Los pasos que se dan son:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Los pasos que se dan son:"

Transcripción

1 Hasta ahora hemos admitido que podemos trabajar con la red de cores de nuestro sólido usando una aproximación clásica lo que nos ha permitido determinar los «modos normales de vibración» en el sentido clásico de la mecánica. En este apartado vamos a formalizar el estudio del problema pasando de una formulación clásica a una cuántica usando el principio de correspondencia. El objetivo es determinar como es el Hamiltoniano del sistema de la red y encontrar sus autovalores y estados propios. Haremos los cálculos para una cadena mono-atómica unidimensional Los pasos que se dan son: 1. Se parte de la energía del sistema como suma de la energía cinética más la potencial en la aproximación armónica. 2. Se hace un cambio de coordenadas, para pasar a las denominadas coordenadas normales. 3. Se usa el principio de correspondencia (pasando de magnitudes clásicas a operadores cuánticos) para establecer el Hamiltoniano del sistema 4. Se introducen los operador de Bose de creación y aniquilación para disponer de un H más fácilmente comprensible, manejable e interpretable. 5. En base a los resultados se define los posibles estados usando dos aproximaciones

2 La energía de la cadena lineal mono-atómica en la aproximación armónica es: En estas expresiones la energía potencial es no diagonal lo que es una complicación matemática. Buscamos entonces unas nuevas coordenadas en las que podamos «diagonalizar» estos términos. Se introducen entonces las denominadas coordenadas normales P q y Q q, donde q va a cumplir las condiciones de contorno cíclicas y estará contenido en la primera zona de Brillouin. En este nueva descripción cada coordenada P q y Q q va a representar un modo normal de vibración independiente para cada q y eventualmente para cada rama j.

3 Las nuevas coordenadas normales se relacionan con la iniciales a través de las expresiones Sustituyendo estas expresiones en la energía cinética y potencial se obtiene la expresión siguiente (se prueba en clase de problemas):

4 Lo que obtenemos es que cada uno de los H q se corresponden con un oscilador armónico de masa M y frecuencia propia ω(q). Donde ω(q) se corresponde con la relación de dispersión encontrada para esta cadena mono-atómica unidimensional. El sistema por tanto se comporta como un conjunto de N (numero de celdillas del cristal) osciladores armónicos (tantos como q posibles hay) cada uno con una frecuencia propia dada por la relación de dispersión ω(q).

5 Para pasar ahora al Hamiltoniano cuántico del sistema se usa el principio de correspondencia pasando de las magnitudes clásicas a las correspondientes cuánticas. Si bien antes se debe demostrar que las coordenadas normales P y Q son canónicas conjugadas, de forma análoga como son los operadores posición y momento.,,!,,, 0,, 0 Desde el punto de vista de la mecánica cuántica tendremos que resolver una ecuación del tipo Donde Y la función de onda se podrá escribir como:

6 En las condiciones previas la ecuación para cada ϕ será " Donde se tienen (en el caso más general) 3 nn ecuaciones. (nn en el caso unidimensional y solamente N si además el sistema es monoatómico) Las funciones son estados propios del Hamiltoniano del oscilador armónico q los siendo n q es un número cuántico que identifica cada uno de estos estados. La energía total del sistema de osciladores armónicos es: ε Por tanto las oscilaciones individuales acopladas de los iones, son formalmente reemplazadas por un conjunto de osciladores armónicos desacoplados.

7 En lugar de trabajar en la representación mencionada, basada en el uso de «coordenadas normales», es útil hacer una transformación matemática adicional muy usada en mecánica cuántica cuando se trabaja con osciladores armónicos. Esta nueva trasformación consiste en pasar a usar los operaciones de Bose de creación aniquilación a q + y a q

8 Ecuación idéntica a la de un oscilador armónico unidimensional de frecuencia ω q en mecánica cuántica (Cohen, página 481).

9 Por tanto y tras todas estas trasnformaciones tendríamos que el hamiltoniano total viene dado por Y representa una colección de N osciladores distinguibles e independientes, de los que sabemos calcular las funciones de onda o de forma equivalente n 1, n 2, n 3,.., n q,...>= n 1 > n 2 > n 3 > n q > así como su energía, que vendrá dada por: 1 2 El estado fundamental, de energía E 0, vendrá será aquel en el que n q =0 para todos los q y será $ 1 2 Y será el punto de energía cero del cristal

10 Hay dos formas alternativas de interpretar el resultado obtenido. Forma 1: Tenemos un conjunto de 3nN (en el caso general) osciladores independientes y distinguibles de los que sabemos calcular su función de onda y su energía. En esta descripción el número cuántico n qj define el estado de excitación del oscilador q,j y puede tomar un número infinito de valores. Forma 2: Tenemos un conjunto de partículas indistinguibles e independientes. El número cuántico n qj será ahora el número de tales partículas con energía % en el estado de vibración especificado por q,j. A estas partículas (cuasi-partículas) se les conoce con el nombre de fonones y es un ejemplo típico de excitaciones colectivas.

11 j=3n j=3 j=2 j=1 3n-3 ópticos (2 transversales y 1 longitudinal) para n=2 3 acústicos (2 transversales y 1 longitudinal) q Descripción cuántica del estado del sistema: forma 1. Para describir globalmente el estado del sistema debo especificar para cada q,j, el estado propio asociado a este oscilador armónico. Es decir debo dar el valor de n qj El estado del sistema será entonces n 1j, n 2j, n 3j,.., n q,j...> Y la energía Descripción cuántica del estado del sistema: Forma 2. Fonones Para describir el estado del sistema debo especificar el número de fonones n qj que ocupan el estado q,j y tienen energía % estado del sistema será entonces n 1j, n 2j, n 3j,.., n q,j...> Y la energía % 1 2 % % % 1 2 % %

12 Estas cuasi-partículas obedecen a la estadística de Bose y su definición implica un representación específica de una onda viajera de la cual la información esencial está contenida en el número cuántico n q, definido por la citada estadística cuántica. Los fonones van a ser independientes entre si en la aproximación armónica. La inclusión de términos de orden superior en el potencial dará lugar a las denominadas interacciones fonón-fonón.

13 Resumen de resultados 1. En un cristal con N celdillas y n átomos por celdilla, hemos encontrado que existen 3nN modos propios de vibración 2. Cada modo propio de vibración (o modo normal) es una onda plana progresiva de vector de onda q 3. Los distintos modos normales se obtienen considerando los N posibles valores de q en la primera zona de Brillouin y las 3 n posibles ramas asociadas a cada q. A las 3n ramas se la designa con el índice j. 4. La pulsación w qj asociada a cada modo es la relación de dispersión que se puede obtener por métodos clásicos. Esta relación va a ser el puente entre las características microscópicas y las propiedades macroscópicas. 5. De las 3n ramas posibles, existen tres en las que ω tiende a 0 cuando q tiende a 0 (ω(q)=vq). A estas ramas se las denomina ramas acústicas; v depende para cada rama de su polarización (transversal o longitudinal) y de la dirección de propagación. 6. Las 3n-3 ramas restantes son las ramas ópticas en las que ω tiene un valor finito cuando q=0. 7. El cálculo teórico de las relaciones de dispersión exige el conocimiento de las constantes de fuerza entre cores. Es un problema teórico complejo que es solo abordable en determinados casos. En muchos casos las relaciones de dispersión se obtienen de forma experimental mediante experiencias de espectroscopia Raman o de difracción de neutrones.

14 Resumen de resultados 8. Mediante la transformación a coordenadas normales es posible expresar el Hamiltoniano del sistema de forma sencilla, como un conjunto de osciladores armónicos. 8. Mediante el paso al sistema cuántico (principio de correspondencia) se puede decir que: a) Nos encontramos ante un sistema de 3nN osciladores independientes cada uno asignado al modo (q,j) y de los que sabemos calcular sus funciones de onda y su energía. El número cuántico n qj define el estado de excitación del oscilador. b) Estamos ante un sistema de partículas independientes e indistinguibles (fonones). El número cuántico n qj, da cuanta del número de partículas con energía % en el estado vibracional representado por q y j. En esta segunda forma de hablar a estas partículas se las denomina fonones y son partículas definidas en la estadística de Bose y su número en el cristal puede expresarse en función de a q + y a q La energía de una onda vibracional recibe el nombre de fonón, en analogía con el fotón de las ondas electromagnéticas. La mayor parte de los conceptos, tales como al descripción onda-partícula, que se aplican a los fotones se van a poder usar también para los fonones. Por ejemplo, podemos decir que las ondas sonoras en los cristales se componen de fonones o que las vibraciones térmicas en los cristales son fonones excitados térmicamente, análogos a los fotones excitados térmicamente que componen la radicación electromagnética de un cuerpo negro en una cavidad.

FES. Calor específico asociado a las vibraciones reticulares

FES. Calor específico asociado a las vibraciones reticulares Calcularemos en esta sección el calo específico reticular C v, término más fácil de calcular si bien experimentalmente el dato que se mide es C p La relación entre ambos calores específicos viene dada

Más detalles

Para ser considerada una función aceptable, la función de onda debe ser:

Para ser considerada una función aceptable, la función de onda debe ser: Cualquier estado de un sistema dinámico de N partículas puede ser descrito por la llamada función de onda de las 3N coordenadas espaciales y del tiempo: (1) Para ser considerada una función aceptable,

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010)

C. Trallero-Giner CINVESTAV-DF (2010) Dispersión Raman en Sólidos C. Trallero-Giner CINVESTAV-DF (2010) I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales II. Dispersióndelaluz

Más detalles

ÍNDICE

ÍNDICE ÍNDICE 1 Radiación térmica y el postulado de Planck... 17 1-1 Introducción... 19 1-2 Radiación térmica... 19 1-3 Teoría clásica de la cavidad radiante... 24 1-4 Teoría de Planck de la cavidad radiante...

Más detalles

Radiación térmica y el postulado de Planck

Radiación térmica y el postulado de Planck Contenido Radiación térmica y el postulado de Planck 17 1-1 1-2 1-3 1.4 1.5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de Planck de 1a cavidad radiante

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

FES. Vibraciones reticulares

FES. Vibraciones reticulares Vibraciones reticulares Los átomos en un sólido están oscilando en torno a sus posiciones de equilibrio con una amplitud que depende de la temperatura. Como hemos mencionado en el apartado previo estas

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I Formas de energía en un sólido cristalino

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales Física del Estado Sólido Práctico 5 Vibraciones de los Cristales 1. Medición de las Constantes de Fuerza Considere una red lineal monoatómica, siendo M la masa de cada átomo y a la distancia entre ellos.

Más detalles

Capítulo 6. Teoría del péndulo. 6.1 Péndulo Simple (Lagrange)

Capítulo 6. Teoría del péndulo. 6.1 Péndulo Simple (Lagrange) Capítulo 6 Teoría del péndulo Para comparar con la descripción matemática de la configuración del sistema de cristal líquido colestérico que se encuentra bajo la acción de un campo electrostático uniforme,

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz

C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz Dispersión Raman en Sólidos C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz Reglas de selección Dinámica de la luz

Más detalles

Problemas. a a 0 a 0 A =

Problemas. a a 0 a 0 A = Problemas 1. La representación matricial del Hamiltoniano correspondiente a un fotón propagandose en dirección del eje óptico de un cristal de cuarzo usando como base los estados de polarización lineal

Más detalles

Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS"

Interpretación del documento A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS Celeste Pelayes Bryant Barrientos Fisicoquímica III Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS" Primero abordaremos el tema con un poco de mecánica

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

1 EL OSCILADOR ARMONICO

1 EL OSCILADOR ARMONICO 1 EL OSCILADOR ARMONICO 1.1 Autofunciones y Autovalores El potencial del oscilador armónico en una dimensión corresponde a la siguiente expresión matemática: V = 1 kx (1) donde k es la constante de la

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA UNIDAD DE INVESTIGACIÓN DE LA FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INFORME FINAL DEL TEXTO TEXTO: MECÁNICA CUÁNTICA II

Más detalles

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética.

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética. El electromagnetismo es una teoría de campos que estudia y unifica los fenómenos eléctricos

Más detalles

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein.

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. Mecánica Cuántica Avanzada Carlos Pena 20-1 20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. [Gre 2.1,2.3; passim] Absorción de fotones en un átomo El proceso

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3) ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

Las vibraciones de la red y los fonones

Las vibraciones de la red y los fonones 8 Las vibraciones de la red y los fonones En este capítulo se estudia la aproximación más simple conocida como la Aproximación Armónica, se considera que los átomos vibran alrededor del punto de equilibrio

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

1. Propagación de ondas en los sólidos. 2. Interacción de los sólidos iónicos con la radiación IR 3. Calor específico. 4. Temperatura de fusión.

1. Propagación de ondas en los sólidos. 2. Interacción de los sólidos iónicos con la radiación IR 3. Calor específico. 4. Temperatura de fusión. La aproximación armónica ha permitido predecir alguno de los comportamientos característicos de los sólidos. En los apartados previos hemos visto que esta aproximación permite entender fenómenos como:

Más detalles

Una Introducción a la Mecánica Cuántica

Una Introducción a la Mecánica Cuántica Una Introducción a la Mecánica Cuántica 1 Estado de la Física hacia 1900 Fines del siglo XIX y principios del XX, la Física reina absoluta Newton había sentado las bases de la mecánica y la gravitación

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos:

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: 1 Ejercicios resueltos 1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: Nº atómico Z Nº másico A Protones Neutrones

Más detalles

1.1 DEFINICIÓN CLÁSICA DEL MOMENTO ANGU- LAR

1.1 DEFINICIÓN CLÁSICA DEL MOMENTO ANGU- LAR Chapter MOMENTO ANGULAR La teoría del momento angular en mecánica cuántica es de gran importancia tanto por el número como por la variedad de sus consecuencias. A partir de la espectroscopía rotacional,

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I del la del Introducción del Las propiedades

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz Óptica Fenómenos luminosos Juan Carlos Salas Galaz Física La física proviene del griego phisis y que significa realidad o naturaleza y una aproximación sería, la ciencia que estudia las propiedades del

Más detalles

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física MATEMÁTICAS Posgrado en Nanotecnología Dr. Roberto Pedro Duarte Zamorano 016 Departamento de Física TEMARIO 3. Transformada de Fourier 1. Transformadas integrales.. La Transformada de Fourier. 3. Teorema

Más detalles

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física Carrera: Ciencias Biológicas Plan: 1990 Código de la Carrera: 261 Código de

Más detalles

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María 1 Mecánica Clásica - II Semestre 2014 Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María Problema 1. Una barra rígida (de altura despreciable)

Más detalles

Física Cuántica. Moléculas II. Movimiento ionico.

Física Cuántica. Moléculas II. Movimiento ionico. Física Cuántica Moléculas II. Movimiento ionico. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2002-2003 p.1/15 El movimiento de los nucleos Born-Oppenheimer: debemos estudiar

Más detalles

Generalidades del Estado Sólido

Generalidades del Estado Sólido Universidad de Antioquia Instituto de Física Primer Taller de Estado Sólido, CNF-422 Este taller tiene como objetivo que el estudiante haga un recorrido por los diferentes conceptos para preparar el primer

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

mecánica estadística El Conjunto Canónico Capítulo 2

mecánica estadística El Conjunto Canónico Capítulo 2 mecánica estadística El Conjunto Canónico Capítulo 2 2013 Conjunto Canónico Características de cada miembro del conjunto,v,t,v,t,v,t,v,t I I I Los miembros del conjunto son idénticos y distinguibles. umero

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

PROYECTO DOCENTE ASIGNATURA: "Física Cuántica"

PROYECTO DOCENTE ASIGNATURA: Física Cuántica PROYECTO DOCENTE ASIGNATURA: "Física Cuántica" Grupo: Grupo de CLASES TEORICAS de FISICA CUANTICA.(883378) Titulacion: LICENCIADO EN FÍSICA (Plan 98) Curso: 2010-2011 DATOS BÁSICOS DE LA ASIGNATURA/GRUPO

Más detalles

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA División de Ingeniería Facultad de Química Ambiental Nombre de Asignatura: QUÍMICA CUÁNTICA Àrea: Básicas de Química Fisicoquímica Créditos: 3 Modalidad: Teórica

Más detalles

Caracterización Estructural de Materiales por Difracción de Rayos X

Caracterización Estructural de Materiales por Difracción de Rayos X Grado C. Físicas SÍNTESIS Y DETERMINACIÓN ESTRUCTURAL DE LOS MATERIALES Caracterización Estructural de Materiales por Difracción de Rayos X J. Medina UNIVERSIDAD DE VALLADOLID Departamento de Física de

Más detalles

Interacción electrón-electrón: Plasmones, Apantallamiento, función dieléctrica

Interacción electrón-electrón: Plasmones, Apantallamiento, función dieléctrica Interacción electrón-electrón: Plasmones, Apantallamiento, función dieléctrica Rubén Pérez Departamento de Física Teórica de la Materia Condensada, C-05, 6a planta, despacho 601 Universidad Autónoma de

Más detalles

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L.

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. Alumno: Alan Francisco Hernández Cisneros Grupo: 303 P.S.P. Lic. Miriam de la Rosa Díaz Carrera: Técnico-Bachiller en Informática QUÉ ES LA FÍSICA? Es una ciencia

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Métodos Matemáticos en Física L.4. Método Fourier: Cuerda. Sobre planteamiento general del curso

Métodos Matemáticos en Física L.4. Método Fourier: Cuerda. Sobre planteamiento general del curso Sobre planteamiento general del curso CONTENIDOS TEORICOS / CONCEPTOS del CURSO Tipos BASICOS de ecuaciones en MM3 (L2- TEORIA) Origines físicos de estas ecuaciones (hoy y varios clases teóricos mas

Más detalles

Caracterización Estructural de Minerales por Difracción de Rayos X

Caracterización Estructural de Minerales por Difracción de Rayos X Máster Universitario en Profesor de Enseñanza Secundaria Obligatoria, Bachillerato, Formación Profesional y Enseñanza de Idiomas Caracterización Estructural de Minerales por Difracción de Rayos X J. Medina

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales Contenidos Mínimos: Formalismos Matemáticos de Química Cuántica Métodos computacionales Formalismos mecano cuánticos. Tratamiento atómico y molecular Aplicaciones a moléculas sencillas. Trabajos Prácticos:

Más detalles

Física II, Ondas Ondas en Medios Elásticos

Física II, Ondas Ondas en Medios Elásticos Física II, Ondas Ondas en Medios Elásticos Profesor: Pedro Labraña Departamento de Física, Universidad del Bío-Bío Carrera: Ingeniería Civil en Informática Créditos: 5 Ondas en Medios Elásticos Introducción,

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Teoría Espectral Stephen B. Sontz Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Mini-curso impartido en Colima 29 septiembre 2016 - Tercer día Introducción Hay dos dichos populares

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN

Más detalles

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015 Introducción a la Física Cuántica Tarea 7 A entregar: Lunes 16 de noviembre de 2015 Spin y sistemas de dos estados Prob. 30. Matrices de momento angular j = 1. En clase discutimos que para cada valor de

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

Modelos Colectivos. Introducción.

Modelos Colectivos. Introducción. Modelos Colectivos. Introducción. El modelo de capas predice que todos los núcleos par -par tienen J P =0 en su estado fundamental. En el caso del 130 Sn sus 50 protones saturan la capa 1g 9/ mientras

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles

MATERIA CONDENSADA. Práctica 6: Electrones en un potencial periódico Teoría de bandas

MATERIA CONDENSADA. Práctica 6: Electrones en un potencial periódico Teoría de bandas MATERIA CONDENSADA Práctica 6: Electrones en un potencial periódico Teoría de bandas Potencial periódico débil NFE (Nearly free electrons) 1- Modelo unidimensional Analizar la estructura de bandas de un

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

ÍNDICE GENERAL ÍN DI CE PRÓLOGO 17

ÍNDICE GENERAL ÍN DI CE PRÓLOGO 17 GENERAL ÍN PRÓLOGO 17 I. INTRODUCCIÓN A LA FÍSICA DEL ESTADO SÓLIDO 21 1.1. Introducción 21 1.2. Definición y breve historia de la Física del Estado Sólido 24 1.3. Estructura conceptual de la Física del

Más detalles

Fallos del modelo de sólido estático.

Fallos del modelo de sólido estático. Fallos del modelo de sólido estático. Hasta ahora hemos trabajado en un modelo de «sólido estático» en el que los iones permanecían inmóviles en sus posiciones de equilibrio, lo que nos ha permitido evaluar

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 1. Naturaleza de la materia (el átomo). 2. Modelos atómicos clásicos. 3. Modelo mecánico cuántico. 4. Mecánica ondulatoria de Schrödinger. 5. Números cuánticos. 6. Orbitales atómicos.

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

La conductividad térmica en este apartado viene definida a través de la ley de Fourier

La conductividad térmica en este apartado viene definida a través de la ley de Fourier Conductividad térmica de materiales aislantes. La conductividad térmica en este apartado viene definida a través de la ley de Fourier Donde Q es el flujo de calor (energía transmitida por unidad de tiempo

Más detalles

FÍSICA DEL ESTADO SÓLIDO GRADO Y LICENCIATURA EN FÍSICA UNIVESIDAD DE VALLADOLID CURSO

FÍSICA DEL ESTADO SÓLIDO GRADO Y LICENCIATURA EN FÍSICA UNIVESIDAD DE VALLADOLID CURSO FÍSICA DEL ESTADO SÓLIDO GRADO Y LICENCIATURA EN FÍSICA UNIVESIDAD DE VALLADOLID CURSO 2013-2014 Miguel Angel Rodríguez Pérez Departamento Física de la Materia Condensada, Facultad de Ciencias Universidad

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS FÍSICA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS CURSO 2º BCT I.E.S. Santiago Hernández Zaragoza 2 FÍSICA 2º BCT CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS Contenidos mínimos: Se consideran como contenidos

Más detalles

Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM

Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM Se utiliza el potencial de Morse para describir la interacción entre los átomos en una molécula diatómica. Las gráficas que

Más detalles

Química Física II. Tema II

Química Física II. Tema II Química Física II. Tema II TEMA II: LA ECUACIÓN DE SCHRÖDINGER 1. La ecuación de Schrödinger independiente del tiempo 2. La ecuación de Schrödinger dependiente del tiempo 3. Principio de incertidumbre

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

Datos: a = 3, m = 1, J s c = 2, m s

Datos: a = 3, m = 1, J s c = 2, m s El deuterón Mediante experimentos de dispersión se sabe que el deuterón tiene un diámetro aproximado de 3,04 Fermi. Calcular usando la mecánica cuántica del pozo de potencial cuadrado las velocidades del

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

PROGRAMA DE: FISICA MODERNA II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO:

PROGRAMA DE: FISICA MODERNA II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO: UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS D.E.B.S. COORDINACION ACADEMICA DE LA FEC DEPARTAMENTO DE FISICA UNIDAD ACADÉMICA FÍSICA CUÁNTICA PROGRAMA DE: FISICA MODERNA II IDENTIFICACION DE

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

Estructura electrónica molecular

Estructura electrónica molecular Estructura electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 4 de noviembre de 2016 Índice 1. Aproximación de Born-Oppenheimer 1 2. Ion

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

Centro de Física Fundamental y Grupo de Procesos Dinámicos en Química, ULA

Centro de Física Fundamental y Grupo de Procesos Dinámicos en Química, ULA Centro de Física Fundamental y Grupo de Procesos Dinámicos en Química, ULA Una Breve Introducción a la Física de los Cristales Fotónicos. Año Internacional de la Luz Pedro L. Contreras E. Jornadas Aniversario

Más detalles

Espectroscopía de Absorción Molecular

Espectroscopía de Absorción Molecular Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante

Más detalles

Apuntes del Modelo del átomo hidrogenoide.

Apuntes del Modelo del átomo hidrogenoide. Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Niveles Electrónicos en un Potencial Periódico

Niveles Electrónicos en un Potencial Periódico Niveles Electrónicos en un Potencial Periódico Dr. Andres Ozols aozols@fi.uba.ar Facultad de Ingeniería de la Universidad de Buenos Aires 2009 Dr. A. Ozols 1 TEMARIO Niveles Electrónicos en un Potencial

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles