Universidad Michoacana de San Nicolás de Hidalgo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Michoacana de San Nicolás de Hidalgo"

Transcripción

1 Universidad Michoacana de San Nicolás de Hidalgo Facultad de Contaduría y Ciencias Administrativas Cuaderno de trabajo de la materia de MATEMÁTICAS FINANCIERAS M.E. MARÍA LÓPEZ LARREA FEBRERO 2009

2 INDICE I. Interés Simple 1.1 Concepto 1.2 Monto, Capital, Tasa de interés y tiempo 1.3 Tipos de interés 1.4 Descuento bancario 1.5 Ecuaciones de valor equivalentes II. Interés Compuesto 2.1 Concepto 2.2 Monto 2.3 Tasa nominal y tasa efectiva 2.4 Ecuaciones de valor equivalente III. Anualidades 3.1 Concepto 3.2 Anualidades vencidas 3.3 Anualidades anticipadas 3.4 Anualidades diferidas IV. Amortización 4.1 Amortización de una deuda 4.2 Tablas de amortización 4.3 Fondos de amortización 4.4 Tablas de fondos de amortización V. Depreciación 5.1 Concepto 5.2 Método de línea recta 5.3 Método de unidades de producción o de servicio 5.4 Método de suma de dígitos

3 JUSTIFICACIÓN Los presentes apuntes son el resultado de un esfuerzo que pretende integralmente apuntalar los objetivos de aprendizaje de la materia logrando este fin con el apoyo de la bibliografía oficial contemplada en el programa de esta materia por lo que se espera sea una herramienta útil para el alumno para poder resolver cualquier problema de carácter técnico que la materia presente. Se logra presentar la solución de problemas de esta materia con un enfoque contable administrativo del cual frecuentemente adolecen los textos que abordan estos temas con ello se facilita la comprensión de cada uno de los temas que están integrados en el programa oficial de la materia, esperamos la colaboración tanto de alumnos como profesores para enriquecer este texto y se asume la posibilidad de cualquier equivocación que pudiera aparecer en el mismo.

4 CAPÍTULO I. INTERÉS SIMPLE 1.1 Introducción El interés tiene una importancia fundamental en la administración de los recursos financieros de una empresa y de la sociedad. Toda la vasta maquinaria financiera y crediticia descansa sobre este concepto básico de pagar por el dinero tomado en préstamo, lo cual nos lleva al concepto central de las finanzas de que el capital aumenta su valor en el tiempo, producto del interés que tiene derecho a percibir: Interés Capital Tiempo 1.2 Interés Interés: El dinero, como cualquier bien, tiene un precio, que es el interés y éste es el pago por el uso del dinero ajeno o el rendimiento que obtiene un capital y se expresa con I. 1

5 1.3 Interés simple Interés simple: es aquel que se calcula siempre sobre el capital original, es decir, siempre sobre el mismo capital. Ejemplo de comprensión inicial: Se solicita un préstamo por $10,000 que se acuerda en pagar en tres meses, y al término del período se entregan. $ 10,900. Así los $900 son la ganancia para quien prestó el dinero, o el costo para quien recibió el préstamo. $ 10,000 Capital C 3 meses tiempo n $ 900 interés I $ 10,900 monto M = capital + interés 0.09 tasa de int. i Trimestral 900 = 0.09 tasa trimestral 10, X 4= 0.36 tasa anual 0.36 / 12 = 0.03 tasa mensual La tasa de interés refleja la relación que existe entre el interés y el capital. La tasa y el tipo de interés son dos expresiones distintas del mismo concepto. 2

6 Tasa 0.36; tipo 36% Así tenemos que los elementos que intervienen en una operación de interés simple son, de acuerdo con el ejemplo anterior: Capital: es la suma prestada o invertida, también se le denomina principal y en otros contextos conocido como valor presente o valor actual Tiempo: es la duración del lapso para el que se calcula el interés y que se mide de la fecha inicial de recepción del préstamo ( o inversión), y hasta la fecha de pago final y puede estar expresada en días o distintas unidades de tiempo Tasa: sea el número de unidades pagadas, por cada 100 unidades de la suma prestada, en la unidad de tiempo, cuando se expresa en decimales se le denomina tasa y cuando se expresa en porcentaje se le llama tipo. Monto: es la suma del capital más los intereses, también se le denomina valor futuro o valor acumulado. Relación tiempo- tasa: es aquella vinculación de correspondencia que existe entre la unidad de tiempo utilizada años, meses, días, etc., y la tasa expresada precisamente en la unidad de tiempo utilizada en el problema matemático, es decir, para una plazo en años, corresponde tasa en años, para plazo en meses corresponde tasa en meses y así sucesivamente. 1.4 Diferencia entre interés simple y compuesto. En algunos casos, el interés no sólo se paga sobre el capital, sino sobre el capital más los intereses vencidos no pagados o sea el monto. A este procedimiento se le llama interés compuesto. El interés simple se calcula sobre el capital primitivo que permanece invariable, en consecuencia, el interés de cada período de tiempo simple es el mismo. 3

7 Diferencia entre el Interés compuesto el interés simple: el interés en el interés compuesto se calcula sobre el monto y en el interés simple se calcula sobre el capital original Es común expresar la tasa de interés en períodos que no son anuales. Cuando se trata de interés simple, sencillamente divida éste entre el número de períodos por año. Por Ejemplo: Para obtener la tasa de interés mensual, sólo divida entre 12. Se puede encontrar la tasa, quincenal, diaria, semanal, etc Fórmula para calcular el interés simple Donde: I= interés C= capital N= tiempo i= tasa de interés I= Cni de la fórmula del interés se extraen las que ayudan a encontrar el capital (C), el tiempo (n) y la tasa de interés (i). C = I n = I i = I ni Ci Cn Aplicación fórmula de interés simple para determinar interés en base a tiempo anual Ejemplo El señor López deposita en un banco que paga el 13% de interés simple anual sobre los depósitos a plazo. Cuál es el pago anual por interés sobre un depósito de $ 350,000? Datos: Formula: I = Cni C = 350,000 n = 1 I =(350,000)(1)(0.13) i = 0.13 I =? I = $ 45,500 4

8 Aplicación fórmula de interés simple para determinar interés en base a tiempo mensual Ejemplo Caso a) Se adquiere un lote con valor de $ 23,500 que acuerda liquidar realizando un pago de inmediato por $ 3,500 y un pago final 7 meses después. Acepta pagar el 36% de interés simple anual. A cuánto ascenderá la cantidad a pagar por concepto de interés, resuélvalo expresando la relación tasa y tiempo en forma anual? Datos: Fórmula: I = Cni C= 23,500 3,500= 20,000 I = 20,000 (7/12) (0.36) n= 7/12 I = $ 4, i = 0.36 I = incógnita Caso b) Para resolverlo en relación tasa y tiempo en forma mensual C= 23,500 3,500= 20,000 I = 20,000 (7) (0.36/12) n= 7 I = $ 4, i = 0.36/12 I = incógnita Aplicación fórmula de interés simple para determinar capital 3.-Un banquero toma dinero prestado al 5% de interés simple anual y lo presta a unos panaderos al 10%. Si su utilidad anual neta ascendió a $ 3,600 cuánto dinero prestó? Datos: Fórmula: C = I n = 1 ni i = = 0.05 C= 3,600 I = 3,600 (1) (0.05) C = $72,000 5

9 Aplicación fórmula de interés simple para determinar tiempo 4.-Una Asociación Civil, invirtió $ 80,000 al 7 1/2% en un depósito a plazos y obtuvo por intereses $3,000 Durante cuánto tiempo estuvo invertido el dinero? Datos: Fórmula: I = Cni C= 80,000 n= I n= incógnita C i i = I = 3000 n= 3000 (80,000) (0.075) n= Aplicación fórmula de interés simple para determinar tasa de interés 5.- El gobierno municipal tiene invertidos $ 200,000 durante 3 1/2 años a interés simple y obtiene en total $ 25,000 de intereses, cuál es el tipo y tasa de de interés? Datos: Fórmula: I = Cni n = 3.5 i = Incógnita i = I C= 200,000 Cn I= 25,000 i = 25,000 (200,000) (3.5) i = Ejercicios de reforzamiento 6.- Una persona deposita $ 15,000 en un banco y lo retira 8 meses después, recibiendo $6,000 de interés. Cuál es la tasa de rendimiento que le dieron? 6

10 7.- Por un crédito de $ 50,000 pactado al 15 % de interés simple anual y a plazo de 10 meses Cuál será la cantidad a pagar por concepto de interés? 8.- Por un depósito a plazo por $ 36,000 pagan $ 750 de interés mensual. Cuál será la tasa de interés simple anual? 9.- Al comprar en una tienda de departamentos varios artículos, se pagaron $ 1,125 por concepto de interés por un mes, que corresponden al 1.5 % de interés mensual. A cuánto asciende la deuda? 10.- Se obtiene un crédito por $ 60,000 y se pagaron $ 7,200 de interés. Si la hipotecaria cobra el 24% de int. Simple anual. dicha cantidad a cuántos meses corresponden? 7

11 1.3.2 Fórmula para calcular el monto a interés simple Monto: El monto es la suma obtenida de interés más capital. Interés Capital Con tiempo y tasa se convierte en: e + Capital MONTO 8

12 M = C (1+ ni) Fórmula del monto a Interés simple Ejemplo de comprensión inicial: El contador Pérez deposita en un banco a plazos $10,000 y recibe 1 año después un total de $15,000 (incluyendo capital más interés), encuentre monto, capital, intereses y tipo de interés: a) Intereses si: M = C+ I entonces: 15,000 = 10,000 + I ; 15,000-10,000 = I, por lo tanto es 5000 = I b) Capital ya que la inversión inicial es de $10,000 por lo tanto este es el importe del capital c) Monto ya que es igual a la suma del capital más los intereses su importe es $15,000 d) Tipo de interés M = 15,000 M = C (1+ ni) sustituyendo: C = 10,000 M = (1+ ni) i = (15,000/10,000) - 1 n = 1 C 1 M - 1 = ni i =.5 es decir 50 % C M - 1 = i C n 11.- Una persona toma prestados $ 500 a interés simple, durante 3 años, al 10% ( se conviene en pagar el interés cada año) Cuánto recibirá en total el acreedor? Datos: C = 400 M = C(1+ ni) n = 2 M = (500) [ 1+(3) (0.10) ] i = 0.05 M =? M = $ 650 9

13 12.- Se obtiene un crédito por $ 18,000 a 6 años con el 24% de int. Simple anual. Qué cantidad debe pagar al vencerse su deuda? 13.- Si se desea adquirir un inmueble dentro de 2 años, y suponemos que el enganche que habrá que pagar en esa fecha será de $ 35,000 Qué cantidad debe invertir ahora en su depósito que rinde 2.9% de interés simple mensual? 13 - a.- Cuál es la tasa de interés simple mensual equivalente a una tasa del 0.34 anual? 14.- Cuánto tiempo tardarán $ 5,000 en convertirse en $ 8,750 al 25% de interés simple anual? 10

14 15.-Se depositan en una cuenta de inversión $ 17,000 al cobro en 1 1/2 años nos entregan $21,590 al realizar el retiro. Cuál fue el tipo de interés que otorgó el Banco? 16.- Un comerciante adquiere un lote de mcía. Con valor de $ 3,500 que acuerda en liquidar, haciendo un pago inmediato por $ 1,500 y un pago final 4 meses después, Acepta pagar 5% de interés simple mensual sobre su saldo Cuánto deberá pagar? 17.- Cuál es el tipo de interés mensual equivalente a una tasa del semestral? 18.- Una persona deposita $ 15,000 en un fondo de inversiones bursátiles, que garantiza un rendimiento del 2.8% de int. Simple mensual. Si la persona retira su depósito 24 días después. Cuánto recibe? 19) Un banquero desea saber el capital cuyo monto ascenderá a $ 84,000 en 4 años, al 5% de int. simple anual. 11

15 20.- Cuánto tiempo tardarán $ 8,048 en convertirse en $ 10, al 5% de int. simple anual? 21.- Un señor pasa 2 años en Europa, y deja en bonos $ 96,000. A su vuelta vende los bonos y recibe por ellos $ 104,160. Si la diferencia representa el valor de los cupones acumulados Cuál fue el tipo de interés? 1.3 Interés simple por menos de un año: En la práctica, casi todos los problemas de interés, implican alguna fracción de año. El interés es un pago que se hace por el uso de dinero tomado en préstamo; para que el deudor pueda usar el préstamo, es preciso que trascurra tiempo. Para determinar la duración del período de un préstamo, excluye el primer día y se incluye el último Así para un préstamo hecho el 6 de enero y que vence el 29 del mismo mes, se cargaría interés por 23 días. Fijación de la fecha del vencimiento La fecha en que vence un préstamo se fija basándose en la forma en que esté redactada la obligación 12

16 Por ejemplo; si en una transacción de fecha 5 de septiembre, un deudor se compromete a devolver el préstamo a los 4 meses, había que entregar el dinero el 5 de enero. Por otro lado, si otro préstamo contratado el 5 de septiembre ha de durar por acuerdo mutuo 120 días, la devolución habla de hacerse el 3 de enero. En este segundo ejemplo se cuenta el número exacto de días, porque el tiempo se ha expresado en días. Tiempo real y tiempo aproximado Existen situaciones en las que el plazo de una operación se especifica mediante fechas, en lugar de mencionar un número de días, meses o años. El tiempo se puede calcular de dos maneras: Tiempo real: contando los días transcurridos (días naturales) 365 o 366 días si es bisiesto, es también llamado exacto. Días inicial y terminal: para llevar las cuentas de los días se recomienda excluir el primer día e incluir el último. Así para un préstamo contraído el 10 de enero y pagado el 25 del mismo mes, el tiempo comercial transcurrido es de 15 días. Ejemplo: Calcule los días transcurridos entre el 3 de septiembre de un año y el 15 de enero del siguiente año = 27 días de septiembre + 31 octubre 30 noviembre 31 diciembre 15 enero Total: 134 días Tiempo aproximado: Se considera un año teórico de 360 días, con 12 meses de 30 días cada uno. Este tiempo es el utilizado generalmente por los bancos (año comercial). Ejemplo: 13

17 Calcule los días transcurridos entre el 20 de junio y el 24 de agosto del de agosto de de junio de días meses años Así el tiempo transcurrido aproximado es de 2 meses 4 días, es decir 64 días ya que hemos supuesto cada mes de 30 días. Ejercicios de reforzamiento: Hallar el número real y aproximado de días: 1.- el 4 de enero al 4 de septiembre el 9 de marzo al 19 de agosto el 17 de febrero al 13 de mayo el 11 de noviembre al 13 de marzo el 5 de octubre al 29 de diciembre... Real Aproximado * 13 de marzo de noviembre días meses Años * Esta es la solución del ejercicio No. 4 son 4 meses X 30 días = días = 122 días En meses, al mes de marzo se le considera como 15 porque el mes de diciembre es el mes 12 más 3 porque el mes de marzo es el tercero del año, y es del año siguiente. 22. Se obtiene un crédito por $ a 160 días, con 30% de interés anual. Qué cantidad debe pagar al vencerse su deuda? 23. Qué cantidad por concepto de interés simple mensual produce un capital de $ al 33% anual? 14

18 24. Una persona adquiere en esta fecha un automóvil que cuesta $ si suponemos que el vehículo aumenta su valor en forma constante y a razón del 2% mensual. Cuál será su valor después de 2 meses? 25. A una persona que es despedida por problemas financieros de la empresa, se le entrega una indemnización que incluye 3 meses de sueldo, días de antigüedad y descuentos por impuestos, arroja un saldo neto de $ Qué ingreso fijo mensual le representaría al ahora desempleado depositar su liquidación en una inversión que paga el 18% de interés simple anual? 26. Una joven tiene 2 deudas: 1. le debe $ a un banco que cobra 3.5% mensual 2. compró a crédito un auto en $ que comenzará a pagar dentro de 8 meses; mientras tanto debe pagar 24% anual durante ese lapso. Cuánto pagará en los próximos 6 meses por concepto de intereses? 27. Una compañía de seguros compra $ de obligaciones de teléfonos el día 15 de junio y las vende el 3 de agosto del mismo año. Si cobra un interés simple del 6% anual. Qué cantidad recibirá por concepto de interés al momento de la venta? (tiempo real). 15

19 28. El día 12 de septiembre se toman prestados $715 al 6% de interés anual y vencen el 12 de enero del siguiente año. Cuánto pagará al vencimiento? (tiempo aproximado) Una sociedad compró el 17 de junio $1,000 en bonos con interés del 4 1/4 % y los vendió el 26 de Septiembre del mismo año. Qué interés obtuvo? (tiempo real) 30. Cuál será el monto al 24 de diciembre de un capital de $ depositado el 15 de mayo del mismo año, en una cuenta de ahorros que paga el 19% anual? (calcular el monto con el tiempo real y el tiempo aproximado). 31. Una Cía. de maderas tiene en su poder, el pagaré de un cliente por $ 3,470 a 90 días. Si el pago hecho al vencimiento del mismo para su liquidación asciende a $ 3, Cuál es la tasa del interés? (año comercial o aproximado) 16

20 32.- Un señor entrega al Bco. el día 27 de junio un cheque por $ 14, para liquidar un préstamo de $ 14, que obtuvo el 14 de mayo. Cuál fue el tipo de interés anual? (tiempo real ) 33.- Una empresa tiene un pagaré de fecha 21 de agosto, que vence el 12 de marzo. Si el interés, calculado a razón del 6% de int. simple anual, asciende a $ 2, Cuál es el valor nominal del pagaré? (tiempo real) Una Sociedad pagó $ 2, al liquidar totalmente su pagaré a la vista por $ 2,400 al 4 1/2% Cuánto tiempo habrá estado en circulación el pagaré? 35.- El Bco. prestó $1,400 al 5% de interés simple anual, el día 14 de mayo. Si no se quiere pagar más de $ 50 de intereses Cuándo tendrá que liquidar el préstamo? ( tiempo real ). 17

21 Valor actual o valor presente. El capital y el valor actual, representa lo mismo, sólo que en contextos diferentes; el capital es una cantidad que se invierte ahora, para obtener después un monto superior, y el valor actual es, precisamente el que tiene en este momento, una cantidad cuyo valor se ha planteado en una fecha futura. Se puede usar indistintamente C o A para designar un valor presente o valor actual. Ejemplo: C = M Fórmula para el valor 1 + ni actual a interés simple Se desea adquirir un auto dentro de 8 meses. El enganche que se supone debe entregar es de $ 7,000 qué cantidad se debe invertir ahora en un depósito de renta fija que rinde el 3.1 % de interés mensual? DATOS: i = M =7,000 C =? C =? M = $ 7,000 n =8 8 Meses i =0.031 C = C = M 1 + ni 7, (8)(.031) C = $ 5, Encontrar el valor actual de $ a pagar dentro de un año, si la tasa es del 14% de interés simple anual Una persona participa en una "tanda" y le toca el décimo octavo mes para cobrar. Si dentro de 18 meses recibirá $ 3,000. Cual es el valor actual de la tanda, con un interés simple del 19 % anual? 18

22 38.- Cuál de las siguientes opciones de gratificación conviene más a los intereses de un empleado? a) Recibir ahora $3 850 b) Recibir $2 000 ahora y otros $2 000 en 2 meses c) Recibir 3 pagos de $1 400 cada uno a 30, 60 y 90 días. Suponga que al invertir el dinero se gana un interés simple del 31.4% anual 39. Una persona compró un automóvil el 1 de enero del 2004 en $ Lo vende el 1 de junio del mismo año, por la cantidad de $ Considerando exclusivamente los valores de compra y venta, y si la tasa de inflación promedio durante el año pasado fue de 24.5% determine si fue conveniente para esta persona comprar o vender dicho automóvil. 40. El señor Díaz planea llevar a cabo la fiesta de XV años de su hija. Para lo cual requiere la cantidad de $ dentro de 18 meses. Cuánto deberá depositar en una cuenta de valores que rinde el 18% de interés para garantizar los gastos de la fiesta? 19

23 Valor actual de una deuda que devenga interés Si lo que se busca es el valor actual de una deuda que devenga interés, en ese caso, el monto total a pagar, es igual al valor nominal de la deuda más el interés acumulado. Ejemplo: Una Cía. Tiene un pagaré de $ 600 que vence a los 3 meses, que devenga un interés del 1% mensual. Hállese su valor actual a la tasa del 8.5 de int. Simple anual. DATOS: C =600 M = C ( 1 + ni ) n =3 i =0.01 M= 600 ( 1+3(.01)) M =? M = $ DATOS: M =618 C = 618 n =3/12 (1+(3/12)(.085) i =0.085 C =? C = $ Cuál será el valor el valor actual de $ 29,000 a pagar dentro de 6 meses, si devenga un interés del 1% mensual, y el banco cobra el 18% de int. simple anual? 42.- Una empresa tiene la suma de $ 10,000 en cupones de obligaciones que vencen dentro de 39 días. Ganan un interés del 13% anual simple. Cuál es su valor actual al 14 1/2%? (tiempo real) 20

24 1.4 Descuento bancario El descuento es una operación de crédito que se lleva a cabo principalmente en instituciones bancarias y consiste en que éstas adquieren letras de cambio o pagarés de cuyo valor nominal descuentan una suma equivalente a los intereses que devengaría el documento entre la fecha en que se recibe y la fecha del vencimiento. Con esto se anticipa el valor actual del documento. Existen básicamente dos formas de calcular el descuento: a) el descuento comercial y b) el descuento real o justo para estas operaciones, se usan ciertas expresiones que es necesario conocer: Valor nominal de un pagaré: es el que está inscrito en el documento, para el comercio, se trata del capital. Si el pagaré no gana intereses, el valor nominal indica la cantidad que debe pagarse en la fecha de vencimiento especificada. Descontar un pagaré: es la acción de recibir o pagar un dinero, a cambio de una suma mayor comprometida para la fecha a futuro, bajo las condiciones convenidas en el pagaré. Al referirse a la operación, el término descontar lo usan tanto el prestatario como el prestamista. Descuento: es la diferencia establecida entre el valor nominal y el valor que se recibe, al momento de descontar el pagaré. Valor efectivo o líquido de un pagaré: es el valor nominal menos el descuento. Es el valor en dinero que se recibe en el momento de descontar la obligación o, en otras palabras, el valor actual o presente con descuento bancario. Tipo o tasa de descuento: es el tanto por ciento de descuento, o sea, un porcentaje del valor nominal que deduce el prestamista, al descontar el pagaré. Plazo: es el término que se utiliza para expresar el período de duración del préstamo. Los pagarés son obligaciones a corto plazo y el descuento bancario simple nunca se efectúa para períodos mayores a un año. Fórmula para el descuento comercial Fórmula para calcular el valor líquido de un pagaré con descuento comercial Fórmula para calcular la tasa de descuento Fórmula para calcular el tiempo o plazo de descuento D = Mnd C = M(1-nd) d = 1 - C/M n n = 1 C/M d 21

25 Ejemplo: Encontrar el descuento comercial de un documento con valor nominal de $6 500 tres meses antes de su vencimiento, con un tipo de descuento del 22.4% anual. Datos: C =? M = D = Mnd D = (6 500)(.25)(0.224) = $ n = 3/12 i = Cuál es el valor comercial de un pagaré con valor nominal de $7 500 si se descuenta con el 33.5% anual, 3 meses antes del vencimiento? (encontrar el descuento comercial ). 44. Una persona tiene a su favor un documento suscrito el 1 de enero de este año con un valor nominal de $ con fecha de vencimiento a 10 meses después. Esta persona quiere descontar el documento en una institución bancaria que aplica una tasa de descuento del 23% de interés el cual quiere descontar 4 meses antes de su vencimiento. Cuánto recibiría esta persona si se le aplica el descuento bancario? 45.- Una empresa descontó en una institución bancaria un pagaré con un valor nominal de $ aplicándole una tasa de descuento comercial 3 meses antes de su vencimiento, recibiendo la cantidad de $ Determine el importe del descuento comercial En qué fecha se descontó un documento con valor nominal de $ si su fecha de vencimiento era el día 29 de noviembre de este año, el tipo de descuento fue del 41% y el descuento comercial fue de $

26 47.- Una empresa descontó en un banco un documento por el cual recibió $ Si el tipo de descuento comercial fue del 30% anual y el vencimiento de este era 4 meses después de su descuento. Cuál era el valor nominal del documento en la fecha de vencimiento? 48.- En cuánto se negocia el 15 de marzo un documento con valor nominal de $ vencimiento al 15 de agosto y descuento del 37% anual? 49- Cuántos días antes de su vencimiento se comercializa un pagaré en $4 750 si su valor nominal es de $ y el descuento es del 26.4% simple anual? 50.- Obtenga la tasa de descuento simple anual de un documento cuyo valor nominal es de $2 240 tres meses antes de vencer A qué tasa de descuento se aplicó un documento con valor nominal de $60,000, si se descontó faltando 5 meses para su vencimiento, y por el cual se obtuvo un valor descontado de $53,500 23

27 Descuento de una deuda que devenga interés Cuando hay que descontar un pagaré que devenga interés, es preciso hallar primero el monto total a pagar y aplicar después el descuento. Ejemplo: El banco descontó el 3 abril, un pagaré de $ 6,300 que tenía esta misma fecha, devengaba el 5% de interés y vencía el día 3 de mayo: puesto que el tipo del descuento es del 15% anual. Cuál fue el descuento retenido por el Bco.? (año comercial) DATOS: C = 6,300 M = C ( 1 + ni ) n = 30/360 i = 0.05 M = 6,300 ( 1+(30/360) (.05)) M =? M = $ S = 6, D = S n d n = 30/360 d = 0.15 D = ( 6,300 )(30/360)(0.015) D = D = $ Cuál es el valor comercial el 12 de mayo de un documento que ampara un préstamo de $6 500 recibido el 25 de enero pasado con intereses del 2% mensual y cuyo vencimiento es el 30 de julio? Suponga que la tasa de descuento anual es del 25% (utilizar descuento comercial y tiempo aproximado) 52.- Una compañía tiene un pagaré de $6 000 que vence a los 4 meses, que devenga un interés del 2.1% mensual. Hallar su valor líquido si se descuenta en el banco 3 meses antes de su vencimiento y el banco cobra el 25% de descuento anual. 24

28 Descuento por pronto pago El descuento por pronto pago es una rebaja concedida sobre el precio de una mercancía como un incentivo para pagarla inmediatamente, o dentro de un plazo especificado. Entre los más frecuentes se expresan en la forma de los siguientes ejem: al contado: 5%; neto 60 días, 3/10 significa 3% en 10 días. Ejemplo: Una Cía. Compra el 18 de mayo enseres de oficina por valor de $ 28,000 y la factura lleva el siguiente encabezado: Condiciones de pagar 3 meses neto, 2/60, 3/30, 4/10, 5 al contado. Si la Cía. Paga el 18 de junio, Cuál será la cantidad pagada? ( 360 ) 28,000 X 0.03 = , = $ 27, Se compran mercancías por $ el día 1º de Julio, con las siguientes condiciones de pago: 15% al contado, 12/15, 10/30 5/60 y neto en 90 días. Si la factura se liquida el día 8 de agosto, cuál será la cantidad a pagar? 53(A).- Al comprar mercancías el día 2 de febrero, por $9 750 nos ofrecen las siguientes condiciones de pago: neto, 60 días, 5/30 8/10 10% al contado. Si se liquida la factura el día 25 de febrero, qué cantidad se pagará? Descuentos en serie o en cadena A veces se dan varios descuentos sobre un mismo precio. En cada caso se realiza un descuento después de haber deducido el descuento anterior. El orden en que se deduzcan los descuentos no afecta el resultado. Así un precio de venta anunciado como precio de lista " menos el 10%, 20% y 5% es idéntico al precio presentado como precio de lista menos: 5%, 10% y 20%. Ejemplo: 10,000 x 0.10 = 1, ,000 x 0.05 = , 000 1, 000 = 9, , = 9,500 9,000 x 0.20 = 1,800 9,500 x 0.10 = 950 9,000 1,800 = 7,200 9, = 8,550 7,200 x 0.05 = 360 8,550 x 0.20 = 1,710 7, = $ 6,840 8,550 1,710 = $ 6,840 25

29 Descuento único equivalente a una serie de descuentos Cuál es el descuento único equivalente a la serie 5%, 10% y 20% X 0.90 X 0.80= = ,000 X 0.684= $ 6,840 Precio neto 10,000 X 0.316= $ 3,160 Descuento único Porcentaje neto a pagar X 100 = 68.4% Porcentaje único equivalente a los tres descuentos: X 100 = 31.6% 54.- Cuál será el precio neto de una máquina cuyo precio de lista es $ 35,000 si se ofrecen los descuentos comerciales 20%, 12 1/2, 5% y 2%? y cuál será el tipo de descuento único? 55.- Encontrar el precio neto de una mercancía si su precio de lista es de $ 51,000, y se ofrecen los descuentos del 8%, 3% Cuál es el porcentaje de descuento que corresponde a los dos descuentos? 56.- Encontrar el descuento que se obtendrá por una mercancía cuyo precio de lista el de $34,500 si se ofrecen los descuentos del 20%, 10% y 5% y qué porcentaje neto de descuento corresponde? 26

30 Unos almacenes compran el 2 de enero mercancías por valor de $ 10,000 en las siguientes condiciones: 3 meses neto, 3/60,5/30,8/10,10 al contado. Hállese cuál de las a ofertas de descuento pago es la más ventajosa para el comprador. Fecha Precio Razón del periodo Tipo de int. de pago pagado Desc. descuento de Desc simp.anual equiv. 2 de abril 10, de marzo 9, /9700= días (.03092)(360/30)= =37.11% 2 de febrero 9, /9500= días ( )(360/60)= =31.57% 12 de enero 9, /9200= días ( )(360/80)= =39.13% 2 de enero 9,000 1,000 1,000/9000= días ( )(360/90)= =44.44% Conviene pagar al contado, porque corresponde al tipo de interés anual más alto 57.- Una empresa compro el 1 de septiembre una máquina con valor de $ 70,000 y le ofrecen los siguientes descuentos: 2 meses neto, 5/45, 6/30, 7/15, si la empresa paga el 17 de septiembre Qué cantidad paga la empresa y en cuál fecha le hubiera convenido pagar? 27

31 1.5 Ecuaciones de valor equivalentes Un problema básico y muy frecuente en las operaciones financieras es que existan operaciones diferentes que deban replantearse para expresarlas en una operación única. Un mismo valor situado en fechas diferentes es, desde el punto de vista financiero, un valor distinto. No se debe olvidar que sólo se pueden sumar, restar o igualar dineros ubicados en una misma fecha. La fecha que se escoge para la equivalencia se denomina fecha focal. La fijación de la fecha focal debe corresponder a lo pactado en los pagarés. Los cambios de fecha focal producen variaciones en la determinación de las cantidades. Ejemplo: Se firma un pagaré por $ a 90 días al 6% anual; 30 días después se firma otro pagaré por $ a 60 días sin interés. Dos meses después de la primera fecha, acordó con el acreedor pagar $ en ese momento y recoger los dos pagarés firmados reemplazándolos por uno solo a 3 meses, con un rendimiento del 8% anual. Determinar el pago único convenido. Para plantear la ecuación, se dibuja primero el diagrama de tiempo - valor. A $ X B $ I $ Se escoge como fecha focal a 150 días. Y se calculan los distintos valores y se plantea la ecuación de valores equivalentes entre los nuevos valores y los antiguos. Solución: Son 4 las operaciones implicadas: 2 de contratación de deuda y 2 de pago Contratación de deuda: Primero encontramos el monto de este capital de $ con el interés pactado de la deuda A. Datos: C= M = C(1+ni) n = 90/360 = 3/12 i = 0.06 M = (1+ (0.25)(0.06) M =? M = $ Valor al vencimiento Para este valor encontrado se calcula el monto al final del nuevo plazo considerando el nuevo interés pactado A. Datos: C = n = 60/360 = 2/12 M = (1+ (0.1666) (0.08) ) i = 0.08 M = $ Valor al final del nuevo plazo 28

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES.

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. 1 APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. GENERALIDADES. Las matemáticas Financieras es una rama de las matemáticas utilizada para el cálculo de los diferentes tipos de

Más detalles

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de un año la suma de $1.536.000. Se pide: a) La suma ganada

Más detalles

PROBLEMARIO MATEMÁTICAS FINANCIERAS

PROBLEMARIO MATEMÁTICAS FINANCIERAS PROBLEMARIO MATEMÁTICAS FINANCIERAS CONVERSIÓN DE TIEMPOS Realizar las siguientes conversiones: 1. 4 cuatrimestres a meses R.- 16 meses 2. 5 años a trimestres R.- 20 trimestres 3. 12 meses a cuatrimestres

Más detalles

JORGE LUIS GONZÁLEZ ESCOBAR

JORGE LUIS GONZÁLEZ ESCOBAR 1. Se invierten 200.000 en un depósito a término fijo de 6 meses en un banco que paga el 28,8% Nominal Mensual. Determinar el monto de la entrega al vencimiento. R/230.584,30. 2. Una persona debe pagar

Más detalles

EJERCICIOS SOBRE ANUALIDADES

EJERCICIOS SOBRE ANUALIDADES UNIVERSIDAD DE LOS ANDES TÁCHIRA Dr PEDRO RINCÓN GUTIERREZ DEPARTAMENTO DE CIENCIAS EJERCICIOS SOBRE ANUALIDADES 1. Se depositan $ 150 pesos al final de cada mes en un banco que paga el 3 % mensual capitalizable

Más detalles

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS CONTENIDO Tema 1: INTERÉS SIMPLE Tema 2: INTERÉS COMPUESTO Tema 3: ANUALIDADES Tema 4: AMORTIZACIÓN Tema 5: DEPRECIACIÓN

Más detalles

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno:

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno: Unidad 3 Interés compuesto Objetivos Al finalizar la unidad, el alumno: Calculará el monto producido por un cierto capital colocado a una tasa de interés compuesto convertible anualmente, semestralmente

Más detalles

Regla Comercial y Descuento compuesto.

Regla Comercial y Descuento compuesto. Regla Comercial y Descuento compuesto. Regla comercial: consiste en calcular el monto que se acumula durante los periodos de capitalización completos, utilizando la fórmula de interés compuesto, para luego

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

Matemáticas Financieras I. Febrero, 2009

Matemáticas Financieras I. Febrero, 2009 Matemáticas Financieras I. Febrero, 2009 Tarea II. Interés simple, descuento Simple. Instrucciones: Van algunos ejercicios de interés y descuento simple, están bastante sencillos, pero confío en que sean

Más detalles

Asignatura: Matemática Financiera.

Asignatura: Matemática Financiera. Unidad No. I. Interés simple. Asignatura: Matemática Financiera. En todas las actividades financieras se acostumbra a pagar un rédito por el uso del dinero prestado. La mayor parte de los ingresos de bancos

Más detalles

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno:

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno: Unidad 2 Interés simple Objetivos Al finalizar la unidad, el alumno: Calculará el interés simple producido por un cierto capital colocado a una tasa determinada durante un periodo de tiempo dado. Calculará

Más detalles

TEMA 10: Operaciones financieras. El interés

TEMA 10: Operaciones financieras. El interés UNO: Básicos de interés simple. 1. Calcula el interés que en capitalización simple producen 10.000, al 5% anual durante 3 años. 2. Cuál será el montante obtenido de la operación anterior? 3. Un inversor

Más detalles

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez 681 Tabla de contenido 1.0 EJERCICIO DE INTERES SIMPLE... 684 2.0 EJERCICIO DE INTERES COMPUESTO... 687

Más detalles

EJERCICIOS DE APLICACIÓN DE LAS MATEMÁTICAS COMERCIALES Y FINANCIERO A LAS OPERACIONES BANCARIAS Y DE SEGUROS JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE

EJERCICIOS DE APLICACIÓN DE LAS MATEMÁTICAS COMERCIALES Y FINANCIERO A LAS OPERACIONES BANCARIAS Y DE SEGUROS JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE 1 CAPITALIZACIÓN SIMPLE 1. Calcular el interés de 1.502,53 al 8% durante: 9 años; 4 meses; 180 días; 6 semanas. Resultados: 1.081,82 ; 40,07 ; 60,10 ; 13,87 2. Un capital fue colocado al 6% durante 120

Más detalles

ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON

ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON 2013. AÑO DEL BICENTENARIO DE LOS SENTIMIENTOS DE LA NACIÓN ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON LA PAZ, MARZO 2013 Í NDICE 1 Introducción 2 Importancia de las Matemáticas Financieras Tema : 1.1,

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS 1.Una mina en explotación tiene una producción anual de 600 000 dólares y se calcula que se agotará en 5 años. Cuál es el valor actual de la producción si

Más detalles

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital.

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS ECONOMICAS CURSO: MATEMATICAS III, AREA COMUN UNIDAD No. 1 INTERES SIMPLE SEGUNDO SEMESTRE 2009. GENERALIDADES DEL INTERES: Interés: Es el rendimiento

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

Capítulo 6 Amortización

Capítulo 6 Amortización Capítulo 6 Amortización Introducción El objetivo de este capítulo es calcular, analizar e interpretar el comportamiento de deudas de largo plazo al extinguirse gradualmente en el tiempo Se explicará cómo

Más detalles

Unidad 13. Amortización y Fondos de Amortización

Unidad 13. Amortización y Fondos de Amortización Unidad 13 Amortización y Fondos de Amortización INTRODUCCION En la sección 6.8 se mencionó que la palabra amortizar proviene del latín y que su significado literal es "dar muerte". En matemática financiera

Más detalles

MATEMÁTICAS FINANCIERAS II

MATEMÁTICAS FINANCIERAS II MATEMÁTICAS FINANCIERAS II MATEMÁTICAS FINANCIERAS II USIAS OCHOA LOPEZ RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma,

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS 1 MATEMÁTICAS FINANCIERAS Plan 2012 Clave: Créditos: 8 Licenciatura: CONTADURÍA Semestre: 1º Área: Horas de asesoría: Requisitos: Horas por semana: 4 Tipo de asignatura: Obligatoria ( X ) Optativa ( )

Más detalles

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (.

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (. INTERÉS SIMPLE Capital Interés $15 000 Tasa de interés: 8% mensual (.08) $15000 + 15000(.08) = 1200 1 mes 15 000 + 1 200 = 16 200 Monto INTERÉS SIMPLE Capital Interés C Tasa de interés: i C + I Ci 1 periodo

Más detalles

UNIDAD 3 ANUALIDADES. Introducción a la unidad

UNIDAD 3 ANUALIDADES. Introducción a la unidad UNIDAD 3 ANUALIDADES Introducción a la unidad En préstamos, como en adquisiciones de bienes, generalmente los pagos que se efectúan son iguales en intervalos de tiempo y todo indica que la medida común

Más detalles

CONTABILIDAD GENERAL

CONTABILIDAD GENERAL CONTABILIDAD GENERAL CONTABILIDAD GENERAL 1 Sesión No. 8 Nombre: Crédito y descuentos Contextualización Qué son los créditos y los descuentos? Una práctica muy recurrente en el mundo empresarial es el

Más detalles

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido 1. Matemática Financiera 1.0. Introducción a la matemática financiera. 1.1. Capitales financieros

Más detalles

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital 1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital inicial necesario para obtener un capital de 20.000

Más detalles

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término.

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 2. Hallar el 8vo. Término de la siguiente progresión geométrica: 6: 4:. 3. La razón de una progresión

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS MATEMATICAS FINANCIERAS 1 MATEMATICAS FINANCIERAS OBJETIVO GENERAL: Dominio y uso de las herramientas básicas para realizar los cálculos matemáticos, frecuentemente utilizados en el medio financiero. Particularmente

Más detalles

Gestión Financiera. 7 > Préstamos

Gestión Financiera. 7 > Préstamos . 7 > Préstamos Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 64. 7 > Préstamos 1 2 Préstamo americano Préstamo americano con fondo de amortización «sinking fund» 3 Anualidad Capital pendiente

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE Javier Bilbao García 1 1.- Capitalización Simple Definición: Se pretende sustituir un capital presente por otro equivalente en

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 1 Nombre: Interés simple Objetivo Al término de la sesión el estudiante solucionará problemas aplicando los conceptos de interés simple, a través de la resolución

Más detalles

Beneficios de este tipo de descuento

Beneficios de este tipo de descuento SESION 8 4.3. Descuento en cadena o en serie 4.4. Descuento por pronto pago 4.5. Comisiones Los descuentos por pronto pago, también conocidos como descuentos en efectivo, tienen como objetivo estimular

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS

MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS 1. Sea una renta pospagable de cuantía a, duración 12 años y tipo de interés constante, cuyo valor actual es de 10.000 y su valor final de 17.958,56. Calcular:

Más detalles

Operaciones Financieras

Operaciones Financieras Operaciones Financieras Módulo Instruccional Programático Barquisimeto, 2014 UNIDAD I - DESCUENTO SIMPLE OBJETIVO GENERAL Aplicar el Descuento Simple en las diferentes actividades comerciales desarrollando

Más detalles

EJERCICIOS DE EXÁMENES DE MATEMATICAS FINANCIERAS

EJERCICIOS DE EXÁMENES DE MATEMATICAS FINANCIERAS - 1 - EJERCICIOS DE EXÁMENES DE MATEMATICAS FINANCIERAS EJERCICIO 1 La sociedad anónima MARATON pasa en la actualidad por un problema de tesorería y la dirección económico-financiera plantea al gerente

Más detalles

Interés Simple y Compuesto

Interés Simple y Compuesto Interés Simple y Compuesto Las finanzas matemáticas son la rama de la matemática que se aplica al análisis financiero. El tema tiene una relación cercana con la disciplina de la economía financiera, que

Más detalles

Unidad 7. Descuento Compuesto

Unidad 7. Descuento Compuesto Unidad 7 Descuento Compuesto En muchas operaciones bancarias se otorgan préstamos en cuyos documentos se mencionan descuentos compuestos. Antes de estudiar los diferentes tipos de descuentos, es conveniente

Más detalles

FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS

FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS PROBLEMAS DE EXAMENES SEGUNDO CURSO 1.- SISTEMAS FINANCIEROS

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Unidad 9. Interés Compuesto

Unidad 9. Interés Compuesto Unidad 9 Interés Compuesto INTRODUCCION En los problemas de interés simple, el capital que genera los intereses permanece constante todo el tiempo de duración del préstamo. En cambio, cuando el interés

Más detalles

Capítulo 2 Interés y descuento simple

Capítulo 2 Interés y descuento simple Capítulo 2 Interés y descuento simple Introducción Los problemas de la teoría del interés son relativamente elementales, cada problema se restringe a calcular las siguientes variables: a) El capital invertido

Más detalles

MANUAL DE APLICACION DE CUENTAS

MANUAL DE APLICACION DE CUENTAS MANUAL DE APLICACION DE CUENTAS NOTA: El presente documento ha sido preparado como ejemplo del contenido básico de Manual de Cuentas para la materia Contabilidad Financiera del Programa de Maestría en

Más detalles

Unidad 15. Obligaciones y Bonos

Unidad 15. Obligaciones y Bonos Unidad 15 Obligaciones y Bonos INTRODUCCIÓN Cuando una empresa privada o un gobierno necesitan dinero para financiar sus proyectos a largo plazo, y la cantidad requerida es bastante elevada, de tal manera

Más detalles

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de descuento a cierta tasa, valuada ésta sobre el valor

Más detalles

Unidad 10. Anualidades Simples Vencidas

Unidad 10. Anualidades Simples Vencidas Unidad 10 Anualidades Simples Vencidas INTRODUCCIÓN Una anualidad es una serie de pagos, por lo general iguales, efectuados a intervalos iguales de tiempo. El término anualidad parece implicar que los

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda?

1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda? 1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda? Ajustes Formula C 200,000.00 La tasa de interes es 4% anual trasportada

Más detalles

SUPUESTOS DE EXÁMEN OFICIALES (III). CAPITALIZACIÓN Y DESCUENTO, RENTAS Y PRÉSTAMOS Y EMPRÉSTITOS

SUPUESTOS DE EXÁMEN OFICIALES (III). CAPITALIZACIÓN Y DESCUENTO, RENTAS Y PRÉSTAMOS Y EMPRÉSTITOS MATEMÁTICA FINANCIERA. EXÁMENES OFICIALES: CAPITALIZACIÓN Y DESCUENTO, RENTAS Y PRÉSTAMOS (III) - 1 - SUPUESTOS DE EXÁMEN OFICIALES (III). CAPITALIZACIÓN Y DESCUENTO, RENTAS Y PRÉSTAMOS Y EMPRÉSTITOS EJERCICIO

Más detalles

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación 74 4..- VALOR FUTURO y VALOR PRESENTE -DESCUENTO COMPUESTO- Inflación En el capítulo de Interés Simple se comentó sobre el tema

Más detalles

TÉRMINOS BÁSICOS DE LA CONTABILIDAD

TÉRMINOS BÁSICOS DE LA CONTABILIDAD TÉRMINOS BÁSICOS DE LA CONTABILIDAD Contabilidad Es un medio para recolectar, registrar, clasificar, sistematizar, analizar y presentar en términos monetarios las transacciones y los hechos que total o

Más detalles

Unidad 10. Registro de operaciones

Unidad 10. Registro de operaciones Unidad 10 Registro de operaciones "El registro de operaciones tiene una lógica definida y sencilla, que se basa en la combinación de las reglas de la Partida Doble con las reglas del Cargo y el Abono".

Más detalles

EJERCICIOS DE PRÉSTAMOS (I)

EJERCICIOS DE PRÉSTAMOS (I) - 1 - EJERCICIOS DE PRÉSTAMOS (I) SUPUESTO 1 Un particular tiene concertado un préstamo de 50.000 euros de principal amortizable en l0 años, mediante mensualidades constantes a un tanto de interés nominal

Más detalles

2. Cómo se calculan los rendimientos o beneficios que genera un cliente en un Fondo de Inversión?

2. Cómo se calculan los rendimientos o beneficios que genera un cliente en un Fondo de Inversión? Conceptos básicos de los Fondos de Inversión 1. Qué es una participación? Cómo se calcula su valor? R/ La participación es la unidad que representa el derecho de propiedad que tiene un cliente dentro del

Más detalles

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori Interés Simple e Interés Compuesto El interés pagado y recibido puede considerarse como simple o compuesto. 1. Interés Simple El interés simple, es pagado sobre el capital primitivo que permanece invariable.

Más detalles

FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS

FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS FACULTAD DE TURISMO Y FINANZAS UNIVERSIDAD DE SEVILLA GRADO EN FINANZAS Y CONTABILIDAD DEPARTAMENTO DE ECONOMIA APLICADA I MATEMATICAS FINANCIERAS BOLETIN DE PROBLEMAS SEGUNDO CURSO Sistemas financieros

Más detalles

Facultad de Ciencias Económicas. Cálculo Financiero Guía de trabajos prácticos. Autor: Pablo Caviezel

Facultad de Ciencias Económicas. Cálculo Financiero Guía de trabajos prácticos. Autor: Pablo Caviezel Facultad de Ciencias Económicas Cálculo Financiero Guía de trabajos prácticos Autor: Pablo Caviezel CÁLCULO FINANCIERO GUÍA DE TRABAJOS PRÁCTICOS Profesor: Act. CAVIEZEL, Pablo I. Acerca del autor y compilador

Más detalles

REPROGRAMACIONES CON FINANCIAMIENTO DEL BANCO CENTRAL DE CHILE. I.- REPROGRAMACIONES DE CREDITOS AL SECTOR PRO- DUCTIVO.

REPROGRAMACIONES CON FINANCIAMIENTO DEL BANCO CENTRAL DE CHILE. I.- REPROGRAMACIONES DE CREDITOS AL SECTOR PRO- DUCTIVO. CAPITULO 8-30 (Bancos y Financieras) MATERIA: REPROGRAMACIONES CON FINANCIAMIENTO DEL BANCO CENTRAL DE CHILE. I.- REPROGRAMACIONES DE CREDITOS AL SECTOR PRO- DUCTIVO. A) DEUDAS REPROGRAMADAS AL SECTOR

Más detalles

TEMA 12. FUENTES DE FINANCIACION

TEMA 12. FUENTES DE FINANCIACION TEMA 12. FUENTES DE FINANCIACION 1. LOS DIFERENTES TIPOS DE FINANCIACION EN LA EMPRESA. Denominaremos fuente de financiación a los diferentes recursos financieros que la empresa obtiene para llevar a cabo

Más detalles

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente:

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: 2 Matemática financiera 1. Porcentajes Piensa y calcula Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: Porcentaje 10% = 10/100 = 1/10 20% = 20/100 = 1/5

Más detalles

Aritmética. Preguntas Propuestas

Aritmética. Preguntas Propuestas 7 Preguntas Propuestas 1 ... Regla de interés 1. El monto de un capital impuesto durante 6 años es S/.15 800. Si el mismo capital se hubiera impuesto al mismo rédito durante 7 años y medio, el monto sería

Más detalles

Capítulo 1 Interés Simple

Capítulo 1 Interés Simple Capítulo 1 Interés Simple 1.1 Tanto por ciento En matemáticas el tanto por ciento es una forma de expresar un número en proporción cien (de ahí el nombre por ciento ), y se denota con el símbolo %. El

Más detalles

Si conocemos el monto para tiempo y tasa dados, el problema será entonces hallar el capital, en

Si conocemos el monto para tiempo y tasa dados, el problema será entonces hallar el capital, en Interés Simple El interés simple, es pagado sobre el capital primitivo que permanece invariable. En consecuencia, el interés obtenido en cada intervalo unitario de tiempo es el mismo. Es decir, la retribución

Más detalles

La financiación de la empresa

La financiación de la empresa La función financiera Funciones del área financiera de la empresa Planificación financiera Obtención de recursos financieros Estudia las necesidades futuras de capital Estudia las diversas alternativas

Más detalles

Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN

Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN 1. Las transacciones comerciales, con frecuencia implican el intercambio de dinero efectivo,

Más detalles

UNIDAD 4 AMORTIZACIÓN. Introducción a la unidad

UNIDAD 4 AMORTIZACIÓN. Introducción a la unidad UNIDAD 4 AMORTIZACIÓN Introducción a la unidad Una de las aplicaciones más importantes de las anualidades en las operaciones de negocios está representada por el pago de deudas que devengan intereses.

Más detalles

El valor del dinero en el tiempo, matemáticas financieras

El valor del dinero en el tiempo, matemáticas financieras El valor del dinero en el tiempo, 1 Introducción Todos los días afrontamos problemas financieros, por ejemplo, al comprar un televisor tenemos varias opciones: pagar de contado, a un determinado precio;

Más detalles

Matemática financiera

Matemática financiera Matemática financiera Evaluación En la sucesión, /, /, /, / calcula la suma de sus términos. a) b) No tiene solución. c) / Un artículo cuesta 00. En unas primeras rebajas su valor disminuye un 0 % pero

Más detalles

7.1. Conceptos básicos. Clasificación

7.1. Conceptos básicos. Clasificación Unidad 7 Préstamos 7.1. Conceptos básicos. Clasificación 7.1.1. Elementos de un préstamo 7.1.2. El tipo de interés. Componentes 7.1.3. Clasificación 7.2. Préstamos amortizables con reembolso único 7.2.1.

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Financieras Manuel León Navarro 2 Capítulo 1 Ejercicios lección 2 1. Determinar el capital equivalente a (1000000,2020) en 2012

Más detalles

Ejercicios prácticos de Cálculo Financiero

Ejercicios prácticos de Cálculo Financiero Ejercicios prácticos de Cálculo Financiero 1) Se necesita calcular el monto que percibiría una persona en un juicio laboral por despido. El monto de la indemnización era de $10.000, que debía ser ajustado

Más detalles

Rendimiento de cualquier inversión de capital. ³

Rendimiento de cualquier inversión de capital. ³ Definición de interés Cuando una persona pide dinero en préstamo, el que otorga el préstamo, o prestamista por entregarlo debe recibir un beneficio; a dicho beneficio se le llama interés. ¹ Es el alquiler

Más detalles

EJERCICIOS PROPUESTOS CAPÍTULO 3

EJERCICIOS PROPUESTOS CAPÍTULO 3 ADMINISTRACIÓN FINANCIERA FUNDAMENTOS Y APLICACIONES Oscar León García S. Cuarta Edición EJERCICIOS PROPUESTOS CAPÍTULO 3 Matemáticas Financieras Última Actualización: Agosto 18 de 2009 Consultar últimas

Más detalles

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad 1.- La función financiera definición y objetivos 2.- Clasificación de los recursos financieros según su titularidad 3.- Instrumentos de financiación externa a c.p. 4.- Principales fuentes de financiación

Más detalles

FLORENY ULATE ARTAVIA MATEMÁTICA COMERCIAL. Guía de estudio

FLORENY ULATE ARTAVIA MATEMÁTICA COMERCIAL. Guía de estudio FLORENY ULATE ARTAVIA MATEMÁTICA COMERCIAL Guía de estudio ii Universidad Estatal a Distancia Vicerrectoría Académica Escuela de Ciencias de la Administración Esta guía de estudio ha sido confeccionada

Más detalles

OBLIGACIONES A LARGO PLAZO.

OBLIGACIONES A LARGO PLAZO. OBLIGACIONES A LARGO PLAZO. PASIVOS El pasivo es una fuente de recursos de que dispone el ente económico para la realización de sus fines, los cuales han sido aportados por entidades externas, con las

Más detalles

UNIVERSIDAD NACIONAL DE SALTA CÁLCULO FINANCIERO

UNIVERSIDAD NACIONAL DE SALTA CÁLCULO FINANCIERO UNIVERSIDAD NACIONAL DE SALTA FACULTAD DE CIENCIAS ECONÓMICAS, JURÍDICAS Y SOCIALES CÁLCULO FINANCIERO CARTILLA DE EJERCICIOS SISTEMAS DE AMORTIZACION Año 2011 1 FACULTAD DE CIENCIAS ECONÓMICAS, JURÍDICAS

Más detalles

Una empresa presenta al descuento, el día 12 de marzo de 2006, la siguiente remesa de efectos:

Una empresa presenta al descuento, el día 12 de marzo de 2006, la siguiente remesa de efectos: EJEMPLO RESUELTO Una empresa presenta al descuento, el día 12 de marzo de 2006, la siguiente remesa de efectos: Nominal Vencimiento 350 24-03-2006 600 06-04-2006 1.550 15-05-2006 El banco aplica un tipo

Más detalles

- El valor de todas las cuotas.

- El valor de todas las cuotas. CASO 1: Un comerciante recibe un préstamo de $ 30.000.- a cancelarse mediante el pago de 12 cuotas bimestrales adelantadas e iguales. Inmediatamente de pagada la quinta cuota, acuerda con el acreedor en

Más detalles

RELACIÓN DE EJERCICIOS DE LA ASIGNATURA:

RELACIÓN DE EJERCICIOS DE LA ASIGNATURA: UNIVERSIDAD DE CASTILLA - LA MANCHA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES ALBACETE ÁREA DE ECONOMÍA FINANCIERA DEPARTAMENTO DE ANÁLISIS ECONÓMICO Y FINANZAS RELACIÓN DE EJERCICIOS DE LA ASIGNATURA:

Más detalles

12) Hallar durante cuántos años se prestó un capital de 500.000, al 10% simple anual, sabiendo que alcanzó un montante de 550.000.

12) Hallar durante cuántos años se prestó un capital de 500.000, al 10% simple anual, sabiendo que alcanzó un montante de 550.000. Finanzas Pública MÓDULO 1: CAPITALIZACION SIMPLE 1) Hallar el interés que produce en 7 años un capital de 200.000 prestado al 9% simple anual. R: 126.000 euros 2) Calcular el interés de una capital de

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Francisco Pérez Hernández Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid Objetivo del curso: Profundizar en los fundamentos del cálculo financiero,

Más detalles

TEMA 9. LA FINANCIACIÓN DE LA EMPRESA.

TEMA 9. LA FINANCIACIÓN DE LA EMPRESA. 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA. La empresa necesita recursos financieros (dinero) para pagar los factores productivos, tanto al inicio como durante su actividad. La encargada de gestionar los recursos

Más detalles

11 Selección de proyectos

11 Selección de proyectos Selección de proyectos de inversión Esta unidad didáctica persigue los siguientes objetivos: Esquema temporal de un proyecto de inversión. Comprender y operar con el factor de capitalización compuesta.

Más detalles

El valor del dinero en el tiempo, matemáticas financieras

El valor del dinero en el tiempo, matemáticas financieras El valor del dinero en el tiempo, matemáticas financieras D.R. Universidad TecVirtual del Sistema Tecnológico de Monterrey México, 2012. 1 Índice Inicio... 3 - Introducción - Objetivo - Temario - Antecedentes

Más detalles

Capítulo 3 Interés compuesto

Capítulo 3 Interés compuesto Capítulo 3 Interés compuesto Introducción Cuando un banco o cualquier otra institución financiera aumentan el número de periodos en el año en los que pagan intereses, el capital aumenta más rápidamente

Más detalles

- La mejor alternativa de inversión.

- La mejor alternativa de inversión. CASO 1: Un inversor deposita $ 5.000.- en un banco en Plazo Fijo a 12 meses, la tasa pactada fue una TEA del 0,11. A los 100 días se transfiere el certificado a un proveedor con el fin de cancelar una

Más detalles

UNIDAD 2 INTERÉS COMPUESTO. Introducción a la unidad

UNIDAD 2 INTERÉS COMPUESTO. Introducción a la unidad UNIDAD 2 INTERÉS COMPUESTO Introducción a la unidad Al invertir un dinero o capital a una tasa de interés durante un cierto tiempo, nos devuelven ese capital más los beneficios o intereses, que ahora se

Más detalles

Unidad 8. Amortización. Objetivos. Al finalizar la unidad, el alumno:

Unidad 8. Amortización. Objetivos. Al finalizar la unidad, el alumno: Unidad 8 Amortización Objetivos Al finalizar la unidad, el alumno: Calculará el valor de las cuotas de amortización. Construirá tablas de amortización. Calculará el saldo insoluto de una deuda en cualquier

Más detalles

ESTRUCTURA BALANCE GENERAL (ACTIVOS, PASIVOS Y PATRIMONIO) MATERIA ANÁLISIS FINANCIERA UNIVERSIDAD DE MEDELLÍN FACULTAD DE INGENIERIA FINANCIERA

ESTRUCTURA BALANCE GENERAL (ACTIVOS, PASIVOS Y PATRIMONIO) MATERIA ANÁLISIS FINANCIERA UNIVERSIDAD DE MEDELLÍN FACULTAD DE INGENIERIA FINANCIERA ESTRUCTURA BALANCE GENERAL (ACTIVOS, PASIVOS Y PATRIMONIO) MATERIA ANÁLISIS FINANCIERA UNIVERSIDAD DE MEDELLÍN FACULTAD DE INGENIERIA FINANCIERA MEDELLÍN 2002 ACTIVOS Esta conformado por los recursos y

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

Unidad de Aprendizaje: Anualidades y gradientes

Unidad de Aprendizaje: Anualidades y gradientes Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

TEMA 13: MÉTODOS DE FINANCIACIÓN AJENA

TEMA 13: MÉTODOS DE FINANCIACIÓN AJENA TEMA 13: MÉTODOS DE FINANCIACIÓN AJENA 1- LOS PRÉSTAMOS 1.1- DEFINICIÓN 1.2- MÉTODOS DE AMORTIZACIÓN 1.3- CUENTAS UTILIZADAS PARA CONTABILIZAR LOS PRÉSTAMOS 1.4- PRÉSTAMOS A CORTO PLAZO 1.5- PRÉSTAMOS

Más detalles

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO)

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) UNIVERSIDAD NACIONAL ESCUELA DE CIENCIAS AMBIENTALES CURSO: FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PROFESOR: ING. IGOR ZÚÑIGA GARITA. MAP TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) CUAL ES

Más detalles

LICENCIATURA EN ADMINISTRACIÓN APUNTES MATEMÁTICAS FINANCIERAS PARA LA ASIGNATURA

LICENCIATURA EN ADMINISTRACIÓN APUNTES MATEMÁTICAS FINANCIERAS PARA LA ASIGNATURA 1 LICENCIATURA EN ADMINISTRACIÓN APUNTES PARA LA ASIGNATURA MATEMÁTICAS FINANCIERAS 2005 1 2 Colaboradores Coordinación general L. A. C.y Mtra. Gabriela Montero Montiel Coordinación académica L.A.C. Francisco

Más detalles

Interés simple: capitalización simple vamos a conocer...

Interés simple: capitalización simple vamos a conocer... 4 Interés simple: capitalización simple vamos a conocer... 0. Leyes y operaciones financieras (Tema 3). 1. La capitalización simple anual 2. Tantos equivalentes. Tantos proporcionales 3. Formulación del

Más detalles

EJERCICIOS DE PRÉSTAMOS (I)

EJERCICIOS DE PRÉSTAMOS (I) - 1 - EJERCICIOS DE PRÉSTAMOS (I) SUPUESTO 1 El Sr. Martínez está, pagando al final de cada mes 775,5 euros para amortizar un préstamo por el sistema francés, contratado a un tipo nominal mensual del 4,75%

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL UNIDAD 2 ARITMÉTICA MERCANTIL Página 52 1. Vamos a calcular en cuánto se transforma una cantidad C al sufrir un aumento del 12%: 12 C + 100 C = C + 0,12 C = 1,12 C Conclusión: Si C aumenta el 12%, se transforma

Más detalles