Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9"

Transcripción

1 Introducción Sitema de control verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando la eñal de error E(), éta a u vez e modificada de alguna forma por la tranferencia del controlador Gc y finalmente el reultado e la variable de control. El algoritmo matemático que e ejerce obre el error e la llamada acción de control. En lo que igue veremo que forma báica puede preentar la función tranferencia del controlador Gc, y que efecto tiene obre la variable de control. Accione báica de control On off: lo controladore de éte tipo tienen do poicione etable, conmutando entre uno y otro egún el valor de E(). Para evitar que el control conmute en forma decontrolada, la variable de control m() cambiará de valor ólo cuando E() preente valore fuera de un cierto intervalo, de eta manera e define como zona muerta ó brecha diferencial al intervalo dentro del cual el controlador no conmuta. La brecha diferencial permite que el controlador no conmute indicriminadamente ante pequeña variacione de E(), (en general debido a ruido). Lo anterior e puede exprear con un diagrama de un bloque donde la variable on: la de entrada : el error (diferencia entre el valor deeado y el realmente exitente) : la de alida : variable de control in embargo ete tipo de controle no puede tener un tratamiento como bloque de un itema lineal pue el control on off no lo e. En la excurión acendente del error la eñal de control paa a etado alto cuando e > e 1 y en la excurión decendente de e la eñal de control paa a etado bajo cuando e< e o la entonce como dijimo el intervalo [ e o, e 1 ] e denomina brecha diferencial Repreentado en el dominio del tiempo e ve aí: Capítulo II pág. 1

2 Sitema de control verión 2003 Página 2 de 9 Acción Proporcional, en ete tipo de control e etablece una relación proporcional entre m y e : m(t) = k p. e(t) ; tranformando (1) m() = k p. E() k p = ganacia proporcional (contante ajutable!). el controlador proporcional e eencialmente un amplificador con ganacia ajutable, i expreamo lo valore de m y e en %, e tendrá para ditinto valore de k p el iguiente diagrama: Donde BP1, BP2 y BP3 indican la correpondiente banda proporcionale correpondiente a la ganancia k p La banda proporcional e la modificación expreada en porcentaje de variación de entrada al controlador e, requerida para producir un cambio del 100% en la alida m. Digamo entonce que : 100 BP = kp La proporcional e la acción de control lineal ma importante. Como ventaja e pueden mencionar: la intantaneidad de aplicación la facilidad de comprobar lo reultado Como deventaja: la falta de inmunidad al ruido la impoibilidad de corregir alguno errore en el régimen permanente. El aumento de la ganancia proporcional en forma exagerada puede hacer que polo de la tranferencia no modelado que para ganancia baja no influyen, adquieran importancia y tranformen al itema en inetable. Acción Integral en ete control la alida m(t) e proporcional a la integral de la entrada e(t), o ea: t m(t) = ki e(t) dt ; ki = contante ajutable 0 Capítulo II pág. 2

3 Tranformando por Laplace: m() Sitema de control verión 2003 Página 3 de 9 = k I E() aumiendo condicione iniciale nula Nota:vamo a hacer notar que la tranformada de la integral e en realidad; () [ e(t) dt] E t = 0 ± + y que debido a nuetra upoición el egundo término e nulo; de aquí en adelante e coniderarán condicione iniciale nula alvo que expreamente e indique lo contrario. En cualquier control la acción proporcional e la má importante y e uele poner la ditinta contante en función de la ganancia proporcional k p, de eta forma e define a la contante k I como: kp ki = ; = tiempo integral Claro etá que un rápido análii dimenional muetra que 1/T I repreenta a una frecuencia, la que e denomina frecuencia de repoición ó reet, y no e má que la cantidad de vece que e acumula la acción proporcional por la preencia de la acción integral, i el error perite y e cte. 1 = Reet Finalmente: 1 1 E() (2) Derivativo en ete cao la alida m(t) e proporcional a la primera derivada de e(t). m(t) d e(t) = kd, kd = contante ajutable dt Tranformando (y con condicione iniciale nula). m() = kd E() Capítulo II pág. 3

4 Sitema de control verión 2003 Página 4 de 9 Ventaja: La acción derivativa e anticipativa, e decir adelanta la acción de control frente a la aparición de una tendencia de error (derivada), eto tiende a etabilizar el itema pueto que lo retardo en controlar lo tienden a inetabilizar. Deventaja La acción derivativa e prácticamente inaplicable ante la preencia de ruido, ete hace que la variable de control tome valore contrapueto y máximo cuando la pendiente del ruido entra como eñal de error. E neceario entonce filtrar la eñal ruidoa dejando paar olo la frecuencia de eñal que correponden a la mima y no al ruido. Lo filtro pueden er Paa Bajo tienen amplificación en la baja frecuencia y atenúan la alida de la alta frecuencia Paa Alto, ería el cao invero Paa banda, combinando lo do filtro anteriore e puede lograr que olo frecuencia entre una mínima y una máxima paen el filtrado. Exiten filtro analógico y lo hay digitale. Lo primero en general tienen alguna componente integrale. Eléctricamente e componen de rede RC cuando olo e uan elemento paivo. Se uan amplificadore operacionale u otro componente electrónico que permiten realizar lo denominado filtro activo. En filtrado digital hay gran variedad de algoritmo, y en general uan una cierta cantidad de valore previo al intante de definir la variable de control para calcularla. Aquí también conviene exprear la contante k D en término de la ganancia proporcional k p como igue: k = kp T T D D, D = tiempo derivativo ó de adelanto O ea: m() = kp T D E() (3) Como ya e dijo la acción proporcional e la má importante aunque no e utiliza ola; lo algoritmo de control on combinacione de la accione matemáticamente decripta en (1), (2) y (3). En lo que igue analizaremo tre combinacione poible (y que on la má uuale). Control proporcional e integral (PI) Combinando adecuadamente la expreione (1) y (2) (e decir umándola!!), e tiene: E() E() + kp 1 1+ E() Capítulo II pág. 4

5 Sitema de control verión 2003 Página 5 de 9 De aquí la tranferencia del controlador Gc erá: 1 Gc = k 1+ p = m() E() En la expreión de Gc lo parámetro ajutable on k p y T I ; ete último afecta la acción de control integral mientra que el primero afecta a lo do (proporcional e integral!!). Si uponemo que e(t) e una función ecalón unitario (eñal típica de prueba!) podemo ver, en forma cualitativa, como reponde ete control. La tranformada del ecalón unitario e: 1 E () = La alida erá: 1 m() = E() Gc() = Gc() 1 1 m() = kp 1+ Dearrollando eta expreión podría antitranformar y aí obtener la repueta m(t). Afortunadamente para mi no e neceario ya que un diagrama cualitativo erá uficiente, no obtante recomiendo que el lector í realice la antitranformación a modo de ejercicio y vea qué valor toma m(t) cuando t = T I. Control proporcional y derivativo(p,d) Combinando la expreione (1) y (3) e tiene: E() + kp T D ( 1+ TD ) E() E() Capítulo II pág. 5

6 Sitema de control verión 2003 Página 6 de 9 De lo cual la tranferencia del controlador e: Gc = k p ( 1+ TD ) Siendo k p y T D parámetro ajutable. Si uponemo que e(t) e una función rampa unitaria (eñal típica de control!) la repueta de ete tipo de control e la iguiente: Se recomienda a modo de ejercicio, antitranformar m() y aí obtener la repueta m(t). En lo gráfico anteriore e ve claramente que T D (tiempo derivativo) e el lapo en que la acción derivativa e adelanta al efecto de una acción proporcional pura. Por ello e dice que ete tipo de control poee una caracterítica anticipatoria, in embargo aparece una gran deventaja que le e inherente; dado que la repueta m(t) depende de la primer derivada del error, lo ruido en la eñal hacen que e(t) no ea una función uave y por tanto haciendo que m(t) fluctúe coniderablemente, aturando al actuador (receptor de la eñal m(t), ver diagrama de bloque (2) del capítulo I). Ete inconveniente e elimina filtrando la eñal e(t) por ditinto medio, analógico, digitale, cualquier medio fíico que logre ete objetivo. Control proporcional integral derivativo, (P,I,D) Ahora como el lector ya intuirá combinaremo la expreione (1), (2) y (3). E() E() + kp + kp TD E() TD E() de lo cual : Gc = k p T D Capítulo II pág. 6

7 Sitema de control verión 2003 Página 7 de 9 Con k p, T I, T D, contante ajutable. Evidentemente todo lo dicho anteriormente obre lo controle P, I, y D igue valiendo; má adelante haremo alguna conideracione obre lo efecto de la accione integral y derivativo en el comportamiento del itema. Ahora analizaremo la repueta del controlador P,I,D cuando la eñal e(t) e una rampa unitaria (e recomendable antitranformar m() para hallar m(t)!!!). Efecto de la acción de control integral Ante una entrada ecalón el control P preenta un corrimiento en la repueta m(t); claro etá que la diferencia entre la eñal que ingrea al controlador e(t) y la que ale m(t) determina un error, que en ete cao e mantiene en el tiempo, debido a lo cual e lo denomina error etacionario. Recordamo que en la acción de control P, la repueta e proporcional a la entrada e(t), de modo que i éta e etabiliza m(t) también lo hará de manera proporcional. En el control integral, en cambio, la repueta m(t) e proporcional a la integral de e(t), por coniguiente la eñal m(t) no e etabilizará mientra la integral de e(t) no ea nula. Aí el control integral elimina el corrimiento u offet que no puede corregir el control proporcional, en otra palabra elimina el error etacionario. No todo e virtud para ete tipo de control, ya que puede llevar a una repueta ocilatoria (tiende a deetabilizar) lo que no e deeable. Como acotación obérvee que lo factore1/ preente en cualquier tranferencia e lo denomina integradore pue como abemo dividir por en el dominio tranformado implica integrar. Efecto de la acción de control derivativa En ete tipo de control la eñal repueta e proporcional a la derivada primera de e(t), por lo que apena e(t) varíe u valor la derivada de e(t) lo demotrará y con mayor valor cuanto ma violenta ea la variación, confiriéndole al controlador caracterítica de anticipar la acción de control lo que e interpreta como velocidad de reacción. Efectivamente, el control derivativo puede efectuar correccione ante que la magnitud del error e(t) ea ignificativa, ya que actúa en forma proporcional a la velocidad de variación de e(t). Como el lector comprenderá i la derivada de e(t) e nula no hay acción alguna por parte de ete control, lo que implica que no tendrá ningún efecto obre el error etacionario contante, también aumenta la amortiguación obre la ocilacione del itema (tiende a etabilizar) permitiendo uar ganancia k p má elevada. Accione báica uada en Control de Proceo En lo itema de control de proceo que tenían controladore neumático, lo que actualmente etán iendo reemplazado por itema electrónico, e recomiendaba la iguiente epecificación de accione báica de control Sitema a Controlar Accione Báica a Aplicar Capítulo II pág. 7

8 Control de preión de líquido Control de preión de gae Control de Caudal Control de Temperatura Control de Nivel Control de Preión de Vapore Sitema de control verión 2003 Página 8 de 9 P+I P P+I P+I+D P P+I+D Conultar para Dimenionar Placa Orificio ISO R 541 Report ASME Fluid Meter and Their theory and Application Metodo de Ziegler y Nichol La regla para ajutar lazo de control en forma conveniente cuando no e conocen la tranferencia de la planta dearrollada por eto autore e dan a continuación. Exiten otra regla de intonización de lazo derivada o variante de la que decribiremo. Eta regla tienden a limitar el máximo obre - impulo en un 25%. Método de Lazo Abierto Se utiliza para planta de repueta al ecalón de tipo obre amortiguada. Que e pueden también aproximar por un primer orden con un retardo de tranporte que tiene una expreión como la iguiente: Se abre el lazo, i e tiene una etación mono - lazo de control, e pone en manual. Se da ganancia proporcional 1 y e eliminan la accione de control integral y derivativa. En ea condicione e aplica un ecalón a la entrada de la planta. Se obtendrá una repueta tal como la de la figura: En ea condicione e eleccionan la ganancia proporcional, el tiempo integral y el tiempo derivativo egún la tabla abajo indicada. Capítulo II pág. 8

9 Sitema de control verión 2003 Página 9 de 9 Tabla con lo valore recomendado egún ete método Tipo de Controlador Kp Ti T D P T/L 0 P + I 0,9. T/L L/0,3 0 P + I +D 1,2. T/L 2L 0,5L Segundo Método de Ziegler Nichol o Método de lazo cerrado En ete cao el lazo e mantiene realimentado lo que ignifica en una etación de controlador monolazo poner dicha etación en automático. Se ajuta el lazo para que no tenga acción integral (Ti = ) ni acción derivativa ( T D = 0 ) y e incrementa la ganancia proporcional Kp hata que la alida comience a tener una ocilación otenida, i eto no ocurre el método no e aplicable. En la ocilación obtenida e tiene en cuenta el período denominado Período Crítico ( Tcr )y la Ganancia que lo provocó la denominaremo Ganancia Crítica ( Pcr ) Tabla con lo valore recomendado egún ete método Tipo de Controlador Kp Ti T D P 0,5 Kcr 0 P + I 0,45 Kcr 6.Pcr/5 0 P + I +D 0,6 Kcr 0,5 Pcr 0,125 Pcr Eta rama del diagrama e abre al colocar el controlador en manual Eto método tienden a generar una alida con atenuacion 0,25 Capítulo II pág. 9

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control

CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control SISTEMAS DE CONTROL CONTROLADORES Introducción Un controlador es un dispositivo capaz de corregir desviaciones producidas en la variable de salida de un sistema, como consecuencia de perturbaciones internas

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

Circuitos. Circuito Operacional y Circuito Complejo Marzo 2003

Circuitos. Circuito Operacional y Circuito Complejo Marzo 2003 ircuito. ircuito Operacional y ircuito omplejo Marzo 003 POBLEMA.1 El circuito de la Figura etá alimentado por un generador de tenión e(t) y otro de corriente i(t). Según lo valore numérico ue e dan a

Más detalles

Filtros Activos. Filtros Pasivos

Filtros Activos. Filtros Pasivos Filtro Activo Joé Gómez Quiñone Filtro Paivo vi R k vo C n H ( w) r w c Joé Gómez Quiñone Función de Tranferencia Joé Gómez Quiñone Ventaja Filtro Paivo Barato Fácile de Implementar Repueta aproximada

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO

DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO Simpoio de Metrología 200 DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO Jeú Alfredo Dávila, Enrique Martíne López Centro Nacional de Metrología, Diviión de Termometría Km.,5 Carretera

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Tema 2. Redes de dos puertas: Cuadripolos

Tema 2. Redes de dos puertas: Cuadripolos Tema Rede de do puerta: Cuadripolo .. ntroducción En el capítulo anterior emo analiado el funcionamiento interno del circuito; aora, vamo a caracteriar el circuito dede el punto de vita externo, e decir,

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

Conversión Análoga - Digital

Conversión Análoga - Digital Converión Análoga - Digital ELO 313 Proceamiento Digital de Señale con Aplicacione Primer emetre - 2012 Matía Zañartu, Ph.D. Departamento de Electrónica Univeridad Técnica Federico Santa María Converión

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro ínea de Epera: Teoría de Cola Curo Método Cuantitativo Prof. ic. Gabriel eandro a cola a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad

Más detalles

Tema V: BALANCES DE MATERIA

Tema V: BALANCES DE MATERIA Tema V: BLNCES DE MTERI Eta obra etá bajo una licencia Reconocimiento No comercial Compartir bajo la mima licencia 3.0 Internacional de Creative Common. Para ver una copia de eta licencia, viite http://creativecommon.org/licene/by

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA

DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA DISEÑO ECONÓMICO DE CARTAS DE CONTROL X ASUMIENDO DISTRIBUCIÓN GAMMA I.M. González and E. Vile Ecuela Superior de Ingeniero, Univeridad de Navarra, P. Manuel de Lardizábal, 8 San Sebatián, Epaña. E-mail:

Más detalles

Tema VI: Balances de energía. Ingeniería Química. Grado en Ciencia y Tecnología Alimentos. Tema 6: Balances de energía

Tema VI: Balances de energía. Ingeniería Química. Grado en Ciencia y Tecnología Alimentos. Tema 6: Balances de energía Tema VI: Balance de energía Eta obra etá bajo una licencia Reconocimiento No comercial Compartir bajo la mima licencia 3.0 Internacional de Creative Common. Para ver una copia de eta licencia, viite http://creativecommon.org/licene/by

Más detalles

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES

ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL VARIABLES BIDIMENSIONALES Hata ahora la erie etadítica etudiada etaban aociada a variable etadítica unidimenionale, e decir e etudiaba un olo carácter de la población.

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación:

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación: Guía de Problema GUIA DE PRBLEMA. El crecimiento de. cereviae obre glucoa en condicione anaeróbica puede er decripta por la iguiente ecuación: C6 6 + β N 0.59 C +.C + 0.06 5.74 N 0. 0.45 ( biomaa) + 0.4

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Escuela de Ingenieros School of Engineering

Escuela de Ingenieros School of Engineering Ecuela de Ingeniero Aignatura / Gaia ERMODINÁMICA 2º EORÍA 1 (10 punto) Curo / Kurtoa IEMPO: 45 minuto. Lea la 10 cuetione y ecriba dentro de la cailla a la derecha de cada cuetión V i conidera que la

Más detalles

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8.

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8. C.- Una plataforma gira alrededor de un eje vertical a razón de una vuelta por egundo. Colocamo obre ella un cuerpo cuyo coeficiente etático de rozamiento e 0,4. a) Calcular la ditancia máxima al eje de

Más detalles

Práctica 5: Control de Calidad

Práctica 5: Control de Calidad Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable).

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Acciones básicas de control Clasificación de los controles automáticos

Acciones básicas de control Clasificación de los controles automáticos Acciones básicas de control Clasificación de los controles automáticos 1. Control de dos posiciones o de si-no 2. Controles proporcionales (P) 3. Controles proporcionales e integrales (PI) 4. Controles

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

CARGA Y DESCARGA DE UN CONDENSADOR

CARGA Y DESCARGA DE UN CONDENSADOR Laboratorio de Fíica de Proceo Biológico AGA Y DESAGA DE UN ONDENSADO Fecha: 3/2/2006. Objetivo de la práctica Etudio de la carga y la decarga de un condenador; medida de u capacidad 2. Material Fuente

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sitema y Señale Señale en Tiempo Dicreto Teorema de Muetreo Autor: Dr. Juan Carlo Gómez Señale en Tiempo Continuo: etán definida en un intervalo continuo de tiempo. Señale en tiempo dicreto:

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

Universidad de Chile

Universidad de Chile Univeridad de Chile Facultad de Ciencia fíica y Matemática Departamento de Ingeniería Eléctrica SD-20A Seminario de Dieño Guía Teórica N o 2 Circuito Generador de forma de onda (ocilador) Profeore : Javier

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

Sistema de control de purga

Sistema de control de purga Sitema de control de purga BCS3 Sitema de control de purga BCS3 Caldera Sonda de conductividad CP32 (o CP30). La onda de conductividad también puede intalare directamente en la pared de la caldera in un

Más detalles

Cálculo del bollard pull requerido en una maniobra

Cálculo del bollard pull requerido en una maniobra Cálculo del bollard pull requerido en una maniobra a configuración del remolque, el número de remolcadore y u bollard pull on lo determinado uualmente por lo práctico baándoe en u experiencia y varían

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado.

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.2 Representación gráfica del comportamiento de un controlador todo-nada básico. Figura 6.3 Representación

Más detalles

AMPLIFICADORES OPERACIONALES OPERATIONAL AMPLIFIERS (OP-AMP)

AMPLIFICADORES OPERACIONALES OPERATIONAL AMPLIFIERS (OP-AMP) Electrónica Analógica II Parte AMPLIFICADOES OPEACIONALES OPEATIONAL AMPLIFIES (OP-AMP) INTODUCCIÓN El amplificador Operacional e uno de lo dipoitivo electrónico ma verátile y ampliamente uado en aplicacione

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

I Congreso de Automatización y Mantenimiento Industrial 23, 24 y 25 de junio 2014, Palacio de las Convenciones de La Habana

I Congreso de Automatización y Mantenimiento Industrial 23, 24 y 25 de junio 2014, Palacio de las Convenciones de La Habana I Congreo de Automatización y Mantenimiento Indutrial 23, 24 y 25 de junio 2014, Palacio de la Convencione de La Habana CONTROL DE LA TEMPERATURA DE UN INTERCAMBIADOR DE CALOR EN LA EMPRESA LABORATORIOS

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009 APLICACIÓN DEL ÍNDICE CAPACIDAD EVAPORATIVA PARA EVALUAR EL COMPORTAMIENTO DE UN SISTEMA DE SECADO INTEGRADO POR UN COLECTOR SOLAR Y UNA CABINA DE SECADO Pontin, M. I.; Lema, A. I.; Moretto, J. M.; Barral,

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

TEMA N 4.- TEORÍA DE DECISIONES

TEMA N 4.- TEORÍA DE DECISIONES UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 4.1 Análii de deciione TEMA N 4.- TEORÍA DE DECISIONES Aignatura: Invetigación Operativa I Docente: Ing.

Más detalles