5 Y () = 5 ( ) ( 4) ) para raíce p k con grado de multiplicidad r (repetida) K kr j = ( j )! j d r lim j (( pk) Y( )) (.6) pk d donde j =,, r y k =,, l, con l raíce ditinta Ejemplo: Y () = 4 ( ) La ecuación caracterítica poee una raíz triple Y () = K K K ( ) ( ) ( ) con K = lim( ) Y( ) = lim 4 = 5 K K d = lim (( ) Y( )) = lim 8 = 6 d d = lim (( ) Y( )) = lim 8= 4 d Y () = ( ) ( ) ( )

6 Ingeniería de Sitema Una vez determinada la K ij e procederá a calcular y( t) utilizando la relacione F () f() t expueta en la tabla de la Figura aplicada a la fraccione obtenida de la decompoición, tale que ) para raíce reale imple p pt e u() t (.7) ( p) ) para raíce reale múltiple p n! ( p) n n pt t e u() t (.8) ) para raíce compleja imple p = α jω ω αt e en ωt u( t) ( α) ω (.9) ( α) αt e co ωt u( t) ( α) ω (.0). Función de Tranferencia La función de tranferencia G ( ) de un itema lineal etá definida como la relación entre la tranformada de Laplace de la alida Y( ) y la tranformada de la entrada X ( ), bajo la upoición de condicione iniciale nula, tal que G () = Y () X() cond. inic =0 (.) En forma general, dado un itema definido por la ecuación diferencial n) n ) m) ay a y ay' ay= bu bu' bu (.) n n 0 m 0 tomando tranformada en ambo miembro m) Y () b m b b0 = G () = n) n ) X() a a a a n n 0 (.) La función de tranferencia e una propiedad del itema en í, ya que no depende de la entrada al itema. Se paa pue de repreentar un itema que viene dado por u ecuación diferencial en la forma de función de tranferencia.

7 Ingeniería de Sitema Eta forma de repreentación correponde a la decripción externa, la cual no provee ninguna información de la etructura interna del itema. Má aún, la función de tranferencia de itema ditinto puede er la mima. A la potencia má alta del denominador e le denomina orden de un itema. Ejemplo: y'' 6y' 8y = x' 5 x Y () 6Y () 8YS ( ) = X() 5X() Y) G () = = X() 5, itema de orden. 6 8 Cao de Sitema Multivariable Si un itema tiene varia entrada r(), t r(), t, rm () t y/o varia alida y(), t y(), t, yn () t (ver Figura.9.), exite una función de tranferencia Gij ( ) que relaciona cada alida Yi ( ) con cada entrada Rj ( ), cuando la demá entrada on nula G ij () = Yi () R () j cond. inic= 0; Rk = 0, k j (.4) con i =,, ny j =,, m. r y r m y n Figura Error! No hay texto con el etilo epecificado en el documento..9. Sitema de Múltiple Entrada y Salida. Por tanto, la funcione de alida Y ( ), Y ( ),, Y ( ), erán Y () = G () R () G () R () G () R () m m Y () = G () R () G () R () G () R () (.5) m m Y () = G () R () G () R () G () R () n n n nm m n

8 Ingeniería de Sitema. Diagrama de Bloque e Implementación Lo diagrama de bloque, también llamado caja negra, on una repreentación gráfica de la ecuacione tranformada de Laplace, contituido por un conjunto de ímbolo, a aber: a) Bloque: Indica una relación entre do eñale tranformada X () e Y( ) a travé de la G ( ) que la relaciona egún decrito en Figura 0. Y() = G() X () (.6) X G() Y Figura Error! No hay texto con el etilo epecificado en el documento..0. Bloque. b) Sumador: Produce la uma de la eñale incidente egún Figura. Y () = X() (.7) i X X Y X Figura Error! No hay texto con el etilo epecificado en el documento... Sumador.

9 c) Unión: Ingeniería de Sitema Repreenta un punto de reparto de la eñal incidente egún Figura. X Figura Error! No hay texto con el etilo epecificado en el documento... Unión. Conocido el diagrama de bloque de un itema e pueden efectuar modificacione con objeto de implificar o reducir el diagrama original, hata un punto tal que quede un olo bloque. Exiten un conjunto de implificacione útile, y e decriben la iguiente: a) Bloque en Cacada: e equivalente al producto de bloque (Figura ). G () = G () G () (.8) X G () G () Y Figura Error! No hay texto con el etilo epecificado en el documento... Bloque en Cacada. b) Bloque en Tándem: e equivalente a la uma/reta de bloque (Figura 4.) G () = G() ± G () (.9) X G () Y - G () Figura Error! No hay texto con el etilo epecificado en el documento..4. Bloque en Tándem.

10 Ingeniería de Sitema c) Bloque en Realimentación: La alida del itema e realimenta para que junto con la referencia determine la entrada al itema, egún Figura 5. X G() Y - H() Figura Error! No hay texto con el etilo epecificado en el documento..5. Bloque en Realimentación. La función de tranferencia equivalente e G () GT () = (.0) ± GH () () con igno o - egún ea la realimentación negativa o poitiva repectivamente. d) Unión hacia adelante: egún Figura 6. X G () G () Y Y X G () G () Y /G () Y Figura Error! No hay texto con el etilo epecificado en el documento..6. Unión Hacia Adelante.

11 e) Unión hacia detrá: egún Figura 7. Ingeniería de Sitema X G () G () Y Y X G () G () Y G () Y Figura Error! No hay texto con el etilo epecificado en el documento..7. Unión Hacia Detrá. El procedimiento de reducción de diagrama de bloque de itema de múltiple entrada y alida e imilar al decrito. Para mayor detalle, aita a la clae y conulte la Web. Bibliografía recomendada para ete capítulo: [7][8][9]. Bibliografía de la aignatura: [] Contínuou ytem modelling. F. Cellier. Springer Verlag, 99 [] Dinámica de itema. Aracil-Gordillo. Alianza Univeridad Texto. [] Nonlineal Syten. Vol.. Dynamic and Control. Mohler. Prentice-Hall. [4] Modeling and Simulation of dynamic ytem. Wood. Prentice-Hall [5] Simulation Fundamental. B.S. Bennet. Prentice-Hall, 995. [6] Modelling and Simulation of Dynamic Sytem, R. Wood y K. Lawrence. Prentice Hall, 997. [7] Modelado y Simulación de Sitema, J. Fernandez de Canete y I. García-Moral. Dpto. de Ing. de Sitema y Automática, 996. [8] Ingeniería de Control Moderna. K. Ogata. Prentice Hall, 998. [9] Dinámica de Sitema. J. Fernandez de Cañete y I. García-Moral. Dpto. de Ing. de Sitema y Automática, 997.

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Prof. André Roldán Aranda amroldan ugr.e http : electronica.ugr.e amroldan 5 03 2009 Etudio de la tranformada de Laplace para u uo en el cálculo de la eñale de alida de circuito

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

DIAGRAMAS DE BLOQUES

DIAGRAMAS DE BLOQUES Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511 CI_UII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace 5 Apéndice CI_UIII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace Ejemplo de la Sección.6, propiedade de

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Univeridad Central Del Ete U C E Facultad de Ciencia y Humanidade Ecuela de Pedagogía Mención Ciencia Fíica y Matemática Programa de la aignatura: (MAT351) Álgebra Superior Total de Crédito: 3 Teórico:

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Práctica 7. La transformada de Laplace

Práctica 7. La transformada de Laplace Práctica 7. La tranformada de Laplace En la primera parte de eta práctica e motrará cómo calcular la tranformada de Laplace y la tranformada invera de Laplace de ditinta funcione utilizando Mathematica.

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA Cl. Miguel leta, Tel/ax: 978 83 33 06 www.academia-nipho.e TRABAJO Y NRGÍA La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

CIRCULAR Nº 2 (Aclaratoria)

CIRCULAR Nº 2 (Aclaratoria) Bueno Aire, 8 ero 2016 Referencia: Licitación Pública N 27/15 CIRCULAR Nº 2 (Aclaratoria) A lo efecto una mejor comprenión lo volcado en la epecificacione técnica l Pliego Bae y Condicione Particulare

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

MODELO DE ASIGNACIÓN PRESUPUESTARIA

MODELO DE ASIGNACIÓN PRESUPUESTARIA MODELO DE ASIGNACIÓN PRESUPUESTARIA TEXTO UNIFICADO COMITÉ TÉCNICO Ciudad Autónoma de Bueno Aire, 8 de marzo de 2012 [Texto unificado de lo Acuerdo Plenario referido al Modelo de Aignación Preupuetaria.

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

Universidad de Chile

Universidad de Chile Univeridad de Chile Facultad de Ciencia fíica y Matemática Departamento de Ingeniería Eléctrica SD-20A Seminario de Dieño Guía Teórica N o 2 Circuito Generador de forma de onda (ocilador) Profeore : Javier

Más detalles

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os

Más detalles

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación 27 Congreo Nacional de Etadítica e Invetigación Operativa Lleida, 8 11 de abril de 2003 THE EOQ/ω o + ωt/π o + πt/ρ INVENTORY SYSTEM L.A. San Joé 1, J. Sicilia 2, J.G. Laguna 3 1 Departamento de Matemática

Más detalles

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria 18va OLIMPIADA BOLIVIANA DE FISICA da Etapa (Examen Simultáneo) 6to de Primaria NO ESCRIBA NINGUN DATO PERSONAL EN LAS HOJAS DE EXAMEN SOLO EN EL ESPACIO HABILITADO EN LA PARTE INFERIOR Cada pregunta vale

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

TEMA 8: ECUACIONES EN DIFERENCIAS

TEMA 8: ECUACIONES EN DIFERENCIAS Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 8: ECUACIONES EN DIFERENCIAS 1 CONCEPTOS BASICOS Una ecuación en diferencias es una expresión del tipo: G(n, f(n), f(n + 1),..., f(n + k)) = 0, n Z,

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos XXI Congreo de Ecuacione Diferenciale y Aplicacione XI Congreo de Matemática Aplicada Ciudad Real, 21-25 eptiembre 2009 (pp. 1 8) Etudio de una ecuación del calor emilineal en dominio no-cilíndrico P.

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

1. Transformada de Laplace

1. Transformada de Laplace 1. Tranformada de Laplace Sea f : [, ) R, decimo que f e continua a trozo (continua por tramo) en [, ), i en cualquier intervalo [a, b] [, ) hay a lo má un número finito de punto de dicontinuidade t 1,...,

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Proceamiento Digital de Señal Tema 5: Muetreo y recontrucción Teorema de muetreo: Shannon-Nyquit. Recontrucción Diezmado e Interpolación Cuantización Muetreo El muetreo digital de una eñal analógica trae

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

Distribuciones continuas de carga: Ley de Gauss

Distribuciones continuas de carga: Ley de Gauss : Ley de Gau. Campo eléctrico de ditribucione continua de carga. Flujo del campo eléctrico. Ley de Gau. Aplicacione de la ley de Gau. BIBLIOGRAFÍA: -Tipler. "Fíica". Cap. 22. Reerté. -Serway. "Fíica".

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Métodos, Algoritmos y Herramientas

Métodos, Algoritmos y Herramientas Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas

Más detalles

TRABAJO Y ENERGÍA CONCEPTOS FUNDAMENTALES

TRABAJO Y ENERGÍA CONCEPTOS FUNDAMENTALES TRABAJO Y NRGÍA CONCTOS UNDAMNTALS La energía e una magnitud de difícil definición, pero de gran utilidad. ara er exacto, podríamo decir que má que de energía (en entido general), deberíamo hablar de ditinto

Más detalles

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA.

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. INDICACIONES A PARTIR DEL CURSO ESCOLAR 01-01 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. La preente orientacione parten del análii de lo reultado obtenido en el curo ecolar 01 01, aí como de la

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

División Recursos Materiales y Suministros

División Recursos Materiales y Suministros Diviión Recuro Materiale y Suminitro Departamento de Adquiicione PEDIDO DE PRECIOS Nº 182/2014 FECHA DE APERTURA: 30/12/14 Hora: 14:00 Aunto: Materiale para Red de Dato y Telefonía Solicitud: 28578 INFORMACIÓN

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

Universidad de Navarra

Universidad de Navarra Aignatura / Gaia Curo / Kurtoa ERMODINÁMICA IEMPO: 45 minuto. Utilice la última cara como borrador. EORÍA 1 (20 punto) Lea la 20 cuetione y ecriba dentro de la cailla al pie: V i conidera que la afirmación

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

ROBERTO LUNA AROCAS Doctor enpsicología. Titular de Universidad. Dpto de Dirección de Empresas, Universidad de Valencia

ROBERTO LUNA AROCAS Doctor enpsicología. Titular de Universidad. Dpto de Dirección de Empresas, Universidad de Valencia REDONDO CASTÁN, JUAN CARLOS Doctor en Ciencia Económica y Empreariale. Decano y Titular de Univeridad de Educación Fíica y Deportiva, Univeridad de León. Area de trabajo: entrenamiento deportivo, evaluación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles