SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de Índice 33. Índice de Figuras. Índice de Tablas 34

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34"

Transcripción

1 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla Muetreador ideal y relación entre y Muetreo de Sitema en erie ZOH: dipoitivo de retención de orden cero Dicretiación de Funcione de Tranferencia Dicretiación a la entrada ecalón o equivalencia ZOH Dicretiación por aproximación lineal de = e T o por aproximación dicreta de la integral Dicretiación por igualación de cero y polo Cero en el infinito con = Cero en el infinito con = Bibliografía 49 Índice de Figura 5. Muetreo de x(t) con un tren de impulo T (t) Muetreador ideal Caracterítica de la tranformación = e T. (a) Franja periódica en el Plano (Lo punto P1a,P1b,P1c e tranforman en P1,etc)(b) Círculo unidad en el Plano Muetreador ideal con un prefiltro Retención de Orden Cero Sitema en Lao Abierto Continuo

2 11. Sitema en Lao Abierto Híbrido con un ZOH Etructura de Control de Lao Directo Híbrido Índice de Tabla 4. Método de dicretiación por aproximación lineal de = e T

3 12. Muetreador ideal y relación entre y Definimo un muetreador ideal como un dipoitivo que modula una eñal continua con un tren de impulo (tren de delta de Dirac, Dirac comb en inglé) T (t). La alida del muetrador ideal e una eñal muetreada. x(t) x (t) 0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T t Figura 5: Muetreo de x(t) con un tren de impulo T (t) El tren de impulo e define de la iguiente forma: T (t) = δ(t kt ) (12.1) donde δ(t) e la función delta de Dirac. x(t) x (t) T (t) Figura 6: Muetreador ideal Sea x(t) la entrada al muetreador ideal y x (t) u alida (que e lee como x(t) etrella ) (Ver Figura 5 y 6). Se cumple que x (t) = T (t)x(t) = x(t)δ(t kt ) = x(kt )δ(t kt ) (12.2) Obteniendo la Tranfromada de Laplace L {x (t)} vemo que (Tabla 2 de la Sección 4 de la Parte I[1]) X () = x(kt )e kt (12.3) 35

4 La dicretiación exacta de x(t) e x(kt ), y u tranformada Z {x(kt )} (Tabla 1 de la Sección 4de la Parte I[1]) viene dada por X() = x(kt ) k (12.4) Comparando la expreione 12.3 y 12.4 vemo que la relación entre y cuando e muetrea una eñal continua con un muetreador ideal e = e T (12.5) Por lo tanto X() = X () = 1 (12.6) T Ln() Una caracterítica de la relación entre y e que = e T e periódica, ya que i = σ + jω C entonce = e σt e jωt = e σt e j(ωt +2nπ) (12.7) donde n Z y = σ D + jω D. Eto puede comprobare mediante la relación o fórmula de Euler dada por e jωt = co(ωt ) + j in(ωt ) (12.8) jω jω D j3π/t P 2b P 1b P 3b P 4b P 2a P 1a P 3a P 4a P 2c P 1c P 3c jπ/t 0 jπ/t plano σ 1 P 2 P P 1 P 3 1 plano σ D P 4c j3π/t (a) (b) Figura 7: Caracterítica de la tranformación = e T. (a) Franja periódica en el Plano (Lo punto P1a,P1b,P1c e tranforman en P1,etc)(b) Círculo unidad en el Plano 36

5 Otra caracterítica cuya importancia etá relacionada con la etabilidad de lo itema, e que para valore de σ < 0 e obtienen valore de σ D < 1. E decir que punto perteneciente al emiplano iquierdo del plano complejo e tranforman mediante = e T en punto del interior del círculo unidad del plano complejo. Lo punto del eje imaginario = jω del plano complejo e tranforman en punto de la circunferencia unidad = e jωt, o = 1 del plano complejo como e muetra en la Figura 7(b). La periodicidad de = e T da lugar a franja periódica en el plano complejo cuando e muetrea una eñal continua. Se denomina franja principal al intervalo de ω que e tranforma en punto que recorren una ola ve todo lo punto del plano. Eto ocurre para lo valore de ω iguiente: ω [ π T, π T ] (12.9) Se denominan franja complementaria a la retante como e muetra en la Figura 7(a). Cada punto de la franja complementara también recorre una ola ve todo lo punto del plano, por lo que queda claro que on redundante en la repreentación dicreta, pero no pueden obviare en el proceo de muetreo ya que realmente la frecuencia continua pueden etar en cualquiera de la franja. Ete hecho plantea el problema de olapamiento o de enmacaramiento de frecuencia (aliaing en inglé) cuando e muetrea una eñal continua. La anchura de la franja principal ω depende del periodo de muetreo T, de hecho ω = 2π, por lo que para evitar el fenómeno de olapamiento de T frecuencia, deberá elegire T de tal manera que la franja principal abarque la máxima frecuencia de trabajo del itema continuo. Eta exigencia de que el intervalo de frecuencia de la eñal continua ea de banda limitada e conoce como criterio de Shannon, y la frecuencia máxima en que no e produce olapamiento e denomina frecuencia de Nyquit ω N, ω N = ω 2 (12.10) donde ω = 2π T. Por degracia la mayoría de la eñale continua no on de banda limitada por lo que debe realiare un prefiltrado de eta eñale ante de realiar u muetreo. En la Figura 8 e muetra eta idea. x(t) x(t) x (t) Prefiltro T (t) Figura 8: Muetreador ideal con un prefiltro 37

6 13. Muetreo de Sitema en erie Una caracterítica del muetreo de itema en erie G 1 () y G 2 () que debe tenere en cuenta e que [G 1 ()G 2 ()] G 1()G 2() (13.1) Por comodidad de notación ecribiremo Z {G()} = G () = 1 = G() (13.2) T Ln() Lo que ignifica eta relación e lo iguiente, Z {G()} = Z { L 1 {G()} } = Z {g(t)} = Z {g(kt )} = G() (13.3) Por lo tanto la deigualdad dada por 13.1 implica que Z {G 1 ()G 2 ()} = G 1 ()G 2 () (13.4) Para evitar cometer errore en la operacione con muetreadore emplearemo la notación G 1 ()G 2 () = G 1 G 2 () y Z {G 1 G 2 ()} = G 1 G 2 (). Sin embargo e atiface la iguiente igualdad: Z {G 1 ()G 2()} = G 1 ()G 2 () (13.5) Eto e aí porque (G 1 ()G 2()) = G 1()G 2(). Veamo un ejemplo de la deigualdad Sean la iguiente funcione de tranferencia, G 1 () = 1 (13.6a) G 2 () = 1 (13.6b) + a Teniendo en cuenta el procedimiento 13.3 y utiliando la expreione 7.10 y 7.23 de la Sección 7 de la Parte I [1] e obtienen la Tranformada Z de ella, Z {G 1 ()} = G 1 () = (13.7a) 1 Z {G 2 ()} = G 2 () = e at (13.7b) Decomponiendo el producto en fraccione imple G 1 ()G 2 () = 1 ( 1 a 1 ) + a Calculando ahora u Tranformada Z pueto que e lineal, G 1 G 2 () = 1 ( ) a 1 (1 e at ) e at = a( 1)( e at ) Sin embargo el producto de la relacione 13.7a y 13.7b e G 1 ()G 2 () = 2 ( 1)( e at ) (13.8) (13.9) (13.10) 38

7 14. ZOH: dipoitivo de retención de orden cero Un ZOH (Zero Order Hold) e un dipoitivo cuya entrada e una eñal muetreada y u alida una eñal continua obtenida por extrapolación de un polinomio de orden cero en cada intervalo de muetreo [kt, (k + 1)T ), como e muetra en la Figura 9. ˆx(t) x(kt) T 2T 3T 4T 5T t Figura 9: Retención de Orden Cero Si x(kt ) e la eñal de entrada, la alida ˆx(t) e una combinación de eñale ecalón retardada ˆx(t) = x(kt ) (r 0 (t kt ) r 0 (t (k + 1)T ) (14.1) donde r 0 (t) e la función ecalón unidad. La tranformada de Laplace L {ˆx(t)} e ˆX() = x(kt )( e kt e (k+1)t ) = kt 1 e T x(kt )e (14.2) Eta expreión puede ecribire en la forma ˆX() = 1 e T x(kt )e kt = 1 e T X () (14.3) donde X () repreenta la eñal obtenida con un muetreador ideal. En conecuencia la función de tranferencia del ZOH e G ZOH () = ˆX() X () = 1 e T (14.4) 39

8 La Figura 10 y 11 muetran lo equema de bloque de un itema en lao abierto continuo y u correpondiente híbrido con un ZOH. u(t) G() y(t) Figura 10: Sitema en Lao Abierto Continuo u(t) u (t) û(t) ŷ(t) ŷ (t) ZOH G() T (t) T (t) Figura 11: Sitema en Lao Abierto Híbrido con un ZOH Teniendo en cuenta el procedimiento dado por 13.3 puede comprobare que la función de tranferencia Z {G ZOH ()G()} e { } G() Z {G ZOH ()G()} = (1 1 )Z ya que para cualquier función G () e cumple que (14.5) Z { e T G () } = Z {g (t T )} = Z {g (kt T )} = 1 G () (14.6) 40

9 15. Dicretiación de Funcione de Tranferencia Dada una función de tranferencia continua G() deeamo obtener una función de tranferencia dicreta G D () que atifaga al meno la iguiente do condicione: 1. Que G D () repreente un itema lineal dicreto. 2. Que e atifaga la retricción de igualdad de ganancia a baja frecuencia, e decir que G D () = G() (15.1) =1 =0 En alguna aplicacione puede er conveniente cambiar la retricción de ganancia a baja frecuencia por la de ganancia a alguna otra frecuencia de interé, como el centro de una banda de frecuencia de trabajo o algún punto crítico = y = = e T. Realmente lo que ería deeable e que G D () fuee una dicretiación exacta de G() para cualquier entrada u(t), en el entido de que el itema dicretiado tenga la mima alida y(t) de G() en lo intante de muetreo, y(kt ), cuando la entrada del itema dicreto ea la dicretiación de u(t), e decir u(kt ). Pero e impoible lograr eto alvo que G D () no repreente un itema dicreto lineal. La raón de eto e debida a que la relación = e T no e lineal. Sin embargo í podrá lograre para alguna entrada particular, aunque no para cualquier entrada. Por otro lado obervemo el itema de lao abierto híbrido de la Figura 11. Si el ZOH realiae una recontrucción exacta de la eñal muetreada x (t), e decir i u alida fuee x(t), entonce el itema G() tendría la mima entrada y en conecuencia la mima alida y(t). Por degracia no e poible hacer fíicamente una recontrucción exacta de una eñal muetreada, aunque teóricamente pueda lograre con un filtro pao bajo ideal, que no e caual. El ZOH repreenta una aproximación caual de ete filtro. Por otro lado, el cumplimiento de la do condicione anteriore erá un requiito de dieño neceario, pero normalmente e exigen condicione adicionale. Por ejemplo i el itema continuo e etable o inetable, u equivalente dicreto debería er también etable o inetable. O también ería deeable que i el itema continuo tuviee un comportamiento ocilatorio para una determinada entrada, también lo tuviee u equivalente dicreto. En definitiva, ería deeable que cualquier dicretiación conerve la propiedade cualitativa del itema continuo. También ería deeable etablecer alguna equivalencia en el comportamiento de lo itema de control realimentado continuo y dicretiado. Por lo tanto erá neceario etudiar la dicretiación H D () de la función de tranferencia de lao cerrado continua H(). Sin embargo en la práctica aparece una dificultad adicional, ya que no encontraremo con dieño de itema de control híbrido 41

10 como el de la Figura 12, itema de control en lo que el itema a controlar G() e continuo mientra que el controlador G c () e dicreto aunque la entrada r(k) ea una dicretiación exacta de una eñal continua r(t). r(k) e(k) u(k) u(t) y(t) G c () ZOH G() + y(k) T Figura 12: Etructura de Control de Lao Directo Híbrido En la iguiente ubeccione etudiaremo tre forma de dicretiación que, en general, dan lugar a funcione de tranferencia dicretiada ditinta: 1. Dicretiación exacta a eñale de entrada particulare (15.1). 2. Dicretiación por aproximación lineal de la relación = e T (15.2). 3. Dicretiación por igualación de cero y polo (15.3) Dicretiación a la entrada ecalón o equivalencia ZOH En general no olo la alida y(t) e ŷ(t) de la Figura 10 y 11 on ditinta, ino que también on ditinto lo valore de y(t) y de ŷ(t) en lo intante de muetreo, e decir que y(t) ŷ(t) y (t) ŷ (t) (15.2a) (15.2b) La primera deigualdad e evidente ya que u(t) û(t). Comprobaremo la egunda con un ejemplo. La deigualdade 15.2a y 15.2b pueden ecribire aplicando la Tranformada de Laplace y la Tranformada Z como Y () Ŷ () Y () Ŷ () (15.3a) (15.3b) 42

11 Supongamo que G() = 1 + a u(t) = e bt r 0 (t) (15.4a) (15.4b) donde r 0 (t) e la función ecalón unidad. Por un lado abemo que U() = 1 + b U() = e bt Por otro lado puede comprobare que G()U() = 1 ( 1 b a + a 1 ) + b G() = 1 ( 1 a 1 ) + a (15.5a) (15.5b) (15.6a) (15.6b) De aquí que Z {G()U()} = 1 ( b a { } G() Z = 1 a ( 1 e at e at ) e ) bt (15.7a) (15.7b) que puede implificare a la forma Z {G()U()} = e at e bt b a { } G() Z = 1 e at a ( e at )( e bt ) ( e at )( 1) (15.8a) (15.8b) Por último, teniendo en cuenta 14.5, podemo comprobar que la deigualdad 15.3b e correcta: Y () = Z {G()U()} = e at e bt b a ( e at )( e bt ) { } G() Ŷ () = (1 1 )Z U() = 1 e at a ( e at )( e bt ) (15.9a) (15.9b) Solamente en el cao en que b = 0, e decir cuando la entrada ea un ecalón e dará Y () = Ŷ (). Puede comprobare que eto iempre e aí para cualquier función de tranferencia G() y no olo para la del ejemplo. Por eta raón la función de tranferencia dada por 14.5 puede coniderare una dicretiación exacta G D0 () de G() para una entrada ecalón: 43

12 { } G() G D0 () = Z {G ZOH ()G()} = (1 1 )Z (15.10) Podemo ver en el ejemplo anterior (G() = 1 ) que la dicretiación a + a la entrada ecalón no coincide con la Tranformada Z de G(), G D0 () = 1 e at 1 a e at G() = Z {G()} = e at (15.11a) (15.11b) Podemo comprobar también que para la dicretiación a la entrada ecalón e cumple la retricción de igualdad de ganancia a baja frecuencia dada por 15.1: G( = 0) = G D0 ( = 1) Dicretiación por aproximación lineal de = e T o por aproximación dicreta de la integral La idea de la dicretiación por aproximación lineal de = e T e obtener funcione de tranferencia dicretiada G D () de G() ubtituyendo la variable compleja por una función racional lineal de la variable compleja obtenida como aproximación racional lineal de la igualdad = e T. Veamo tre método en lo que obtendremo la ecuación en diferencia dicretiada de la ecuación diferencial iguiente con la condición inicial [y(0 )]. La función de tranferencia e ẏ(t) = u(t) (15.12) G() = 1 (15.13) La olución de la ecuación diferencial dada por e t y(t) = y(0 ) + u(t)dt 0 (15.14) En la Tabla 4 e reumen eto método. Podemo ver que todo ello tienen en el numerador el factor 1, por lo que G( = 0) = G D ( = 1), e decir que atifacen la retricción de ganancia a baja frecuencia. 44

13 Método Euler = 1 + T = 1 T Euler en atrao = 1 1 T = 1 T Tutin = 2 T 1 1 = T T + 1 Tabla 4: Método de dicretiación por aproximación lineal de = e T 1. Método de Euler. La función exponencial e T puede ecribire como un dearrollo en erie de Taylor alrededor de = 0, e T = 1 + T (T 1 i e T =0 )2 + = i! i i (15.15) i=0 Quedándoe con el término de primer orden en e obtiene el método de Euler e T 1 + T (15.16) = 1 + T (15.17) Por lo tanto dado G() puede calculare G D () ubtiuyendo por la relación 15.17, e imponiendo la retricción de ganacia a baja frecuencia: G D () = G() = 1 (15.18) T La función de tranferencia dicretiada de e G D () = T 1 Y la ecuación en diferencia equivalente e con la condición inicial [y(0)]. (15.19) y(k + 1) y(k) = T u(k) (15.20) 45

14 2. Método de Euler en atrao. La función exponencial e T puede ecribire como e T = 1 e T = 1 1 T (T )2... (15.21) El método de Euler en atrao conite en hacer De aquí que = 1 1 T G D () = G() = 1 T La función de tranferencia dicretiada de e G D () = T 1 Y la ecuación en diferencia equivalente e (15.22) (15.23) (15.24) con la condición inicial [y(0), u(0)]. 3. Método de Tutin o tranformación bilineal. y(k + 1) y(k) = T u(k + 1) (15.25) La función exponencial e T puede ecribire como e T = e T 2 e T = 2 T (15.26) 2 T +... El método de Tutin o de la tranformación bilineal conite en hacer = 2 T 1 1 (15.27) 2 T De aquí que G D () = G() 2 1 = T + 1 La función de tranferencia dicretiada de e G D () = T (15.28) (15.29) 46

15 Y la ecuación en diferencia equivalente e con la condición inicial [y(0), u(0)]. y(k + 1) y(k) = T 2 u(k + 1) + T u(k) (15.30) 2 Como puede vere en el ejemplo, a travé de la olución de la ecuación diferencial 15.12, al reolver la ecuacione en diferencia equivalente e obtendría una aproximación de la integral de la entrada u(t) Dicretiación por igualación de cero y polo La idea de igualación de cero y polo para obtener una dicretiación G D () de una función de tranferencia continua G() e ubtituir cada uno de lo cero c y polo p de G() por cero c D y polo p D en G D () mediante la tranformación = e T : p D = e pt (15.31a) c D = e ct (15.31b) E neceario también tener en cuenta todo lo cero en el infinito de G() cuando el orden relativo e mayor que cero, e decir el cero o cero cuando =. Eto puede hacere incluyendo cero en = 1 o en =. A continuación e explica la raón de cada una de eta poible eleccione. Por último debe imponere la retricción de ganancia a baja frecuencia dada por Supongamo que G() = 1 (15.32) + a entonce obtenemo do poible dicretiacione, egún que e ecoja una u otra forma de igualar el cero en el infinito: G D () = (1 e at )( + 1) 2a( e at ) G D () = 1 e at a( e at ) (c D = 1) (15.33a) (c D = ) (15.33b) Puede obervare que mediante la primera dicretiación obtenida haciendo = 1 en lo cero del infinito iempre e obtiene una función de tranferencia G D () de orden relativo nulo. Sin embargo haciendo = e conerva el orden relativo de G() Cero en el infinito con = 1 Como e comentó en la Sección 12, la relación = e T e periódica (ver relación 12.7) por lo que puede hacere el iguiente raonamiento. 47

16 Mientra que = σ +j e el máximo valor de frecuencia del cao continuo, el máximo valor para el cao dicreto erá ω = π debido a la periodicidad. T Teniendo en cuenta ete hecho puede hacere la igualación de polo en el infinito (2n + 1)π con =, por lo que = e j(2n+1)π = 1, donde n Z. T Cero en el infinito con = Para explicar por qué puede er conveniente tranformar lo cero en el infinito continuo por cero en = analiaremo la do forma de dicretiación del ejemplo anterior dada por 15.33a y15.33b. La ecuación diferencial cuya función de tranferencia viene dada por e ẏ(t) + ay(t) = u(t) (15.34) La ecuacione en diferencia cuya función de tranferencia vienen dada por 15.33a y 15.33b on repectivamente y(k + 1) e at y(k) = 1 e at 2a y(k + 1) e at y(k) = 1 e at a (u(k + 1) + u(k)) u(k) (15.35a) (15.35b) El hecho de que apareca el término de entrada en u(k + 1) en la ecuación 15.35a e problemático ya que exige que el itema tenga una repueta intantánea para poder conocer y(k + 1). En la práctica de lo itema de control digital eto no puede ocurrir, ya que el cálculo o computo de y(k + 1) neceita un tiempo que puede er tan largo como un periodo de muetreo (en realidad e calcula y(k) con la ecuacione en diferencia expreada en la forma programable o en atrao como e explica en la Sección 7[1]). Si ete fuee el cao conviene utiliar eta forma de dicretiación de lo cero en el infinito. Si por el contrario, e upone que el tiempo de cálculo de y(k + 1) e muy pequeño en relación al periodo de muetreo, puede utiliare la dicretiación = 1 de lo cero en el infinito. 48

17 Bibliografía [1] F. Monaterio-Huelin and A. Gutiérre, Apunte de Teoría. Primera Parte. SECO2014-I, [Online]. Available: 49

Procesamiento Digital de Señal

Procesamiento Digital de Señal Proceamiento Digital de Señal Tema 5: Muetreo y recontrucción Teorema de muetreo: Shannon-Nyquit. Recontrucción Diezmado e Interpolación Cuantización Muetreo El muetreo digital de una eñal analógica trae

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad

Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad Vemos que la región estable es el interior del circulo unidad, correspondiente a todo el semiplano izquierdo en s. El eje imaginario

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Ecuela de Ingeniería Electrónica Implementación de filtro digitale en controladore digitale de eñal Tei previa a la obtención del título de Ingeniero

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010. COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Conversión Análoga - Digital

Conversión Análoga - Digital Converión Análoga - Digital ELO 313 Proceamiento Digital de Señale con Aplicacione Primer emetre - 2012 Matía Zañartu, Ph.D. Departamento de Electrónica Univeridad Técnica Federico Santa María Converión

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos XXI Congreo de Ecuacione Diferenciale y Aplicacione XI Congreo de Matemática Aplicada Ciudad Real, 21-25 eptiembre 2009 (pp. 1 8) Etudio de una ecuación del calor emilineal en dominio no-cilíndrico P.

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA Facultad de Ciencia Báica e Ingeniería Programa Ingeniería de Sitema CURSO: MATEMÁTICA DISCRETA 1 SEMESTRE: II 2 CÓDIGO: 602202 3 COMPONENTE: 4 CICLO: 5 ÁREA: Báica 6 FECHA DE APROBACIÓN: 7 NATURALEZA

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sitema y Señale Señale en Tiempo Dicreto Teorema de Muetreo Autor: Dr. Juan Carlo Gómez Señale en Tiempo Continuo: etán definida en un intervalo continuo de tiempo. Señale en tiempo dicreto:

Más detalles

MOTORES DE C.C. Y C.A.

MOTORES DE C.C. Y C.A. MOTORES DE C.C. Y C.A. La neumática e la tecnología que utiliza el aire comprimido como fluido de trabajo. El compreor e el elemento que comprime el aire dede la preión atmoférica hata lo 6-8 bar; la válvula

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Indutrial 008, Miguel

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

Introducción al diseño de filtros digitales

Introducción al diseño de filtros digitales Capítulo 6 Introducción al diseño de filtros digitales 6. Causalidad y sus implicaciones Sea hn la respuesta impulsional de un filtro paso bajo ideal con respuesta en frecuencia { ω ωc Hω = 0 ω C < ω

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

7. Amplificadores RF de potencia

7. Amplificadores RF de potencia 7. Amplificadre RF de ptencia 7. ntrducción El amplificadr de ptencia (PA e la última etapa del emir. Tiene la miión de amplificar la ptencia de la eñal (n neceariamente la tenión y tranmitirla a la antena

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Documentación. HiPath 1100

Documentación. HiPath 1100 Documentación HiPath 1100 Attendant Conole (AC) Teléfono del Sitema OpenStage 15 T optipoint 500 economy optipoint 500 baic optipoint 500 tandard optipoint 500 advance Intruccione breve de manejo Communication

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

INTRODUCCIÓN Y AGRADECIMIENTOS

INTRODUCCIÓN Y AGRADECIMIENTOS ÍNDICE INTRODUCCIÓN Y AGRADECIMIENTOS El preente trabajo pretende er el egundo de lo do que han de er entregado para optar al título de Diplomado en Etudio Avanzado DEA por la Univeridad Autónoma de Madrid

Más detalles

CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS

CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS Capítulo IV. Enayo y Simulacione Realizada 93 CAPÍTULO IV. ENSAYOS Y SIMULACIONES REALIZADAS 4.1 INTRODUCCIÓN La contrucción y poteriore prueba realizada con lo prototipo dieñado no iguió un patrón único

Más detalles

CONTROL DE TANQUES ACOPLADOS

CONTROL DE TANQUES ACOPLADOS ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION Titulación: INGENIERIA TECNICA INDUSTRIAL (ELECTRICIDAD) CONTROL DE TANQUES ACOPLADOS Alumna: Sara Pérez Izquieta Tutore: Iñaki

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

CA Nimsoft Monitor Snap

CA Nimsoft Monitor Snap CA Nimoft Monitor Snap Guía de configuración de Monitorización de Cico UCS Server Serie de cico_uc 2.1 Avio legale Copyright 2013, CA. All right reerved. Garantía El material incluido en ete documento

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

Tema 11 Ciclos con vapor

Tema 11 Ciclos con vapor ema Ciclo con vapor Ciclo con vapor: Equema. Ciclo de Rankine. Rendimiento de máquina biterma. Fluido empleado. Ciclo de Rankine imple. Factore que afectan al rendimiento (ciclo potencia). Aumento de preión

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

CIRCULAR Nº 2 (Aclaratoria)

CIRCULAR Nº 2 (Aclaratoria) Bueno Aire, 8 ero 2016 Referencia: Licitación Pública N 27/15 CIRCULAR Nº 2 (Aclaratoria) A lo efecto una mejor comprenión lo volcado en la epecificacione técnica l Pliego Bae y Condicione Particulare

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Muestreo e interpolación

Muestreo e interpolación Muestreo e interpolación Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74 y 86.05) Muestreo e interpolación

Más detalles

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA.

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. INDICACIONES A PARTIR DEL CURSO ESCOLAR 01-01 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. La preente orientacione parten del análii de lo reultado obtenido en el curo ecolar 01 01, aí como de la

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

UNIDAD III UNIDAD IV

UNIDAD III UNIDAD IV UNIDAD III TEORIA DE PEQUEÑAS MUESTRAS Ditribución t de tudent. Intervalo de confianza para una media con varianza deconocida. Prueba de hipótei obre la media de una ditribución normal, varianza deconocida.

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

Diseño e implementación de un control de máxima potencia para un sistema de generación de energía eólica con generador síncrono de imán permanente.

Diseño e implementación de un control de máxima potencia para un sistema de generación de energía eólica con generador síncrono de imán permanente. Dieño e implementación de un control de máxima potencia para un itema de generación de energía eólica con generador íncrono de imán permanente. Epada Ecalante J., Ricalde Catellano L., Ordóñez López E.

Más detalles

Estándares. 1 er - 11 mo grado. Educativos Nacionales. Español y Matemáticas. Diseño Curricular. Estándares Programaciones. Materiales.

Estándares. 1 er - 11 mo grado. Educativos Nacionales. Español y Matemáticas. Diseño Curricular. Estándares Programaciones. Materiales. República de Hondura Secretaría de Educación Etándare Educativo Nacionale Epañol y Matemática Dieño Curricular Etándare Programacione Materiale Educativo Evaluación Edición 2011 1 er - 11 mo grado Abogado

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

1. Principios Básicos de Resistencia de Materiales

1. Principios Básicos de Resistencia de Materiales DPTO. NGNRÍ MCÁNC, NRGÉTC Y D MTRLS 004 V. BDOL. Principio Báico de Reitencia de Materiale.. QULBRO STÁTCO Se define como aquella condición en la cual ometido el cuerpo a una erie de fuera momento eteriore

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013

VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 Boletín 08-14 VIOLENCIA EN CENTROS EDUCATIVOS CURSO LECTIVO 2013 El propóito de ete boletín e brindar información obre la cantidad de cao de violencia regitrado en lo centro educativo de Educación Tradicional,

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

JUNTA MONETARIA RESOLUCION JM-349-94

JUNTA MONETARIA RESOLUCION JM-349-94 JUNTA MONETARIA RESOLUCION JM-349-94 Inerta en el Punto Tercero, del acta número 34-94 correpondiente a la eión celebrada por la Junta Monetaria el 20 de julio de 1994. PUNTO TERCERO: El Superintendente

Más detalles

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail.

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail. Boot LENNY ANDRÉS HERNÁNDEZ FONSECA Ingeniero electrónico. Invetigador de la Univeridad Pedagógica y Tecnológica de Colombia. Sogamoo, Colombia. Contacto: landre87@hotmail.com DIEGO RICARDO GÓMEZ LEÓN

Más detalles

Estadísticas europeas de accidentes de trabajo

Estadísticas europeas de accidentes de trabajo 00 Oí (Π Ζ O U D LU Etadítica europea de accidente de trabajo etodología COMIIÓN EUROPEA = L eurotat 5 Población y condicione ociale eurotat OFICINA ETADÍTICA DE LA COMUNIDADE EUROPEA L-2920 Luxembourg

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

COMPARATIVA DINÁMICA DE MODELOS DEL CUERPO HUMANO

COMPARATIVA DINÁMICA DE MODELOS DEL CUERPO HUMANO UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA MECÁNICA PROYECTO FIN DE CARRERA INGENIERÍA TÉCNICA INDUSTRIAL-ELECTRÓNICA INDUSTRIAL COMPARATIVA DINÁMICA DE MODELOS

Más detalles

Filtros Activos. Filtros Pasivos

Filtros Activos. Filtros Pasivos Filtro Activo Joé Gómez Quiñone Filtro Paivo vi R k vo C n H ( w) r w c Joé Gómez Quiñone Función de Tranferencia Joé Gómez Quiñone Ventaja Filtro Paivo Barato Fácile de Implementar Repueta aproximada

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles